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Abstract 40 

Ocean color satellites have provided a synoptic view of global phytoplankton for over 25 years 41 

through surface measurements of the concentration of chlorophyll a. While remote sensing of 42 

ocean color has revolutionized our understanding of phytoplankton and their role in the oceanic 43 

and freshwater ecosystems, it is important to consider both total phytoplankton biomass and 44 

changes in phytoplankton community composition in order to fully understand the dynamics of 45 

the aquatic ecosystems. With the upcoming launch of NASA’s Plankton, Aerosol, Clouds, ocean 46 
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Ecosystem (PACE) mission, we will be entering into a new era of global hyperspectral data, and 47 

with it, increased capabilities to monitor phytoplankton diversity from space. In this paper, we 48 

analyze the needs of the user community, review existing approaches for detecting 49 

phytoplankton community composition in situ and from space, and highlight the benefits that 50 

the PACE mission will bring. Using this three-pronged approach, we highlight the challenges and 51 

gaps to be addressed by the community going forward, while offering a vision of what global 52 

phytoplankton community composition will look like through the “eyes” of PACE.  53 

1. Background 54 

Phytoplankton are microscopic, photosynthetic organisms that inhabit all sunlit waters and 55 

represent the first level of the aquatic food web. They play a vital role in the global ecosystem 56 

where phytoplankton convert carbon dioxide into carbohydrates and oxygen through the process 57 

of photosynthesis. The primary photosynthetic pigment in most phytoplankton species is 58 

Chlorophyll a (Chl a), which has been commonly used as a proxy for phytoplankton biomass in 59 

oceanographic research and monitoring programs for almost 100 years (Harvey 1934). Global 60 

ocean color satellites (SeaWiFS, MODIS, VIIRS) have provided continuous global datasets of 61 

aquatic Chl a since 1997 (O’Reilly et al. 1998), generating insight into spatial and temporal changes 62 

in phytoplankton biomass (Behrenfeld et al. 2006; Gregg and Rousseaux 2014; Gregg et al. 2017; 63 

McClain et al. 2022; Siegel et al. 2013). Despite the ubiquity of Chl a, taxonomic diversity in 64 

phytoplankton is wide-ranging, spanning across eukaryotic and eubacterial domains. This 65 

taxonomic diversity underpins vast morphological diversity among phytoplankton (e.g., Beardall 66 

et al. 2009), including variation in pigment composition (e.g., Jeffrey et al. 2011), environmental 67 

requirements (e.g., for light, nutrients, and temperature), trophic strategies (e.g., Mitra et al. 68 
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2016), and in the roles phytoplankton play in aquatic biogeochemistry (e.g., Dutkiewicz et al. 69 

2020). 70 

Knowledge of phytoplankton community composition (PCC) and its spatial and temporal 71 

variability is vital for our understanding of the many aspects of aquatic ecosystems, as well as the 72 

services those ecosystems provide. It is critical to assess water quality (including harmful algal 73 

blooms - HABs) and functioning of the higher trophic levels including fisheries worldwide. 74 

Knowledge about PCC can be used to manage and support the aquaculture industry, including to 75 

infer optimal site selection and sustainable aquaculture development1 (Anderson et al. 2009; 76 

2019; Johnson et al. 2019; Snyder et al. 2017), to prevent economic losses due to the impact of 77 

HABs (Smith and Bernard 2020; Wolny et al. 2020), or to support monitoring of potential impacts 78 

that aquaculture might have on aquatic ecosystems (e.g., eutrophication; Gowen 1994) or on 79 

natural phytoplankton population estimates (Schaeffer et al. 2015; Frieder et al. 2022). 80 

Additionally, PCC can enhance the parameterization of end-to-end ecosystem models designed 81 

to simulate biogeochemical, ecological, fishery, management, and socio-economic processes 82 

within marine ecosystems (Turner et al. 2021; Caracappa et al. 2022). 83 

Furthermore, to understand the effects of climate variability on aquatic biogeochemistry, the role 84 

of the oceans as a sink of anthropogenic carbon, and the various effects of human pressure on 85 

water resources, it is imperative that we improve our characterization of the food web’s 86 

foundation—the phytoplankton community—across the continuum of aquatic ecosystems. 87 

Understanding the role that different phytoplankton groups play in the export of carbon, 88 

 
1 ShellGIS, an application developed to predict growth of numerous aquaculture species using remote sensing 

inputs, http://www.shellgis.com/examples/TFWMidMaine.html. ShellGIS team is part of the PACE early adopter 
program.  

http://www.shellgis.com/examples/TFWMidMaine.html
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specifically in regard to ballasting, export depths and scales of remineralization (Cram et al. 2018; 89 

Guidi et al. 2015), is crucial to our understanding of contemporary and future oceans. Currently, 90 

there is also much debate as to the future of the ocean’s role in absorbing anthropogenic carbon, 91 

as well as the role that biology, specifically different phytoplankton types, will play in different 92 

climate scenarios. Earth System Models (ESMs) are used to understand and forecast the role of 93 

oceans in the global carbon budget, including the role of oceans in future climate scenarios (IPCC2, 94 

CMIP3, etc). For most ESMs, understanding the role that biology will have in future carbon 95 

sequestration relies on our understanding of oceanic PCC, in part due to the relationship between 96 

phytoplankton size and sinking rate (i.e., Guidi et al. 2015; Henson et al. 2022).  97 

Whether categorized by taxa, function, or size, the particular mix of phytoplankton detectable by 98 

in situ sampling is discernably variable across regions, seasons, and conditions; underscoring a 99 

strong need for studying what we collectively call PCC through ocean remote sensing. During the 100 

past 25 years, numerous studies have shown that space-based instruments can reach beyond 101 

estimates of total phytoplankton biomass and quantify certain aspects of PCC (e.g., Bracher et al. 102 

2017; IOCCG 2014). Such insights on PCC have mostly relied on Chl a or multi-band phytoplankton 103 

absorption spectra (see Mouw et al. 2017 and references within), information that inherently 104 

creates large uncertainties from the inverse problem standpoint, i.e., solving for various 105 

components of PCC from a limited number of observations (Defoin-Platel and Chami 2007; Sydor 106 

et al. 2004). 107 

 
2 IPCC stands for Intergovernmental Panel on Climate Change, https://www.ipcc.ch/  
3 CMIP stands for World Climate Research Programme Coupled Model Intercomparison Project, https://www.wcrp-

climate.org/wgcm-cmip  

https://www.ipcc.ch/
https://www.wcrp-climate.org/wgcm-cmip
https://www.wcrp-climate.org/wgcm-cmip
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As the needs of aquatic research surpassed the capabilities of current ocean color satellites, the 108 

community responded with various instrument concepts, materialized in specific calls by the 109 

National Research Council Earth Sciences Decadal Survey (National Research Council 2007) and 110 

National Aeronautics and Space Administration (NASA, NASA 2010) among others (McClain et al. 111 

2022; Muller-Karger et al. 2018). The need to resolve taxonomic components of PCC is one of the 112 

main underlying motivations for NASA’s Plankton, Aerosol, Cloud, ocean Ecology (PACE) mission 113 

(Werdell et al. 2019). The PACE mission, to be launched no earlier than January 2024, will respond 114 

to community needs for a highly calibrated, ocean-focused hyperspectral radiometer combined 115 

with multi-angle polarimeters that satisfy multiple scientific needs, including better resolution of 116 

phytoplankton diversity (McClain et al. 2022; Werdell et al. 2019). 117 

PACE is the first global ocean and atmosphere hyperspectral mission (Figure 1). PACE will collect 118 

ocean color imagery over a period of one-to-two days from a sun-synchronous polar orbit at 676.5 119 

km (inclination of 98°), with an ascending equatorial crossing time at 1 pm. The spacecraft will 120 

host three instruments: a hyperspectral imaging radiometer named OCI (for Ocean Color 121 

Instrument, developed by NASA Goddard Space Flight Center (GSFC)) and two polarimeters, 122 

named SPEXone (for Spectro-polarimeter for Planetary Exploration, developed by collaborators 123 

at Space Research Organization of the Netherlands, Hasekamp et al. 2019) and HARP2 (for Hyper 124 

Angular Research Polarimeter, developed by the Earth and Space Institute of the University of 125 

Maryland Baltimore County, Martins et al. 2002).  126 

The OCI has hyperspectral capabilities that continuously span from the ultraviolet to near-127 

infrared, with nominal spectral steps of 2.5 nm and average bandwidths of ∼5 nm across a 128 

spectral range of 340-890 nm. The spectral steps decrease to 1.25 nm (with the same ~5 nm 129 
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bandwidths) in the spectral regions of chlorophyll a fluorescence and oxygen A and B band 130 

absorption, resulting in roughly 230 total wavelengths of information (Table 1). Additional bands 131 

in the near- and shortwave-infrared support heritage atmospheric products and will also bring 132 

improvements to atmospheric correction in optically complex waters over large freshwater and 133 

coastal estuaries (Frouin et al. 2019; Ibrahim et al. 2018). The spatial resolution of OCI imagery 134 

will be ∼1 km2 at nadir with a swath width of 2663 km (supporting global coverage once every 135 

two days, given geometry constraints applied to atmospheric correction). In practice, pixels sizes 136 

at the center of the swath will be ~1.1 km2 given OCI’s 20-deg tilt. Due to the specific optical 137 

design, time-delayed integration, lunar, spectral calibrations, and tilt mechanism OCI will produce 138 

high-quality data over a very high dynamic range of radiances from highly absorbing waters to 139 

ecosystems rich in inorganics.  140 

The role of the two PACE polarimeters, SPEXone and HARP2 (Table 1), is primarily to improve our 141 

understanding of cloud and atmospheric aerosol properties (Chowdhary et al. 2019; Remer et al. 142 

2019; Sayer et al. 2022). Improved characterization of the atmospheric properties will enhance 143 

the retrieval of ocean surface reflectances, and there is hope that information about the 144 

microphysical properties of particles from polarimeters may also prove useful for phytoplankton 145 

studies (Jamet et al. 2019). SPEXOne is a hyperspectral polarimeter (385-770 nm, 5 nm steps), 146 

measuring light at 5 viewing angles, collecting information in narrow 100 km swath at 2.5 km2. 147 

HARP2 is a multispectral (nominal 441, 549, 665, 866 nm), hyper-angular instrument, with a wide 148 

swath that matches OCI and a ground sampling distance of 3 km2. 149 

By identifying the needs, challenges, and future of estimating PCC from space using hyperspectral 150 

instruments, this paper contributes to a decades-long community effort to improve remotely-151 
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sensed phytoplankton datasets (e.g., Bracher et al. 2017; Bracher et al. 2022; IOCCG 2014; Mouw 152 

et al. 2017). After evaluating user community needs (Section 2) and identifying several 153 

applications that will benefit from improved PCC estimates (Section 3), we outline current 154 

approaches to identifying PCC using in situ data, a critical step in developing PCC retrieval 155 

algorithms (Section 4). We then describe the existing approaches that PACE will build on to derive 156 

PCC from space (Section 5). Finally, we conclude the paper by identifying some of the existing 157 

challenges and gaps, address what PCC will mean in the era of PACE, and discuss how PACE will 158 

allow the community to advance understanding of the role that phytoplankton diversity plays on 159 

earth and how it is likely to change in the future. 160 

2. Community Needs 161 

There is a consensus across the ocean color user community that better resolution of 162 

phytoplankton diversity from space will improve our knowledge and understanding of marine 163 

ecosystems (e.g., Kavanaugh et al. 2021), ocean health (e.g., Smith and Bernard 2020), shifts in 164 

communities across freshwaters (Rasconi et al. 2015; Verbeek et al. 2018), and the ocean’s effects 165 

on the global climate (IPCC 2019). However, the needed resolution (taxonomic or otherwise) of 166 

phytoplankton diversity varies widely within the user community.  167 

A request for input was directed to the PACE Community of Practice4 (CoP) to identify PCC 168 

taxonomic resolution needs. The PACE CoP is a diverse group of users composed of modelers and 169 

empirical researchers, academic and government scientists, local to international decision-170 

 
4 https://pace.oceansciences.org/app_community.htm  
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makers, and industry professionals within various sectors, including air quality and atmospheric, 171 

terrestrial, and marine/ocean applications (Figure 2). 172 

Responses indicate that data consumers most need resolution down to a few traditionally 173 

recognized “taxonomic groups” (e.g., diatoms, dinoflagellates), followed by plankton pigments, 174 

and then groups defined by functionality (Figure 3). A large portion of questionnaire respondents 175 

would be satisfied with “whatever taxonomic grouping is available” beyond Chl a alone. 176 

Approximately 25% of the users prioritized species-level resolution, with 10% of users relying on 177 

PACE to resolve specific species (such as the HAB forming dinoflagellate Alexandrium). While this 178 

short questionnaire provides preliminary insights into the needs of the PACE user community, it 179 

does not provide information on how these needs relate to each subcommunity. 180 

The above-mentioned needs are likely driven by the spatiotemporal constraints of each 181 

respondent’s focus, ranging from local to global spatial scales, and from daily, monthly, 182 

interannual, and decadal scales. In a similar way, user-specific capabilities to access and 183 

manipulate the data may also drive the differences in needs across the PACE CoP. 184 

3. Applications  185 

A deeper look into the type of applications that use data on phytoplankton diversity (and would 186 

benefit from remote sensing data on PCC) highlights the complexities that come with defining 187 

PCC and the associated temporal, spatial, and diversity resolution. Hereafter, we present some 188 

examples of applications that range from regional to global and the level of diversity resolution 189 

associated with them. 190 

Monitoring of local and regional water quality, including forecasting HABs, is a critical societal 191 

application that requires “local” knowledge and data (e.g., Lekki et al. 2019; Smith and Bernard 192 
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2020). Algal blooms occur in coastal and freshwater systems worldwide and include a variety of 193 

harmful species that can impact wildlife, pet, livestock, and human health (Lundholm et al. 2009; 194 

Michalak 2016). To address the need for products capable of detecting, quantifying, 195 

characterizing, classifying, and being used in forecasting applications will require finely tuned 196 

algorithms for specific HAB (or any other) algal type (Schaeffer et al. 2015, Bernard et al. 2021), 197 

at an appropriate temporal and spatial resolution to capture the transient nature of these events. 198 

PACE, similarly to the majority of heritage ocean color missions, will have adequate temporal 199 

resolution, and some limitations with regard to the spatial resolution to detect developing HABs 200 

in small water bodies. Therefore, synergies and cross-product generation with other missions 201 

with smaller spatial resolution but less optimal temporal resolution (e.g., NASA’s upcoming 202 

Surface Biology and Geology (SBG5), the European Space Agency’s Copernicus Hyperspectral 203 

Imaging Mission for the Environment (CHIME6), could be combined to alleviate this weakness. 204 

Lastly, low latency (i.e., the time between data collection and availability) is also critical for timely 205 

public-safety decisions in response to HABs, which requires near-real time processing of the PCC 206 

data product.  207 

The fisheries industry has also increasingly integrated phytoplankton data into management 208 

activities for the purpose of: (1) fish stock assessment, (2) harvesting by identifying suitable fishing 209 

zones, and (3) fisheries management (Forget et al. 2009). The appropriate PCC definition for 210 

fisheries applications could range from single species (HABs) to more functional or taxonomic 211 

 
5 SBG stands for Surface Biology and Geology - https://sbg.jpl.nasa.gov/  

6 CHIME stands for the Copernicus Hyperspectral Imaging Mission for the Environment - 

https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Going_hyperspectral_for_CHIME  

https://sbg.jpl.nasa.gov/
https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Going_hyperspectral_for_CHIME


 

11 

information to support fish stock assessment and management to promote best fishing 212 

practices7. 213 

At the global scale, satellite-derived PCC products can also be used to improve climate 214 

applications and research (Figure 4). Using existing satellite observations of total phytoplankton 215 

biomass, natural climate variability, such as El Niño, has been shown to directly affect 216 

phytoplankton composition, with changes trickling up the food web to the higher tropic levels 217 

(e.g., due to the change in nutrient dynamics, Fisher et al. 2015; Franz et al. 2021; McCabe et al. 218 

2016; McKibben et al. 2017; Racault et al. 2017; Rousseaux and Gregg 2012). In a similar way, PCC 219 

products can help indicate effects of the anthropogenic driven changes in aquatic ecosystems. 220 

This has been demonstrated using long term in situ datasets (e.g., Rivero-Calle et al. 2015) and 221 

models (Anderson et al. 2021; Cael et al. 2022a; Dutkiewicz et al. 2013). While prior analysis 222 

suggested natural variability compounded climate trends in current chlorophyll ocean color 223 

records (Henson et al. 2010), recent research is suggesting that ocean color itself (i.e., remote 224 

sensing reflectances) is demonstrating significant, global climate trends in 20 yearlong records 225 

(Cael et al. 2022c). PCC records from remote sensing may assist with understanding observed 226 

trends and interpreting those trends in reference to the whole ecosystem structure and role that 227 

oceanic ecosystem plays in global carbon cycle. On more local scales, in polar regions, a rapidly 228 

shifting landscape (due to the unprecedented ice loss) is modifying the local ecosystems, and 229 

composition and seasonality of phytoplankton (Eayrs et al. 2021; Meier et al. 2021: Nardell et al. 230 

2023). Understanding of such close coupling of PCC, sea ice, polar food webs, and carbon flux 231 

 
7 pezCA, an application developed by the Federación Costarricense de Pesca (FECOP) in Costa Rica, that combines 

policy and real time satellite based products to identify potentially favorable fishing areas, https://pezca.org/. 
pezCA team is part of the PACE early adopter program.  

https://pezca.org/
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(Flexas et al. 2022; Neeley et al. 2018; Schofield et al. 2018) will benefit greatly from continuous 232 

monitoring of PCCs from space.  233 

Numerical models, including simple inverse and food web models as well as more complex ESMs, 234 

provide an opportunity to integrate satellite PCC data as well as in situ data in a global context 235 

(Dinauer et al. 2022; IOCCG 2020; Siegel et al. 2023). However, data assimilation is often limited 236 

by the availability of data with appropriate units and levels of detail, such as PCC categories, and 237 

quantified uncertainties. As detailed by Le Quéré et al. (2010), not only is phytoplankton biomass 238 

(usually resolved into functional, taxonomical, and/or size groups) important for modeling 239 

applications, but so are parameters such as growth rates and export rates. Moreover, sufficient 240 

continuity of measurement (including the various seasons, see also Dutkiewicz et al. (2020)) at 241 

the global scale is required to study the feedbacks between climate and ocean biogeochemistry. 242 

Assimilation of data on PCC to improve those models will decrease uncertainty in the role of the 243 

ocean in the global carbon budget (and decrease the societal and monetary impact of such 244 

uncertainties e.g., Bontempi et al. submitted). Importantly, reported uncertainties are crucial for 245 

improving models through parametrization or data assimilation, or informing ocean color science. 246 

These uncertainties will also enable better understanding of regional, temporal bias, and 247 

instrument-based bias, especially in merged products originating from multiple instruments 248 

(Dutkiewicz et al. 2020; Gregg et al. 2017). 249 

Lastly, society will have to continue to respond to the growing challenges associated with climate 250 

change. It is becoming increasingly evident that controlling future Earth warming to well below 251 

+2.0°C (preferably within +1.5°C), as is the aim of the 2016 Paris Agreement, will require 252 

deployment of large-scale technologies to reduce carbon dioxide emissions (Fuss et al. 2014; IPCC 253 
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2021). Several ocean-based Carbon Dioxide Removal (CDR) methods have been proposed to curb 254 

on-going global warming (GESAMP 2019; National Academies of Sciences 2022). Some of the CDR 255 

approaches that rely on the ocean, such as ocean iron fertilization or seaweed cultivation, can 256 

dramatically alter upper ocean ecosystems and phytoplankton communities (National Academies 257 

of Sciences 2022). An important part of the monitoring, reporting, and verification process of CDR 258 

will be understanding the impact of these technologies on the ocean, including the assessment 259 

of effects on PCC, net primary production, and carbon export.  Remote sensing observations, such 260 

as those from PACE, will also be key to quantifying the success of ocean CDR strategies, 261 

monitoring their effects on ocean ecosystems (e.g., potential taxonomic shifts in PCC leading to 262 

harmful algal blooms), and providing data needed for ESMs to improve our understanding of the 263 

role these perturbations have on ocean ecosystems and the global carbon cycle.  264 

4. In situ methods  265 

Many methods exist to quantify phytoplankton composition for mixed natural communities. 266 

While no individual method captures the vast diversity of marine phytoplankton across multiple 267 

dimensions (taxonomy, size, morphology, genetics, metabolism, etc.), many of these methods 268 

provide specific information that is useful to describe PCC across observations and support future 269 

PCC models. Some methods (HPLC derived pigments) have been used extensively to develop and 270 

validate satellite remote sensing approaches for PCC. Other methods (imaging-in-flow cytometry, 271 

DNA metabarcoding) offer globally distributed datasets with high taxonomic resolution that have 272 

great potential for future PACE PCC applications. Here, we review the general approaches for 273 

many common methods of phytoplankton observation and summarize their notable strengths 274 

and weaknesses, particularly with respect to remote sensing approaches (Table 2).  275 
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4.1. Light Microscopy 276 

Microscopy phytoplankton enumeration and biovolume calculation are a common approach for 277 

development and validation of ocean color PCC algorithms, especially for HAB detection (Pan et 278 

al. 2011; Soto et al. 2015; Wolny et al. 2020). In combination with cell volume to carbon models 279 

(e.g., Menden-Deuer and Lessard 2000; Worden et al. 2004), this method offers a simple route to 280 

phytoplankton carbon biomass. Standard compound and inverted microscopes are commonly 281 

used for the visualization of phytoplankton communities from water samples, offering taxonomic 282 

classification for nano- to micro size ranges in live or preserved samples (Karlson et al. 2010). The 283 

light microscopy methods used vary with size and concentration of phytoplankton within samples 284 

and on the accuracy and taxonomic resolution needed when determining PCC. A small volume of 285 

sample (1 ml or less) is suitable for counting nano- and microphytoplankton (>2 µm) samples with 286 

a high concentration of cells (Godhe et al. 2007; LeGresley and McDermott 2010; McAlice 1971). 287 

However, when cells are in low concentrations or samples represent a more diverse community 288 

structure, a greater sample volume (<25 mL) is needed to adequately capture both small-sized 289 

and numerous cells, as well as large-sized and rare cells (Edler and Elbrächter 2010; Haas and 290 

Marshall 1989). 291 

There are notable limitations to microscopic approaches. Due to the small volume of material 292 

examined for some samples, certain taxa may be over- or under-represented. Settling chamber 293 

approaches that allow for larger sampling volume and better optical resolution, resulting in a 294 

larger phytoplankton size range, are time-demanding (hours/days) in comparison to the small 295 

volume approach (minutes, Elder and Elbrächter 2010). Uncertainties in these methods can be 296 

highly variable, depending on the optical material (LeGresley and McDermott 2010), fixatives, 297 
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enumeration method, sample volume, and assumptions used to determine biovolume and 298 

resulting carbon content (Vuorio et al. 2007; Willén 1976). However, regardless of the approach 299 

used, the greatest limiting factors (and additional sources of uncertainty) are analyst skill level, 300 

their experience, and time required for sample analysis (see Clayton et al. 2022 and references 301 

within). 302 

4.2.  HPLC phytoplankton pigments 303 

High performance liquid chromatography (HPLC) allows for the direct quantification of a number 304 

of different phytoplankton pigments. HPLC pigments are currently one of the most widespread 305 

approaches for characterizing PCC in ocean color studies: samples have been collected 306 

throughout the global ocean, at time series observatories and along transect cruises, across 307 

depths and over seasons (e.g., Kramer and Siegel 2019; Uitz et al. 2006). HPLC methods for 308 

quantification of pigment concentrations have also been highly standardized, with successive 309 

quality control efforts to ensure consistency between measurements (Hooker et al. 2012; van 310 

Heukelem and Hooker 2011).  311 

Pigment-based taxonomy is fairly low resolution and depends heavily on the HPLC pigment library 312 

used to determine PCC (e.g., Catlett and Siegel 2018). Existing methods to characterize PCC from 313 

HPLC pigments typically rely on biomarker pigments to separate phytoplankton groups based on 314 

broad taxonomic association (i.e., diatoms with fucoxanthin from dinoflagellates with peridinin) 315 

or size classes. Any pigment-based PCC method has to make necessary assumptions, as most 316 

pigments are shared between phytoplankton groups and are not unambiguous biomarkers 317 

(Jeffrey et al. 2011 and references therein). PCC methods using HPLC pigments are further 318 

complicated by environmental and physiological variations that impact pigment production and 319 
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expression (e.g., Catlett et al. 2022; Dierssen et al. 2015; Henriksen et al. 2002; Neeley et al. 2022; 320 

Zapata et al. 2004). Given these variations in pigment concentration and composition, statistical 321 

methods that make assumptions about constant relationships between taxa abundances and 322 

pigment ratios as well as the neglect of co-linearity among pigments must be used cautiously for 323 

evaluating PCC (e.g., CHEMTAX; Mackey et al. 1996). 324 

Phytoplankton pigment absorption directly impacts the shape and magnitude of remote sensing 325 

reflectance spectra; thus, HPLC pigments are an ideal measurement for development and 326 

validation of ocean color algorithms (e.g., Chase et al. 2017; Kramer et al. 2022; Torrecilla et al. 327 

2011; Uitz et al. 2015). Studies that compare HPLC pigments with other, higher-resolution 328 

taxonomic approaches have variable success, depending on the ecosystem and the taxonomic 329 

resolution of the comparison (Chase et al. 2022; Havskum et al. 2004; Lin et al. 2019; Pan et al. 330 

2011). More comparisons between HPLC pigments and other methods using larger datasets will 331 

allow for better constraint of pigment-based PCC, and thus more accurate ocean color algorithms 332 

using PACE data. 333 

4.3. Flow cytometry 334 

Flow cytometry (FCM) can enumerate particles and plankton from the size of viruses to cells 335 

greater than 50 µm, depending on the instrument used and its configuration, and the whole size 336 

spectrum can be captured when combined with complementary methods (microscopy, imaging 337 

in-flow cytometry, e.g., Chase et al. 2020; Haëntjens et al. 2022). Recent evolution in FCM 338 

technology can also provide continuous or near-continuous monitoring of phytoplankton 339 

community dynamics and structure, and other ecological studies (e.g., Hunter-Cevera et al. 2021; 340 

Swalwell et al. 2011). FCM delivers cells single-file in sheath fluid past an excitation laser(s) and a 341 
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set of optical detectors, allowing investigators to identify specific groups of plankton based on 342 

their fluorescence and scattering properties. Additionally, some flow cytometry instruments have 343 

capability of sorting different cell types (based on their fluorescence and scattering properties) in 344 

separate streams, allowing for more detailed analysis (e.g., phytoplankton group specific carbon 345 

content, Graff et al 2012; Casey et al. 2013). Samples can be run “live” or preserved (Lepesteur et 346 

al. 1993). Published relationships can then be used to convert cell size (in µm) to cell biovolume 347 

(e.g., Calvo-Díaz and Morán 2006) and carbon (e.g., Menden-Deuer and Lessard 2000; Worden et 348 

al. 2004). Fluorescence emission from the excitation of pigments can be used to distinguish 349 

specific phytoplankton populations for some groups, such as the pico-sized cyanobacteria 350 

Synechococcus, which produces an orange fluorescence signal when the phycoerythrin in the cell 351 

is excited by a blue laser, distinguishing them from other small cells (Olson et al. 1988). 352 

Fluorescent dyes may also be used to enumerate different groups of cells without specific marker 353 

pigments (Rose et al. 2004). 354 

Uncertainty in PCC data from FCM can come from both the sample collection and data analysis. 355 

Studies have shown that fixatives can impact the autofluorescence signal or cause cell loss and 356 

cell shrinkage by phytoplankton cells if samples are stored for long periods of time, e.g., >1 month 357 

(Marie et al. 2014; Sato et al. 2006; Vaulot et al. 1989). The instrument calibration method 358 

determines the model used to derive cell size from fluorescence or scattering. Uncertainties also 359 

arise during data analysis when discrete populations of cells are separated (sometimes 360 

subjectively by operator) based on fluorescence and scattering parameters. Nevertheless, FCM is 361 

an effective approach that can provide enumeration of pico and nano-sized cells, which are 362 
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important, novel datasets that support development of PCC algorithms (e.g., Lange et al. 2020; 363 

Kramer et al. 2020; Thyssen et al. 2015).  364 

4.4. Imaging-in-flow cytometry 365 

Imaging-in-flow instruments have revolutionized collection and analysis of aquatic samples for 366 

the qualification and quantification of PCC. These approaches combine flow cytometric 367 

enumeration with the digital photography of particles that can be used for taxonomic 368 

identification. A number of different imaging-in-flow instruments, such as the Imaging Flow 369 

Cytobot (Olson and Sosik 2007), Underwater Vision Profiler (UVP, Picheral et al. 2010), and 370 

FlowCAM (Sieracki et al. 1998), have been developed over the last two decades and capture 371 

different regions of the size spectrum (Lombard et al. 2019). Unlike standard microscopy, these 372 

instruments allow for automated, rapid collection of plankton and particle images over high 373 

spatial and temporal resolution that can be classified and enumerated (sometimes iteratively) 374 

after collection using image recognition by machine learning. 375 

An imaging in-flow system typically contains an objective, an excitation laser, and fluorescence 376 

detectors to detect Chl a fluorescence and light scatter. A water sample is drawn through a flow 377 

cell and past the optical package, where particles that are excited by the laser get magnified by 378 

the objective (like a microscope) and imaged by a color or monochrome camera. The images are 379 

interpreted based on morphological characteristics and/or size dimensions that may be used by 380 

a machine learning classifier or manually attributed to specific types of particles, plankton, or 381 

phytoplankton. As with every method, there are challenges that must be considered. Imaging-in-382 

flow systems typically measure the larger range of phytoplankton (e.g., >~6µm for the IFCB). The 383 

large number of images that are collected creates challenges regarding the time needed to 384 
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complete automated and manual classification, and in the interpretation and sharing of results 385 

(Durden et al. 2017; Kerr et al. 2020). Advances in machine learning techniques and other 386 

automated approaches (Orenstein et al. 2022), in particular deep learning such as convolutional 387 

neural networks, will increase the accuracy of automated classifications and reduce the analysis 388 

time, thereby increasing throughput of PCC data. The scientific and environmental monitoring 389 

communities using these methods are coming together to overcome these challenges not only 390 

for image post-processing, but also dataset creation and taxonomic training augmentation 391 

(Clayton et al. 2022, Neeley et al. 2021). Overall, imaging-in-flow methods present great potential 392 

for describing PCC in situ, particularly for PACE applications, given the relative ease of sampling 393 

and high taxonomic resolution.  394 

4.5. DNA metabarcoding 395 

Numerous molecular approaches are available to quantify phytoplankton diversity, population 396 

dynamics, and PCC (Johnson and Martiny 2015). DNA meta-barcoding is now one of the most 397 

widely used methods to provide a holistic view of PCC including diverse members of the 398 

phytoplankton community. DNA meta-barcoding refers to targeted amplicon sequencing of 399 

highly conserved, hypervariable “barcode” genes. These data are usually compositional (i.e., 400 

estimate proportions rather than concentrations or counts), which complicates analysis and 401 

interpretation of PCC (Aitchison 1982; Gloor et al. 2017), but some exciting approaches have been 402 

developed recently to remove this constraint (Lin et al. 2019; Satinsky et al. 2013).  403 

The taxonomic resolution of DNA meta-barcoding varies from division- to species-level depending 404 

on a number of factors including the analysis workflow or the specific Amplicon Sequence 405 

Variants (ASV). Uncertainty in relative sequence abundances is introduced by both wet lab and 406 
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bioinformatic procedures and is difficult to quantify (Catlett et al. 2020; Yeh et al. 2021). In 407 

general, nucleic acid sequencing data are generated through a series of complex biochemical 408 

reactions that make it difficult to evaluate and constrain analytical uncertainty. Consistent use of 409 

positive and negative controls to ensure reproducibility in sequence analysis has only recently 410 

become common practice (Bradley et al. 2016; Parada et al. 2016), but is still omitted by many 411 

investigators. Interpretation of relative (or absolute) sequence abundances is not straightforward 412 

in practice, as the number of barcode gene copies per cell or unit biomass can vary across taxa 413 

depending on the chosen barcode gene (Gong and Marchetti 2019; Zhu et al. 2005). Despite these 414 

caveats, several recent studies have demonstrated that DNA meta-barcoding workflows can 415 

provide accurate and precise estimates of the relative sequence abundances of most 416 

phytoplankton (Catlett et al. 2020; Yeh et al. 2021). Some barcode genes also provide relative 417 

sequence abundances that scale roughly with cell size, biovolume or biomass proportions (de 418 

Vargas et al. 2015; Godhe et al. 2008; Zhu et al. 2019).  419 

DNA meta-barcoding data have not been employed in direct validation of satellite algorithms to 420 

the best of our knowledge, but these studies suggest high potential for their use in efforts to 421 

validate the next generation of PCC algorithms developed for PACE (Catlett et al. 2022). Despite 422 

some methodological challenges, the ability to sample a nearly comprehensive range of size 423 

classes, the detailed resolution of taxonomic and functional diversity, and the growing 424 

appreciation for the quantitative potential of well-validated nucleic acid sequencing workflows 425 

make these methods primed for in situ PCC quantification. 426 
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4.6. Phytoplankton optics 427 

Phytoplankton, either due to their size, or morphological (external or internal) characteristics 428 

have a taxa-specific contribution to the scattering of the light in the water column (Organelli et 429 

al. 2018; Poulin et al. 2018; Stramski et al. 2001; Stramski and Kiefer 1991; Whitmire et al. 2010), 430 

and that signal is present in the Rrs(λ) as well. Ocean color measurements can provide rudimentary 431 

estimates of the slope of the particulate backscattering or particulate attenuation spectra 432 

through the inversion of Rrs(λ) (e.g., Roesler and Boss 2003; Loisel et al. 2018). Particulate 433 

backscattering itself, which is readily retrievable from in situ or satellite derived Rrs(λ) (e.g., 434 

Werdell et al. 2013) can be used to infer phytoplankton size composition (Kostadinov et al. 2022). 435 

Backscattering can be affected by internal and external morphological characteristics that impact 436 

the shape of the slope (see Organelli et al. 2018), whereas particulate attenuation is mostly 437 

dependent on particle size. Increased values of attenuation spectral slope are associated with 438 

particle populations that have higher proportions of smaller size particles, whereas the inverse is 439 

true for backscattering slopes (e.g., Boss et al. 2001). This approach is highly applicable to the 440 

open ocean where changes in particle population are driven by PCC change and could offer an 441 

additional dimension in information when distinguishing the phytoplankton with different 442 

mineral components (such as silica and calcium carbonate).   443 

Absorption of the phytoplankton is to the first extent driven by the pigments present in the cell. 444 

Chlorophylls, and other (sometimes taxa-specific) cellular pigments (see 4.2 and references 445 

therein) determine the shape of the absorption spectra (Mobley 2022 and references within). 446 

Additionally, pigment packaging and the structure of protein-pigment complexes will have a 447 

significant effect on the phytoplankton absorption spectra. Shape, peak, and width of the specific 448 
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absorption features can be used as a tool to detect different taxa from in situ measurements of 449 

absorption (e.g., Chase et al. 2013). While some of these features (e.g., Chlorophyll peaks) are 450 

visible in Rrs(λ) and therefore easy to relate to pigment concentrations, ocean reflectance 451 

inversion models (e.g., GIOP – Werdell et al. 2013) are often used to derive phytoplankton 452 

absorption from the Rrs(λ), that is ultimately used to infer PCC distribution.  453 

5. Phytoplankton composition from space  454 

5.1. Heritage multispectral PCC remote sensing algorithms  455 

Heritage approaches for deriving phytoplankton composition from ocean color typically exploit 456 

relationships generated from pairing in situ phytoplankton data with either in situ Rrs(λ) or top-457 

of-atmosphere (TOA) satellite radiometry. Until recently, satellite and in situ radiometry 458 

measurements were mostly collected at multispectral resolution. Therefore, the methods 459 

developed to derive PCC relied on the multispectral information (Rrs(λ)) and could be applied to 460 

SeaWiFS, MODIS, and multispectral ocean color missions operated by other space agencies 461 

(Alvain et al. 2005; Alvain et al. 2008; Ben Mustapha et al. 2014; Sathyendranath et al. 2004; 462 

Werdell et al. 2014; Westberry et al. 2005). In general, their applicability and success (and 463 

associated uncertainties) depend heavily on the in situ training datasets and the formulated 464 

methodology. Recent reviews have demonstrated that existing ocean color PCC approaches agree 465 

on a global scale, but disagree considerably on regional scales (e.g., Bracher et al. 2017; IOCCG 466 

2014; Kostadinov et al. 2017; Mouw et al. 2017). These reviews also identified numerous gaps in 467 

ocean color-based PCC (including mismatch between in situ, satellite and model data, the lack of 468 

uncertainty estimates for the satellite data, and the spectral limitation of existing sensors) that 469 

advanced ocean color missions such as PACE will be able to address. Looking towards PACE ocean 470 
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color and polarimetry data, we can draw from the knowledge gained from these previously 471 

developed methods, which address global-scale data products as well as more regional taxon or 472 

phytoplankton group specific products.  473 

The breadth of methods for detecting PCC from space includes approaches that rely on total 474 

biomass (e.g., Hirata et al. 2011), or other proxies for abundance, rather than spectral shape or 475 

features, as well as methods that rely on single or multiple ocean color products; Rrs(λ), carrying 476 

information from both scattering and absorption components (e.g., Morel and Prieur 1977; Xi et 477 

al. 2021); phytoplankton absorption (Brewin et al. 2011b; Bricaud et al. 2007 and similar, derived 478 

from Rrs(λ) via semi analytical models such as Werdell et al. 2013); or backscattering (Kostadinov 479 

et al. 2009). Different mathematical and statistical approaches (e.g., Gaussian decomposition, 480 

principal component analysis, derivatives, machine learning etc.) have been used to extract the 481 

information on PCCs from the abovementioned datasets. A more comprehensive list of 482 

algorithms is presented in Table 3. The types of PCC retrievals that result from previously 483 

developed methods are highly variable. Certain algorithms focus on the retrieval of single taxa, 484 

while others retrieve multiple taxa or fractional contributions of multiple taxa. These retrievals 485 

are generally reported as probability of detection, as the dominating portion of biomass (usually 486 

Chl a), as the proportion of the total Chl a concentration, or in concentration units such as biomass 487 

(e.g., cells) per volume. In contrast, phytoplankton size classes (PSCs) are used to define the 488 

heterogeneity in size distribution of phytoplankton communities; mainly reporting three size 489 

classes: the pico-, nano-, and microphytoplankton (<2 µm, 2-20, and >20 µm, respectively). Some 490 

approaches rely on the backscattering to retrieve PSCs, and in combination with modeling, 491 

retrieve the particulate and phytoplankton size distribution, expressed as % of total biomass or 492 
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total phytoplankton carbon (Kostadinov 2016; Kostadinov et al. 2022). Other methods estimate 493 

the contributions of each of these three classes to total Chl a, through assigning HPLC-determined 494 

accessory pigments to taxonomic groups, and the groups to size classes (as per Vidussi et al. 2001, 495 

Uitz et al. 2006). Numerous revisions and evaluations of the “Diagnostic Pigment Analysis” 496 

approach to estimating PSCs from accessory pigment concentrations have been published and 497 

provide a body of literature for reference regarding the development and validation of PSC 498 

algorithms from space. Ultimately, these accessory pigments themselves can be used to estimate 499 

PCC (Table 3).  500 

Identification of phytoplankton composition down to the species level is possible in some cases 501 

for certain taxa with unique optical properties. One example is the cosmopolitan coccolithophore 502 

species Emiliania huxleyi, which when present at high concentrations (blooms) in the surface 503 

layer, can profoundly impact the optical properties of the upper ocean (Balch et al., 1991; Balch, 504 

2018).  This detection is not based on the absorption properties of the phytoplankton, but rather 505 

on its intense scattering properties (Neukermans and Fournier, 2018), which lead to “milky white” 506 

seas observable even in broadband satellite sensors like AVHRR (Loveday and Smyth, 2018). 507 

Similarly, algorithms have been developed to detect the blooms of dinoflagellate Karenia brevis 508 

due to its consistently lower backscattering properties compared to other types of blooms found 509 

in the same region (Craig et al., 2006; Cannizzaro et al., 2008; Soto et al., 2015). The addition of 510 

vacuoles or intracellular spaces that create high scattering also has a substantial effect on Rrs(λ) 511 

even at relatively low biomass and has led to approaches for discerning cyanobacteria (Matthews 512 

et al., 2012; Matthews and Bernard, 2013, Schaeffer et al. 2015). Combination of increased 513 

scattering due to the intercellular gas vesicles and pigment specific signal in Rrs(λ) was the base 514 
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of early algorithms used to detect cyanobacteria Trichodesmium from space (Subramaniam et al. 515 

2001; Subramaniam and Carpenter 1994). More recent approaches rely on the dense surface 516 

accumulations (sea slicks, Hu et al. 2010; McKinna et al. 2011), or rely on Trichodesmium specific 517 

bio-optical properties (Dupouy et al. 2011; Westberry et al. 2005; see review in McKinna 2015). 518 

5.2. Anticipated benefits of the PACE instruments 519 

5.2.1. Hyperspectral ocean color  520 

Hyperspectral Rrs(λ) from PACE will provide, by definition, additional information content over 521 

existing multispectral data and their associated algorithms. Several studies have addressed 522 

optimal spectral resolutions and/or band placement for radiometric measurements, starting with 523 

work from Lee et al. in 2007. Wolanin et al. (2016) demonstrated that band placement 524 

requirements depend on both the method as well as the target phytoplankton groups to be 525 

retrieved, and they suggest that hyperspectral (vs. any lower spectral resolution) observations 526 

are ideal. Torrecilla et al. (2011) used field data of concurrent phytoplankton absorption and 527 

remote-sensing reflectance measurements and demonstrated the advantage of high-spectral 528 

resolution data over multi-spectra data for discriminating phytoplankton pigment assemblages in 529 

open ocean, including the benefits of spectral derivative analysis. Vandermeulen et al. (2017), 530 

used a database of in situ hyperspectral reflectance measurements from a wide range of water 531 

types to demonstrate that a spectral interval of 5 nm is optimal to separate differently absorbing 532 

phytoplankton groups while also accounting for measurement uncertainties. Further, Kramer et 533 

al. (2022) found a similar result where the performance of statistical models for predicting 534 

phytoplankton pigment concentrations was greatly reduced above a spectral interval of 5 nm. 535 

Hence, PACE radiometry can be used to separate the contribution or fine scale spectral features 536 



 

26 

of phytoplankton and large-scale spectral features of the other oceanic constituents (>100 nm, 537 

e.g., CDOM, backscattering) as recently demonstrated by Kramer et al. (2022).  538 

Hyperspectral phytoplankton absorption and Rrs(λ) spectra are more effective than multispectral 539 

data during derivative, Gaussian, and clustering analyses for pigment assemblage discrimination 540 

and size-based, phytoplankton community composition assessment (Chase et al. 2017; Kramer et 541 

al. 2022; Lange et al. 2020; Roelke et al. 1999; Torrecilla et al. 2011; Uitz et al. 2015). This finding 542 

reflects the relative similarity of spectral absorption of different phytoplankton pigments and 543 

groups (e.g, Garver et al. 1994; Mao et al. 2010), which necessitates the use of optical information 544 

at a high spectral resolution to discern subtle differences in spectral absorption and reflectance 545 

that are the result of differently absorbing phytoplankton pigments. By focusing on changes on 546 

small spectral scales some of these approaches minimize the source of noise in absolute signals 547 

(usually associated with atmospheric correction approaches – see Ibrahim et al. 2018).  548 

Existing algorithms that take advantage of hyperspectral Rrs(λ), have demonstrated their 549 

capability on data collected by previously flown hyperspectral instruments; either by quantifying 550 

Chl a or phytoplankton absorption to specifying taxonomic groups. Studies based on the 551 

Hyperspectral Imager for the Coastal Ocean (HICO) (Lucke et al. 2011) have successfully 552 

demonstrated the use of hyperspectral Rrs(λ) to observe a phytoplankton bloom in Monterey Bay, 553 

CA (Ryan et al. 2014), to differentiate a red tide ciliate bloom (Mesodinium rubrum) in Long Island 554 

Sound, NY at high spectral and spatial resolution using unique yellow fluorescence features 555 

(Dierssen et al. 2015), and to map PCC in coastal China using machine/transfer learning approach 556 

(Zhu et al. 2019). Recent publications have also shown high-quality retrievals of Chl a, 557 

phycocyanin, and phytoplankton absorption spectra from HICO imarrgery over freshwater and 558 
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coastal ecosystems (Gitelson et al. 2011; O'Shea et al. 2021; Pahlevan et al. 2021), and 559 

discrimination of cyanobacteria monospecific blooms in large (Wynne et al. 2008) and small lakes 560 

(Kudela et al. 2015). In the open ocean, the PhytoDOAS method, which makes use of 561 

hyperspectral Rrs(λ), has been applied to SCIAMACHY (SCanning Imaging Absorption 562 

spectroMeter for Atmospheric ChartographY) to discern blooms of cyanobacteria, 563 

coccolithophores, and diatoms (Bracher et al. 2009; Sadeghi et al. 2012). 564 

The OCI on PACE will be able to measure ultraviolet (UV) wavelengths at the same high spectral 565 

resolution as the visible portion of the spectrum. Information from the UV part of the ocean 566 

color signal will bring additional means to constrain the phytoplankton community structure. 567 

Numerous phytoplankton species produce specific MAAs of individual spectral characteristics 568 

(Llewellyn and Airs 2010), with additional UV absorbing compounds (Jeffrey et al. 1999) that 569 

could impact the remote sensing reflectance and be traced back to either species composition 570 

or community-specific response to environmental conditions (e.g., polar regions, Ha et al. 2018). 571 

Using in situ measured Rrs(λ) Kahru and Mitchell (1998) demonstrated that the presence of a 572 

HAB species, Lingulodinium polyedra could be distinguished from diatom-dominated 573 

populations by the absorption of Mycosporine-like amino acids (MAAs), compounds produced 574 

by dinoflagellates to protect organelles from harmful UV rays. This approach was recently 575 

validated using a UV band from JAXA’s GCOM-C satellite to track the spatial and temporal 576 

distribution of this specific HAB (Kahru et al. 2021).  577 

5.2.2. Polarimetry  578 

PACE will carry two polarimeters, HARP2 and SPEXone, targeting atmospheric properties. 579 

Measurements of atmospheric properties by these instruments will indirectly advance the 580 
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retrieval of PCC from hyperspectral OCI information by improving atmospheric correction through 581 

better characterization of aerosols. Regarding the measurement of oceanic properties, these 582 

instruments are limited by their mode of operation; collecting information on coarser spatial 583 

resolution (3-4 km vs 1 km for OCI) and measuring approaches that maximize the number of 584 

scattering angles. However, a similar instrument, ESA’s POLDER (Polarization and Directionality 585 

of the Earth's Reflectances), has been previously used in combination with modeling to offer 586 

information about characteristics of oceanic bulk particle composition (Loisel et al. 2008). Similar 587 

approaches could be used to derive additional information from PACE’s polarimetric data, 588 

separating organic from inorganic particles, inferring particle size distribution and other particle 589 

properties that can be used in better retrievals of PCC and constrain uncertainties associated with 590 

phytoplankton products (see Jamet et al. (2019) and references within). However, it is important 591 

to note the basic need to first better understand the Muller matrix (i.e., inherent polarization 592 

properties) of different marine particles/phytoplankton as a prerequisite to potential meaningful 593 

interpretation and use of polarization properties of natural light fields, such as polarized water-594 

leaving light derived from PACE’s polarimeters. 595 

5.3. Other approaches to deriving PCC from space 596 

In addition to the development of PCC algorithms that solely rely on optical properties of 597 

phytoplankton, the scientific community has developed various approaches that use non-optical 598 

proxies including model outputs or results from analysis of lower-level data (e.g., variables 599 

derived from multiple measurements8) to derive PCC. These data are referred to as Level-4 data 600 

products and include satellite-based models, machine learning approaches that could incorporate 601 

 
8 earthdata.nasa.gov 
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ancillary data, and Earth System Models. Such approaches have the advantage of being able to 602 

integrate in situ, model, and/or satellite data to gain insights that would not be achievable with 603 

the use of phytoplankton optical properties alone and can provide information on variables that 604 

might not currently have designated algorithms (e.g., Anderson et al. 2009; Hill et al. 2020). 605 

Several satellite-based models have emerged over the years that result in phytoplankton 606 

taxonomic composition as well as phytoplankton size information (e.g., Xi et al. 2021). Hirata et 607 

al. (2011), for example, used satellite Chl a to derive the fraction of both phytoplankton 608 

composition and size fraction. California Harmful Algae Risk Mapping (C-HARM) is routinely (since 609 

2014) using a combination of multispectral Rrs(λ), remote sensed Chl a, sea surface temperature 610 

and ROMS modeling to forecast distribution of Pseudo-nitzchia spp. and associated toxins 611 

(Anderson et al. 2019). By combining hyperspectral in situ Rrs(λ) and sea surface temperature in 612 

a principal component analysis framework, Lange et al. (2020) derived cell counts for several 613 

smaller phytoplankton groups across the Atlantic, demonstrating improved performance for such 614 

a combined approach over a multispectral one (Figure 5).  615 

Machine learning approaches to estimate phytoplankton composition have also been developed 616 

in the last decades. Raitsos et al. (2008) developed an artificial neural network that incorporates 617 

ecological and geographical information (e.g., longitude, latitude, season) with ocean color 618 

products (e.g., Chl a, normalized water-leaving radiance, PAR), bio-optical characteristics, and 619 

remotely sensed physical parameters (e.g., SST, wind stress). Using this approach, they were able 620 

to discriminate four major phytoplankton functional types based on probability of occurrence 621 

(diatoms, dinoflagellates, coccolithophores, and silicoflagellates) with an accuracy of more than 622 

70%. Palacz et al. (2013) used another approach that relies on an artificial neural network to 623 
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simulate the global distribution of PCC with a focus on diatoms and coccolithophores in the high 624 

nutrient low chlorophyll (HNLC) regions. A recent approach by Chase et al. (2022) utilizes Chl a in 625 

combination with environmental variables (sea surface temperature and salinity) to retrieve 626 

diatom carbon biomass in the North Atlantic. This approach is a clear demonstration of 627 

improvement in PCC retrieval due to the inclusion of environmental variables as well as imaging 628 

in-flow cytometry data to define PCC during algorithm development (Figure 6). These approaches 629 

become even more relevant in coastal and freshwater systems where phytoplankton absorption 630 

features in Rrs(λ) are masked by strong absorption and backscattering by other optically relevant 631 

constituents, hence, auxiliary environmental and physical information could further constrain the 632 

solution space enabling high-quality PCC retrievals.        633 

Finally, ESMs integrate in situ and satellite data through parametrization, forcing, and/or 634 

assimilation. ESMs can provide global coverage (no gaps due to high solar zenith angle, clouds, 635 

polar night, etc.) and can provide information on components of the ocean biogeochemical cycle 636 

that cannot currently be derived from satellite data alone (IOCCG 2020). These models do 637 

encompass the diversity of phytoplankton as either functionality (e.g., diatoms, cyanobacteria, 638 

diazotrophs, etc; Bopp et al. 2005; Gregg and Casey 2007) or size classes (e.g., Ward et al. 2012; 639 

Ward and Follows 2016). ESMs make assumptions that are aligned with our current 640 

understanding of phytoplankton dynamics (i.e., nutrient uptake, growth rate, sinking rate etc.). 641 

Some models also assimilate satellite ocean color products (e.g., Gregg and Casey 2007; Jones et 642 

al. 2016; Shulman et al. 2013) in models including PCC as functional groups (e.g., Ciavatta et al. 643 

2018; Skákala et al. 2018) or size classes (e.g., Xiao and Friedrichs 2014). 644 



 

31 

5.4. Challenges of deriving PCC from space 645 

In the previous sections, we highlighted approaches that are currently used to detect the 646 

dominant phytoplankton groups in the world aquatic ecosystem from ocean color imagery. In 647 

vast areas of open ocean, non-phytoplankton particles (i.e., detritus, heterotrophic bacteria) are 648 

more abundant than phytoplankton. While all these particulate (and dissolved) components of 649 

the open oceanic systems contribute to the ocean color, the strong absorption by phytoplankton 650 

pigments dominates the contribution to the ocean color signature, which has been identified as 651 

a promising signal in terms of identifying groups of phytoplankton (Alvain et al. 2008; Devred et 652 

al. 2006). As algal particle concentrations increase, however, scattering by phytoplankton can 653 

dominate the phytoplankton absorption properties and therefore lead to inaccuracies in 654 

measured optical properties (Brewin et al., 2017). As demonstrated by Garver at al. (1994) both 655 

pigment assemblages and pigment packaging effects (self-shading effect in large cells) contribute 656 

to the observed similarities in absorption spectra among phytoplankton, making it challenging to 657 

differentiate between different species solely based on their spectral characteristics. They found 658 

that more than 99% of the variance in the particulate absorption spectra was related to the 659 

biomass, and less than 0.5% was related to the presence of auxiliary pigments (Garver et al., 660 

1994). The combined effects of assemblage effective cell diameter and phytoplankton biomass, 661 

together with non-algal optical contributors, are not easily interpreted from Rrs(λ) as these 662 

quantities have ambiguous effects on the bulk optics (Evers-King et al., 2014). Recent information 663 

content studies have shown that the spectral signatures of absorption by different phytoplankton 664 

groups are similar within the uncertainty of the measurement mainly because of the considerable 665 

overlap in pigment composition, and thus spectral absorption, between different groups spatially 666 
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and temporally across aquatic ecosystems (Cael et al. 2020). Also, correlation among reflectances 667 

can decrease information content in hyperspectral data, limiting the capability of derivation of 668 

independent parameters (Cael et al. 2022b).  669 

Using the hyperspectral reflectance spectra from UV to NIR (320 to 715 nm) incorporates 670 

significantly more information (than traditional multispectral) including backscattering of the 671 

phytoplankton and associated particles, as well as fluorescence information, and may yield 672 

further taxonomic resolution. New methods to differentiate fractional phytoplankton 673 

composition from reflectance detected six different groups globally including diatoms, 674 

dinoflagellates, haptophytes, green algae, prokaryotes, and Prochlorococcus (Xi et al. 2020). 675 

However, such approaches may not apply to all coastal and inland waters. In the North Sea, 676 

Castagna et al. (2021) found that blooms of Phaeocystis globosa are synchronous with those of 677 

the diatom Pseudo-nitzschia delicatissima, both harmful bloom-forming species with similar 678 

pigmentation and optical properties.    679 

Remote sensing algorithms and biogeochemical models can be derived and tuned for the regional 680 

or local phytoplankton groups down to specific taxa, if they are known to occur in an area and do 681 

not have similar optical properties compared to other local taxa (examples listed in chapter 5.1 682 

and Table 3). For example, in South African waters, five different probabilistic indicators of 683 

harmful algal blooms were retrieved relevant to the aquaculture industry including waters with 684 

high and low density of dinoflagellate, Pseudo-nitzschia dominated waters, as well as waters with 685 

mixed assemblages of high and moderate concentrations (Smith and Bernard 2020). We have 686 

only begun to assess the hyperspectral scattering and fluorescence properties that may also aid 687 

in differentiating different types and stages of blooms, as well as relationships to seasonal trends 688 
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and other remotely sensed quantities including polarization parameters, temperature, 689 

photosynthetically available radiation, and salinity (see Section 4.2.3).  690 

Some studies have developed hyperspectral techniques to differentiate over 20 different species 691 

of phytoplankton (e.g., Zhu et al., 2019). While the statistical approaches used in such studies are 692 

robust, the lack of validation data across the breadth of space and time hinders the widespread 693 

application of such tuned approaches. Our approach to treatment of error and uncertainties in 694 

these applications determines the difference between retrieving four to five phytoplankton 695 

groups rather than >60 (Cael et al. 2020). A recent study using a large HPLC pigment dataset 696 

confirmed that only a limited number of phytoplankton groups (~4) may be differentiated globally 697 

including cyanobacteria, diatoms/dinoflagellates, haptophytes, and green algae (Kramer and 698 

Siegel 2019). However, they also demonstrated that, on regional scales, pigment association 699 

varies, suggesting that regional algorithms could resolve up to 6 taxonomic groups. Data from the 700 

Santa Barbara Channel, California revealed that around five phytoplankton pigment communities, 701 

which are covarying assemblages of phytoplankton groups, could be differentiated based on their 702 

spectral properties (Catlett and Siegel, 2018; Catlett et al., 2021).  703 

Another challenge of deriving PCC from space is that the vertical structure of phytoplankton in 704 

the ocean is not always homogenous as many of the models are assuming; phytoplankton layers 705 

are often found across the oceanic ecosystems. Depth on which specific phytoplankton is, as well 706 

as a thickness and number of layers with different PCCs will heavily influence observed Rrs(λ) at 707 

the surface, as that signal represent optically weighted contribution of all components. These 708 

vertical distributions are not simple to resolve either from perspective of total biomass (Gordon 709 

and McCluney 1975; Morel and Berthon 1989; Stramski and Stramska 2005), fluorescence signal 710 
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(Erickson et al. 2019) size structure (Uitz et al. 2006), or PCC (Lange et al. 2018; Werdell et al. 711 

2014).  712 

Another challenge requiring attention is the mismatch in the products that some of the remote 713 

sensing PCC approaches produce and in situ measurements. Above mentioned approaches that 714 

output % of biomass (chlorophyll or carbon) to specific size class or group, are hard to validate, 715 

as in situ datasets for those parameters are rare, or modeled (carrying lot of assumptions, 716 

therefore errors), or unavailable. In those situations, validation is carried through comparison 717 

with in situ measurements that explain PCC in different units (see section 4), leading to additional 718 

uncertainties that are often unaccounted for. Furthermore there is a spatial and temporal 719 

mismatch between in situ and remote sensing data. The current approach, where a 5×5 pixel 720 

(nominally) box is centered on a pixel closest to an in situ data point, has shown success at 721 

validating indices of total phytoplankton biomass on open ocean scales. A key reason for this is 722 

the high dynamic range of Chl a concentration (and by proxy, total phytoplankton biomass) in the 723 

ocean, which may not be the case for individual phytoplankton taxonomic groups. Issues of sub-724 

pixel variability, however, are not trivial in heterogeneous and dynamic ocean regions, including 725 

coastal areas that are likely to have strong tidal influences, river runoff, stratification, sediment 726 

resuspension, and other biophysical interactions that create patchy water mass distributions 727 

(e.g., Aurin et al. 2013; Ryan et al. 2005). In addition, diel variability in phytoplankton processes 728 

causes changes in cell size consistent with patterns of cell growth during the light period and cell 729 

division late in the day (Sosik et al. 2003) that is visible in optical properties, including Rrs(λ) (e.g., 730 

Briggs et al. 2018; Claustre et al. 2002; Concha et al. 2019; Gernez et al. 2011; Henderikx Freitas 731 

et al. 2020; Poulin et al. 2018; Stramski et al. 1995; Stramski and Reynolds 1993). In regions with 732 
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considerable spatiotemporal variability, for example, matching the seasonal climatology can be a 733 

useful tool to evaluate and validate different algorithms (Henderikx Freitas and Dierssen 2019). 734 

Going forward, thoughtful approaches that take in consideration the spatiotemporal variability 735 

of PCC, phytoplankton growth stages, and associated bio-optical retrievals should be applied to 736 

the validation of these remote sensing products.  737 

6. Phytoplankton from PACE 738 

In this review we presented a three-pronged approach to define PCC from PACE; as information 739 

that is needed by the users, definable by in-situ methodology, and detectable from satellites 740 

(Figure 7). In the preceding sections we defined current capabilities to resolve phytoplankton 741 

taxonomy from in situ and space-based observations. We described the strengths and 742 

weaknesses of each approach. We also described the availability of various techniques for 743 

phytoplankton enumeration and identification, from pigments to DNA to microscopy to imaging 744 

in flow approaches. The current suite of satellite PCC algorithms is largely only capable of deriving 745 

size classes, with a few that can discriminate unique taxonomic classes. Now the question is: what 746 

is possible with PACE? Although we would like to satisfy every user's needs, we must be realistic 747 

in our assumptions or expectations, and limitations that are outside of the sphere of technological 748 

capabilities of PACE instruments and our methods in-situ.  749 

6.1. In situ data requirements 750 

Even with PACE’s technological advancements, its potential to characterize the phytoplankton 751 

community will still depend on the availability of pigment and taxonomic data—that is, how well 752 

PCC is assessed in situ and subsequently used in algorithm development and validation. 753 

Previously, most PCC algorithms developed for application to satellite data have relied on 754 
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phytoplankton accessory pigment concentrations to define the phytoplankton groups of interest. 755 

A challenge arises in that the biomass of a given phytoplankton group cannot be directly defined 756 

using accessory pigment concentrations, as there are assumptions and approximations made 757 

when defining groups via pigment proxy (Jeffrey et al. 2011). Diversifying the types of in situ data 758 

used to define PCC (see Section 4) as well as use of multiple types of in situ taxonomic approaches 759 

will not only will improve the development of robust PACE PCC algorithms, but it will be critical 760 

as we go forward, as each data type has its advantages and limitations (see Catlett et al. 2022). 761 

Additionally, the limited number of validation exercises have been ad-hoc, and to ensure the 762 

quality and fidelity of the PCCs produced from PACE, validation must be done in a continuous 763 

standardized fashion (PACE mission 2020).  764 

The first steps for validation of PACE algorithms will be using solid foundation built upon heritage 765 

ocean color missions such as SeaWiFS, MODIS, MERIS, and VIIRS. From these missions, we have 766 

learned that the development, usability, and reliability of ocean color data depends on the 767 

availability of quality field data from (and prior to) launch date through the final days of the 768 

mission. Here we define “quality field data” as that which have been collected and processed 769 

following vetted community protocols, and deposited in an open access long-term data 770 

repository, especially those following up-to-date international data standards. The need for 771 

calibration and validation of optical oceanographic data during the SeaWiFS era set the stage for 772 

development of the SeaWiFS Bio-optical Archive and Storage System (SeaBASS), which today is 773 

one of the largest data repositories for optical oceanographic data. SeaBASS is part of NASA's 774 

Ocean Biology Distributed Active Archive Center (OB.DAAC), operating under NASA's Earth 775 

Observing System Data and Information System (EOSDIS). In addition to serving the ocean color 776 



 

37 

community as a long-term data repository and data distribution (via OB.DAAC), SeaBASS is 777 

responsible for compiling and curating data used for calibration and validation activities of ocean 778 

color satellite missions, including PACE. Most of the radiometric and bio-optical data used for 779 

validation is shared via NASA NOMAD (NASA bio-Optical Marine Algorithm Dataset), which is a 780 

publicly available, global, high-quality in situ bio-optical data set for use in ocean color algorithm 781 

development and satellite data product validation activities.  782 

When it comes to measurements of phytoplankton and community composition, SeaBASS has 783 

been primarily limited to phytoplankton pigments and relatively few flow cytometry and imaging 784 

datasets. As HPLC based Chl a has historically been the preferred validation data type for ocean 785 

color Chl a, community has developed standard protocols, and has participated in numerous 786 

round robin comparisons, that allowed standardization of not only Chl a, but the whole HPLC 787 

pigment suite across international community (e.g., SeaHARRE round robin series, Hooker et al. 788 

2012). In preparation for PACE and to expand phytoplankton data availability beyond pigments, 789 

SeaBASS implemented community protocols outlined in Neeley et al. (2021) for standardizing 790 

image data collected using imaging-in-flow instruments, such as the IFCB, UVP and FlowCAM, and 791 

associated metadata and other documentation. Standards and best practices for other taxonomic 792 

datasets, such as traditional microscopy and flow cytometry are either published or underway 793 

(Neeley et al. 2023). Incorporating molecular taxonomy datasets would be the next step, as 794 

currently, these data are not easily accessible for validation or dataset-building purposes. In 795 

parallel, community accepted protocols are being developed for a whole suite of other PACE 796 

products, including hyperspectral remote sensing reflectance (Zibordi et al. 2019). As these new 797 

https://seabass.gsfc.nasa.gov/wiki/NOMAD/nomad_seabass_v2.a_2008200_map.png
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datatypes are added to the validation pipeline, they will be included into future versions of 798 

NOMAD datasets.  799 

Currently, in situ data on phytoplankton concentration and composition are still heavily biased 800 

towards some regions and/or are not directly available (Thompson and Carstensen 2022). To 801 

allow for the above-mentioned applications, it is critical that we have data that allow us to 802 

calibrate/validate satellite products, as well as to validate ESM outputs (Dierssen et al. 2020). As 803 

stated by Thompson and Carstensen (2022), this network needs to be carefully planned in order 804 

to provide the information that we will need to understand and manage climate variability and 805 

change. Several recent grassroots initiatives address the geographic biases in SeaBASS (or 806 

NOMAD) towards ocean data by sharing a large database of hyperspectral Rrs(λ) (> 7500+) along 807 

with their co-located Chl a, CDOM, and SPM across global freshwater and coastal (Lehman et al. 808 

2023), and coastal and open ocean ecosystems (Casey et al. 2020) but with no accompanying PCC 809 

datasets. 810 

Finally, error propagation and attribution of uncertainties to PCC products are paramount. This 811 

information will determine whether an algorithm cab be applied effectively and/or broadly. While 812 

uncertainty has long been a topic of discussion in the ocean color community, only recently have 813 

significant strides been made to improve uncertainty estimation and error propagation to the 814 

measured or modeled products (IOCCG 2019; Kostakis et al. 2021; McKinna et al. 2019). With 815 

more complex algorithms, such as the ones used for estimation of PCC, uncertainty associated 816 

with underlying ocean color observations (Ibrahim et al. 2022; Zhang et al. 2022) accumulates 817 

through each step in the algorithm hierarchy (Siegel et al. 2023). Ancillary data present sources 818 

of uncertainty, as well as the theoretical assumptions or empirical data used to develop the PCC 819 
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algorithm. As PACE has a requirement to estimate uncertainty at the level of Rrs(λ), such 820 

cumulative uncertainty should be calculated and reported with the PCC products and used in 821 

future validation exercises in combination with contemporary validation metrics (McKinna et al. 822 

2021). Such uncertainty propagation exercises can be helpful when developing future PCC 823 

algorithms, to elucidate the interpretation of (e.g., climate driven) trends in PCC observations 824 

from space. In addition, having uncertainty as part of the harmful algal blooms (HABs) detection 825 

report is crucial for water quality managers, especially when it comes to determining the potential 826 

public health risks and implementing appropriate responses. 827 

6.2. Data accessibility and open science  828 

Chl a, as a heritage ocean color product, sets a high bar when it comes to data objectives and 829 

potential recognition as an Essential Ocean Variable (EOV, see Muller-Karger et al. 2018). 830 

Wilkinson et al. (2016) describe widely-accepted “FAIR” data objectives, listed below with a 831 

description of the relevant OB.DAAC practice:  832 

● Findable: total Chl a estimates from multiple satellites and sensors are indexed on the 833 

Earthdata Search website, including spatial and temporal filters. 834 

● Accessible: single or multiple total Chl a datasets may be downloaded on-demand by users 835 

or applications that authenticate with a free Earthdata account. 836 

● Interoperable: total Chl a datasets are delivered as NetCDF files, which embed metadata 837 

in a vocabulary controlled by the Climate and Forecast metadata conventions. 838 

● Reusable: in addition to being in the public domain, total Chl a datasets include metadata 839 

relevant to the ocean color research (e.g., variable units, sensor calibration parameters, 840 

and references to protocols and algorithms) that cover all aspects of the data provenance. 841 
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PACE ocean color products, including PCC, will be distributed via OB.DAAC, as soon as the data 842 

are available. However, it is important to understand that data will be considered “provisional”, 843 

meaning that they will not be validated (or validation is in progress) and quality may not be 844 

optimal. Assessment of the PACE data quality, i.e., validation, will be done in several steps, 845 

starting with remote sensing reflectance, followed by Chl a (and other products in ocean color 846 

standard suite), and ultimately PCC (when data is available). 847 

PACE data products for PCC are on the path to achieve each of the FAIR principles; despite being 848 

a more complicated variable than total Chl a (e.g., PCC is multivariate), there is nothing 849 

structurally novel about these products. New components of the vocabulary needed for metadata 850 

about phytoplankton composition (Neeley et al., 2021) demonstrate that the ocean color 851 

research community is actively engaged in establishing standards for interoperability. The units 852 

of PCC variables are well defined, ranging from Chl a or carbon density to total or relative 853 

abundance. Standard methods will have to be defined so that taxa can be pooled into genera or 854 

class (or higher taxonomic levels) depending on the users and goal outcomes. One of the biggest 855 

challenges, owing to the types of models that produce L4 data products containing PCC variables, 856 

will be the complete description of data source and methodology. Variables estimated through 857 

semi-analytical algorithms are relatively easy to document, using equations or open-source 858 

software and a short list of parameters. It is more difficult to document the provenance of variable 859 

estimates that get introduced after a model-fitting procedure, such as in supervised machine 860 

learning. In this case, both the fitted, or trained, model itself and any in situ data used while 861 

training must both be FAIR (e.g., Schoening et al. 2022). OB.DAAC and SeaBASS are well suited 862 

repositories to support the  data-intensive model-fitting procedures reliance on in situ data. 863 
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The NASA Science Mission Directorate (SMD) objectives for conducting supported missions, 864 

including PACE, through open science practices extends beyond open data. The topic of 865 

inclusivity, creating new pathways for end users to become involved in science, is also relevant to 866 

open science9. While the majority of academia and government entities have computational 867 

capacity to download and process large datasets, many of those in the broader PACE CoP may 868 

have challenges working with a large number of files in scientific data formats containing multiple 869 

parameters, like Rrs(λ), pigments, and light attenuation, and metadata on calibration, validation, 870 

and other provenance. For this reason, the PACE Mission will develop and offer trainings, 871 

tutorials, data “recipes”, and other forms of community support to ensure that users know how 872 

to appropriately access and utilize PACE data products. Further, the PACE team will continue its 873 

work with the PACE CoP to identify further training needs and gaps, and gather feedback post-874 

launch on continued challenges and barriers and the development of new products. The PACE 875 

team, for example, is working towards making a new type of merged “Water Quality Product” 876 

that will highlight specific products for a wide range of users. Such a merged and simplified data 877 

product, drawing from different parameters, will be adaptable and can grow as new algorithms 878 

come online. Finally, a PACE Community of Potential will also be convened; versus (and in addition 879 

to) the CoP, which is made up of more technical users. The Community of Potential will target 880 

individuals or groups (within or outside of PACE CoP) who are unfamiliar with satellite data 881 

products and PACE capabilities but may be able to leverage and benefit from PACE data products. 882 

Members of the Community of Potential may benefit from additional support on remote sensing 883 

at large, and the benefits and applications that PACE specifically could offer. For example, white 884 

 
9 https://science.nasa.gov/open-science-overview 
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papers with case studies may be developed so that new users can understand possible 885 

applications and uses of PACE data. In addition, certain new conferences or venues could be 886 

identified and targeted where users are less familiar with NASA remote sensing data. Other 887 

efforts to engage with new and existing users – whether for awareness raising, training, or some 888 

combination – will be considered as they are identified. 889 

Steps to reduce financial barriers associated with research on PCC include provisioning of cloud-890 

computing services with timely access to PCC data products, that should not only rely on NASA 891 

based providers. The Giovanni (10.1029/2007EO020003) and Google Earth Engine (Ugur et al 892 

2021) systems are in-browser applications coupled to cloud computing facilities that provide low-893 

barrier entries to analysis of earth observation variables. The inclusion of new variables on 894 

phytoplankton communities in these or other comparable systems is included in the design 895 

objectives for PCC data products. Training on software and online data tools for new users will be 896 

integral to the mission.   897 

7. Conclusion 898 

In this paper we have identified the strengths and weaknesses of existing approaches and 899 

presented how PACE will address some of the remaining gaps and challenges for quantifying 900 

PCC. The knowledge gained from this mission will rely on the existence of appropriate validation 901 

products (e.g., quality, coverage, diversity of products available, error and uncertainties 902 

requirements), the use of the various approaches currently available (in situ, satellite, and 903 

model products) as well as the distribution of data products following FAIR principles including 904 

training of the community and developing user friendly data products. Improved 905 

characterization of PCC is key to understanding aquatic ecosystems, our ocean’s health, and the 906 
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ocean’s effects on global climate. From local applications, such as water quality assessments 907 

that are focused on specific phytoplankton taxa, to global applications such as the role that 908 

ocean plays in carbon sequestration, the needs for information on phytoplankton composition 909 

requires the community to work together to develop the next generation of data products. This 910 

is especially critical when it comes to improving our understanding of the impact that climate 911 

change has on the ocean and developing effective management strategies for the ocean and 912 

other aquatic resources, both today and in the future. 913 
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Figures and Tables.  1765 

 1766 

Figure 1. Artist’s rendition of NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem satellite flying 1767 

over cloud-covered Earth’s Ocean. The Ocean Color Instrument is visible on the front of the 1768 

platform, while two polarimeters (located on the bottom side of the platform) are not visible from 1769 

this view. Credit: NASA Scientific Visualization Studio. 1770 
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 1774 

Figure 2. Self-identified research focus areas grouped into thematic areas, as dictated by PACE 1775 

Community of Practice members. 1776 
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 1779 

Figure 3. Needs of the PACE Community of Practice, based on the responses collected from a 1780 

questionnaire with predetermined answers or other (optionally including a write-in answer).   1781 
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 1783 

Figure 4. PACE will provide data to answer scientific questions about phytoplankton community 1784 

composition (PCC) at local to global scales. The user community, already actively engaged in 1785 

developing frameworks and pipelines that use PACE data or support mission objectives, comes 1786 

from different sectors, whose scientific objectives are sometimes distinct and sometimes 1787 

overlapping. This illustration provides example research interests at different scales and from 1788 

different sectors.  1789 
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 1793 

Figure 5. Spatial distribution of the autotrophic picoeucaryotes, Synechococcus, and Prochlorococcus, 1794 

stated as concentration of cells per volume, derived from MODIS Aqua (modified after Lange et al. 2020).  1795 
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  1797 

Figure 6. Diatom Carbon concentration derived from three component neural network model, following 1798 

Chase et al. 2022.  1799 
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 1802 

Figure 7. PCC from PACE is an intersection of user’s needs, facilitated and constrained by the 1803 

spaceborne technology aboard the satellite, and our capability to measure and define the 1804 

phytoplankton community structure in-situ.  1805 
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Table 1 Instrument specifications for OCI, HARP2 and SPEXone (modified from Table 2 from 1808 

Werdell et al. (2019)) 1809 

 OCI HARP2 SPEXone 

UV-NIR range 
(bandwidth) 

Continuous from 340 to 
890nm* in 2.5-nm steps (5) 

441 (16), 549 (10), 665 (11), 
and 866 (40) nm (nominal) 

Continuous from 385 to 770 
nm in 2-4nm steps 

SWIR channels 
(bandwidth) 

940 (45), 1,038 (75), 1,250 (30), 
1,378 (15), 1,615 (75), 2,130 
(50) and 2,260 (75) nm 

None None 

Polarized bands None All Continuous from 385 to 770 
nm in 15-45nm steps 

Number of viewing 
angles 

One, with fore-aft instrument 
tilt of ±20˚ to avoid sun glint 

10 for 440, 550 and 870 nm 
and 60 for 670 nm (spaced 
over 114˚) 

5 (-57˚, -20˚, 0˚, 20˚, 57˚) 

Swath width ±56.6˚ (2,663 km at 20˚ tilt) ±47˚ (1,556km at nadir) ±4˚ (100 km at nadir) 

Global coverage 1-2+ days 2 days ~30 days 

Ground pixel 1 km at nadir 3 km 2.5 km 

Institution GSFC UMBC SRON/Airbus 

 1810 

  1811 
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Table 2. Comparison of different methods, capabilities, and their connection to expected PACE 1812 

products (from perspective of algorithm development and validation) 1813 

 1814 

Method 
Volume 
sampled 
(approx.) 

Size range detected 
(approx.) 

Taxonomic 
resolution 

What is actually 
measured? 

PACE-relevant examples 

Light microscopy 1-200 mL 
10-200 µm 
(nominal) 

To species level 

Cell concentrations 
and/or biovolume 
(can estimate cellular 
carbon) 

Brewin et al. (2011a); 
Soto et al. (2015); Wolny 
et al. (2020)  

HPLC pigments 1-10 L 
>0.3 µm (nominal; 
0.7 µm for non-
combusted GF/F) 

Group level 
Pigment 
concentrations 

Bracher et al. (2015); 
Chase et al. (2017); 
Kramer et al. (2022); Uitz 
et al. (2015) 

Flow cytometry 0.1-2 mL 
0.2-50 µm 
(instrument and 
volume dependent) 

Prochlorococcus, 
Synechococcus, 
pico- and nano-
eukaryotes 

Cell concentrations 
and optical properties 
(can estimate cellular 
carbon) 

Lange et al. (2020), 
Kramer et al. (2020) 

Imaging-in-flow 
cytometry 

2-5 mL 6-150 µm (nominal) To species level 

Cell concentrations + 
biovolumes (can 
estimate cellular 
carbon) 

Chase et al. (2022) 

DNA 
metabarcoding 

0.5-10 L 
>0.2 µm (filter 
dependent, 
nominal) 

To species level 

Relative sequence 
abundances and/or 
barcode gene 
concentrations 

Catlett et al. (2021) 

 1815 

 1816 

 1817 

 1818 
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Table 3. Compilation of published algorithms to assess phytoplankton community composition. Algorithms are considered global if they 1819 

are designed for/applied to more than one major ocean. 1820 

 1821 
Application PCC product(s) Algorithm validation data Remote sensing approaches Hyperspectral (or polarization?) in situ approaches 

Global 

Taxonomic 
group(s) 

Direct cell observation 
(cultures and/or field 
microscopy) 

Subramaniam et al. (2001); Westberry et al. (2005) Subramaniam 
and Carpenter (1994)  

 

Pigment concentrations 

Alvain et al. (2005); Alvain et al. (2008); Ben Mustapha et al. 
(2014); Bracher et al. (2009); Hirata et al. (2011); Losa et al. 
(2017); Moore et al. (2012); Palacz et al. (2013); Sadeghi et al. 
(2012); Soppa et al. (2014); Xi et al. (2020) 

Torrecilla et al. (2011) 

Spectral signatures Brown and Yoder (1994)  

Size classes, size 
index, or PSD 

 

Pigment concentrations 

Brewin et al. (2010); Brewin et al. (2015); Devred et al. (2006); 
Devred et al. (2011); Fujiwara et al. (2011); Hirata et al. (2008); 
Hirata et al. (2011); Kostadinov et al. (2010); Li et al. (2013); 
Moore and Brown (2020); Mouw and Yoder (2010); Roy et al. 
(2013, spectral a_ph also used in development); Uitz et al. (2006) 

 

Mie modeling, Coated Spheres 
model 

Kostadinov et al. (2009); Kostadinov et al. (2022)  

Spectral signatures Bricaud et al. (2012)  

Accessory 
pigments 

Pigment concentrations O'Shea et al. (2021); Wang et al. (2018)  
Bracher et al. (2015); Chase et al. (2013); (Chase et al. 2017); 
Kramer et al. (2022); Taylor et al. (2013); Uitz et al. (2015) 

Regional 
/Local 

Taxonomic 
group(s) 

Direct cell observation 
(microscopy of cultures and/or 
field data or imaging-in-flow 
cytometry) 

Chase et al. (2022); Raitsos et al. (2008) Rêve-Lamarche et al. 
(2017) 

Kirkpatrick et al. (2000); Lubac et al. (2008); Millie et al. 
(1997); Xi et al. (2017); Xi et al. (2015)  

Pigment concentrations 
Di Cicco et al. (2017); Kramer et al. (2018); Palacios et al. (2015); 
Sathyendranath et al. (2004); Werdell et al. (2014) 

Catlett and Siegel (2018); Isada et al. (2015); Shaju et al. 
(2015) 

Spectral signatures  Craig et al. (2006); Wynne et al. (2008) 

Size classes, size 
index, or PSD 

Pigment concentrations Gittings et al. (2019)  

Spectral signatures Ciotti and Bricaud (2006)   

Accessory 
pigments 

Pigment concentrations Bracher et al. (2015); Pan et al. (2010); Sun et al. (2022) 

Aguirre-Gómez et al. (2001); Hoepffner and Sathyendranath 
(1991); Hoepffner and Sathyendranath (1993); Liu et al. 
(2019); Lohrenz et al. (2003); Wang et al. (2016); Ye et al. 
(2019)  

 1822 
 1823 
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Table 4. Acronyms and symbols used in the text.  1824 

CDOM Colored Dissolved Organic Matter 

CDR Carbon Dioxide Removal 

CHEMTAX CHEMical TAXonomy 

CHIME3 Copernicus Hyperspectral Imaging Mission for the Environment 

Chl a Chlorophyll a 

CMIP Climate Research Programme Coupled Model Intercomparison Project 

CoP Community of Practice 

DNA Deoxyribonucleic Acid 

EOSDIS NASA's Earth Observing System Data and Information System 

EOV Essential Ocean Variable 

ESM Earth System Models 

FAIR  Findable, Accessible, Interoperable and Reusable 

FCM Flow cytometry 

GIOP Generalized IOP algorithm 

GLIMR Geosynchronous Littoral Imaging and Monitoring Radiometer  

GSFC Goddard Space Flight Center 

HABs Harmful Algal Blooms 

HARP2 Hyper Angular Research Polarimeter 

HICO Hyperspectral Imager for the Coastal Ocean 

HNLC High Nutrient Low Chlorophyll 

HPLC High performance liquid chromatography 

IFCB Imaging FlowCytobot 

IOCCG International Ocean-Colour Coordinating Group 

IPCC Intergovernmental Panel on Climate Change 

GCOM-C  Global Change Observation Mission – Climate satellite 

JAXA Japan Aerospace Exploration Agency 

LEO Low Earth Orbit 

MAAs  Mycosporine-like Amino Acids 

MERIS Medium Resolution Imaging Spectrometer 

MODIS Moderate Resolution Imaging Spectroradiometer 

NASA National Aeronautics and Space Administration 

NASA NOMAD  NASA bio-Optical Marine Algorithm Dataset 

NIR Near-Infrared 

OB.DAAC NASA's Ocean Biology Distributed Active Archive Center 

OCI Ocean Color Instrument 

PACE NASA’s Plankton, Aerosol, Cloud, ocean Ecology 

PAR Photosynthetically Active Radiation 

PCC Phytoplankton Community Composition 

PhytoDOAS Extension of the Differential Optical Absorption Spectroscopy (DOAS, a method 
for detection of atmospheric trace gases), developed for remote identification of 
oceanic phytoplankton groups 

POLDER  Polarization and Directionality of the Earth's Reflectance 

PSC Phytoplankton Size Class 

Rrs(λ)  Remote Sensing Reflectance 



 

74 

SBG Surface Biology and Geology mission 

SCIAMACHY Scanning Imaging Absorption Spectrometer for Atmospheric Chartography  

SeaBASS SeaWiFS Bio-optical Archive and Storage System 

SeaWiFS Sea-viewing Wide Field-of-view Sensor  

SMD Science Mission Directorate 

SPEXone Spectro-polarimeter for Planetary Exploration 

SPM Suspended Particulate Matter  

SRON Netherlands Institute for Space Research 

SST Sea Surface Temperature 

SWIR Short-wave Infrared 

TOA Top-of-atmosphere 

UMBC University of Maryland, Baltimore County 

UV Ultraviolet 

UVP Underwater Vision Profiler 

VIIRS Visible Infrared Imaging Radiometer Suite 

 1825 


