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Abstract 

Acclimation through phenotypic plasticity represents a more rapid response to environmental 
change than adaptation and is vital to optimize organisms’ performance in different conditions. 
Generally, animals are less phenotypically plastic than plants, but reef-building corals exhibit 
plant properties. They are light-dependent with a sessile and modular construction that facilitates 
rapid morphological changes within their lifetime. We induced phenotypic changes by altering 
light exposure in a reciprocal transplant experiment and found that coral plasticity is a colony trait 
emerging from comprehensive morphological and physiological changes at the local level. 
Plasticity in skeletal features optimized coral light harvesting and utilization and paralleled with 
significant methylome and transcriptome modifications. Network-associated responses resulted in 
the identification of hub genes and clusters associated to the change in phenotype: inter-partner 
recognition and phagocytosis, soft tissue growth and biomineralization. Furthermore, we identified 
hub genes putatively involved in animal photoreception-phototransduction. These findings 
fundamentally alter our understanding of how cnidarian invertebrates repattern the methylome 
and adjust a phenotype, revealing an important role of light sensing by the coral animal to 
optimize photosynthetic performance of the symbionts. 

Significance Statement 

Stony corals shape the benthic topography of the ocean by the net accumulation of calcium 
carbonate, engineering biodiversity hotspots that provide food security, livelihood opportunities, 
and protection from coastal erosion worldwide. Corals optimize growth through morphological 
plasticity, however, genomic and epigenomic underpinnings of such plasticity are largely 
unknown. We applied comprehensive biometrics, machine learning to identify divergent 
methylation, and methylome-transcriptome-derived network analyses. We revealed an 
extraordinary number of hub genes likely to be integral to morphologic plasticity. Accordingly, 
DNA methylation may represent an important mechanism facilitating the evolution of the 
biomineralization process. The integration of methylation and transcriptional information makes 
significant inroads in the identification of networks underpinning phenotypic changes and provides 
a roadmap for studies of non-model organisms.   
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Main Text 
 
Introduction 

 

The modification of an organism’s physical features (phenotype) through development and 
growth is affected by the interaction of gene expression (genotype) with environmental cues. This 
capacity for phenotypic plasticity allows organisms to optimize their physiological performance 
under different environmental conditions (1–3). While most organisms exhibit some degree of 
plasticity, the sessile condition of plants prevents movement to new environments if conditions 
become unfavorable. Consequently, they have evolved broad plasticity in their physical 
characteristics, such as leaf size or shape, root architecture or reproductive behaviors, to cope with 
changing environments and maintain optimal light harvesting (4). Animals generally exhibit far less 
plasticity than plants; except for reef-building corals. With similar life-histories to plants, their 
colonies display high levels of morphological plasticity.  

Corals are modular, sessile organisms responsible for the net accumulation of calcium 
carbonate in coral reefs. The power to calcify is the result of animals acquiring photosynthetically-
fixed carbon through an obligate symbiosis with dinoflagellates (or microalgae) (family 
Symbiodiniaceae) (5–8). This means that corals, much like plants, make their living from light 
capture. The metabolic integration is such that coral skeletons evolved to be efficient light collectors 
(9) with skeletal morphology adjusted in response to depth-dependent light availability (10). It is, 
therefore, not surprising that corals exhibit molecular signatures for perceiving and responding 
rapidly to changes in light availability. 

While observed phenotypic plasticity is shaped by the interaction between genomes and 
environments, the role of epigenomes in this plasticity has captivated the interest of biologists. 
Phenotypic adjustments induced by environmental cues and gene expression may be influenced 
by chromatin factors like DNA cytosine methylation, a dynamic feature of many eukaryotic 
genomes, including plants, animals, and fungi. DNA methylation is a process where methyl groups 
are added to cytosine bases of the DNA molecule and, in association with histone modifications, 
modify chromatin conformation (11, 12). High-density methylation within promoter regions can 
silence genes, whereas lower-density intragenic methylation repatterning can influence alternative 
splicing activity, leading to changes in an organism's phenotype (13, 14). This is a reversible 
process influenced by environmental conditions, hence allowing phenotypic plasticity to occur (15, 
16). Moreover, methylation repatterning accompanies chromatin response to environmental 
changes without altering the DNA sequence and with the potential for heritable transmission. The 
repatterning is generally associated with other epigenetic effects such as histone modifications and 
changes in noncoding RNA. These methylome modifications can be assayed at single nucleotide 
resolution, providing the robust datasets required for identifying responsive underlying gene 
networks that could explain phenotypic adjustments (17–22). 

DNA methylation is evolutionarily ancient; however, its distribution and functions are 
diverse, debatable, or unknown among taxa. In plants, phenotypic plasticity and its heritability has 
been associated with changes in DNA methylation patterns (15, 16), but the functional significance 
in coral phenotypic plasticity is still tenuous. Several studies have associated coral DNA 
methylation with plasticity (23–30), with whole-genome bisulfite sequencing (WGBS) contributing 
to single base-pair resolution (27). However, WGBS data analysis can be challenging due to the 
highly dynamic features of methylome datasets. This stochasticity has complicated discrimination 
of treatment-associated signal from natural background variation, and the understanding of 
treatment-associated phenotypic adjustments with methylome modifications (17, 22). As advances 
in computational biology demonstrate the effect of single cytosine changes in phenotypic 
responses, novel methods have been addressing challenges in conventional methodologies (17–
22). One approach to discriminate treatment-associated differential methylation is to incorporate 
signal detection and machine learning (18, 20–22, 31) with MethyIT (R package Methyl-IT 0.3.1.2, 
(21)). The approach treats methylation data as probability distributions, permitting variation within 
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multiple control samples to be subtracted from the treatment datasets to discriminate treatment-
specific variation. Machine learning then permits validation of treatment association with over 98% 
confidence. Further validation of this approach is accomplished, in models like Arabidopsis, with 
incorporation of mutations in the RNA-directed DNA methylation pathway (18). However, the 
approach is especially valuable in non-model systems where changes cannot be confirmed with 
targeted mutation(s). The association between phenotype change and treatment-associated 
methylome modification is informative in understanding the underlying molecular features of the 
phenotypic change by directly identifying responsive gene networks (18, 20–22, 31). 

To examine the phenotype to methylome association, we conducted a reciprocal transplant 
experiment to induce light-mediated phenotypic responses in the reef-building Elkhorn coral 
Acropora palmata and investigated DNA methylation and transcriptional responses potentially 
responsible for plasticity. Extensive biometrics revealed not only changes in coral tissue 
pigmentation and metabolic rates but also in skeletal morphology after five weeks. This skeletal 
remodeling was accompanied by intragenic methylome repatterning, discovered by signal 
detection with machine learning-based analysis. We further integrated differentially methylated 
(DMG) and expressed (DEG) gene datasets to elucidate how light responses integrate into gene 
regulatory networks controlling functional traits. By exploring the resulting hub genes and gene 
clusters, we were able to predict functional associations with observed phenotype changes and 
identify markers of plasticity in reef-building corals. Moreover, our results contribute to emerging 
evidence that epigenetics contribute to the machinery that can alter DNA structure during skeletal 
remodeling in metazoans. 

Results and Discussion 

Corals exploit intra-colonial environmental differences through plasticity 

The branching coral Acropora palmata is the dominant reef-builder on shallow, wave-exposed 
Caribbean reefs. Colonies exhibit tree-like morphologies with strong intra-colonial light gradients 
ranging from 3 to 100% of sub-superficial irradiance (Es). In our experiment, we quantified intra-
colonial phenotypic plasticity by measuring traits from High Light (HL) surfaces (fragments from 
upperside surfaces of branches, n = 12) exposed to 70% of Es and Low Light (LL) surfaces 
(fragments from underside surfaces of branches, n =12) exposed to 3-7% of Es (Fig. 1A, Table 1). 
Structural, optical, and physiological traits of HL and LL fragments releveled two distinct 
phenotypes. HL phenotypes had significantly greater total polyp density (Fig. 1F), density of taller 
corallites (Fig. 1G), total host protein (Fig. 1H) and algal density (Fig 1I). Surfaces with taller 
corallites can favor the formation of internal light gradients, increase levels of pigment self-shading, 
and reduce the proportion of polyp-surface exposed to the external high-light levels (9, 32). In 
contrast, LL phenotypes showed a small number of short corallites that can facilitate the lateral 
spread of light. 

We expected these differences in skeletal features to affect how corals collect and utilize light 
for colony growth. To disentangle this, we used algal symbiont density, chlorophyll a (chla), host 
soluble proteins, and in vivo light absorption of the intact coral tissue (Table S1) to describe light 
absorption efficiency of HL and LL phenotypes. We estimated three optical traits: a*Chla (m2 mg 
Chla−1), which describes the holobiont’s efficiency to absorb light (33), a*sym (m2 sym−1) that 
describes in hospite light absorption efficiency of the algal symbionts, and a*M (cm2 mg protein−1 ) 
indicative of the potential return for the host (mass) of the energy absorbed (34, 35) (Table S1). 
We detected less algal cell densities (Fig. 1I) but more chla per cell in LL phenotypes (Fig. 1J), 
and opposite traits in HL phenotypes. This resulted in equal chla concentration in both HL and LL 
phenotypes (Fig 1K). These findings contradict the assumption that more light always induces 
lower pigmentation in multicellular photosynthetic organisms and confirms the ability of coral 
skeletal features to rewire the algal light environment. Conversely, a*Chla showed that both 
phenotypes of the coral colony are equally efficient in absorbing light (Table S1), a response 
reached by adjusting skeletal features. 
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A. palmata exploits a wide range of light environments without changing its symbiont species 
(Symbiodinium ‘fitti’), (36) in contrast to other reef-building corals (37). Instead, A. palmata colonies 
fine-tune structural traits; algal density, chla density, and skeletal morphology (Fig. 1). This 
mechanism minimizes “pigment packing” in underside surfaces in response to LL conditions, 
resulting in light collectors as efficient as those of HL surfaces. Although photosynthesis is more 
active on upper side surfaces (Fig. 1N), the ratio of photosynthesis/respiration (P/R = 3), 
photosynthetic efficiency (Fig. 1L) and minimum quantum requirement (Table S1) were similar in 
both sides of branches. These observations further highlight the ability of A. palmata to optimize 
light absorption and utilization through plasticity as a central strategy to exploit the strong intra-
colonial light gradient and maximize colony productivity for growth. 

Induced morphological plasticity with reciprocal transplants 

A. palmata frequently reproduce asexually via branch fragmentation, a result of physical 
disturbance (i.e. waves and storms) (38). Branches are often turned upside down when they land 
on the benthos. Fragmentation thus induces strong and rapid changes in light regimes, where 
survival is dependent on their successful acclimatization to the new light conditions. Presumably, 
upper and underside branch surfaces interchange phenotypes through acclimation to new light 
regimes. We took advantage of this life history trait to induce plasticity by altering light exposure in 
a reciprocal transplant experiment (see Methods, Fig. 2A). Coral fragments from three colonies 
representing three distinct genets (detected with Standard Tools for Acroporid Genotyping STAGdb 
(64)) were manipulated, so that HL phenotypes (n = 21) and LL phenotypes (n = 21) experienced 
unchanged light fields, and treated fragments were switched to the opposite light condition HL⇾LL 
(High Light to Low Light, n = 21) and LL⇾HL (Low Light to High Light, n = 21) (Fig. 2A). Within 5 
weeks, treated coral fragments significantly adjusted their phenotype. The acclimation was gradual 
(tracked by visual inspection), and transplants became increasingly similar in morphology to coral 
surfaces of the destination light condition (Fig. 2C, Fig. S4), comparable to what is observed when 
coral colonies are transplanted along depth gradients (10). Pressure over photosystem II (Qm), 
metabolic rates and visual growth indicated that corals acclimated successfully to the destination 
light conditions (Fig. 2B, C, Table S1). Interestingly, a*Chla, the holobiont’s efficiency to absorb light, 
indicated that fragments may continue changing pigmentation and skeletal features to fully optimize 
performance (Fig. 2D, E). Nonetheless, most significant changes were observed in skeletal 
features (taller corallites per area), polyp density and the balance between chla density and 
symbiont density (Fig. 2, Table S1). Significant differences were found among the 4 group 
conditions (R = 0.336, P<0.001, Fig. S5), suggesting a response driven by light-mediated 
phenotypes and not the genet (R = 0.188, P> 0.05). 

Phenotypic plasticity was induced by altering ~80% of light availability (~18 mol quanta m-2 
day-1). These were drastic changes that are nevertheless commonly experienced by coral species 
during their life cycle. Whole colony metabolic performance is optimized by adjustments at the 
module (polyp) level for resource acquisition. Similarly, phenotypic plasticity in plants results from 
a local response (e.g. of shaded branches) which optimizes light harvesting and utilization for 
growth (39). While corals are colonial animals, and each polyp (module) is akin to an individual 
organism, a coral’s response to the light environment should consider the integrated response to 
local conditions experienced by local modules. Accordingly, modular plasticity may be one evolving 
trait under selection, as has been suggested for plants (39). 

Reading the methylome with Methyl-IT: Light-mediated methylome repatterning 

Following induced light-mediated phenotypic plasticity, we investigated DNA methylome 
response to coral group conditions (n = 8 per group condition). With WGBS (30X coverage), we 
documented methylation of the A. palmata genome. We identified CpG context methylation (~14%) 
to be higher in the A. palmata than in any other invertebrate (27, 40). We detected insignificant 
levels of methylation in CHG or CHH context (<0.6%) (H = A, T, or C) (Fig. 3A), and CpG 
methylation was prevalent in genic regions (Fig. 3B) as previously reported in other coral species 
(23, 27, 28). 
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To associate the observed coral phenotypic plasticity with high-resolution DNA methylome 
variation, we used a signal detection-machine learning approach (R package Methyl-IT 0.3.1.2) 
(21), designed to discriminate methylation signal induced by environmental variation at individual 
cytosine positions (19, 21, 41). We assessed gene-associated, differentially methylated positions 
(DMPs) with no regard to methylation density, context, or directionality (hypo/hypermethylation) 
(Methods, Fig. 3C). Parallel analysis of DMP variation within control samples allowed discrimination 
of treatment-associated DMPs and their classification on the basis of hierarchical clustering (HC) 
and principal component analysis (PCA) (Methyl-IT), which enabled an unbiased view of 
methylome repatterning (Fig. 3D). There was significant separation of control and treatment 
samples, indicating that light-mediated methylome modifications were driving the first two principal 
components. Genes with the strongest discriminatory power from PC-scores in PC1 were 
associated with cell cycle, extracellular matrix (ECM), regulation of transcription and transduction, 
and biomineralization (Table S2). 

Agnostic biological network analysis with WGCNA: Network-based integration of DMG and 
DEG datasets 

Significant coral phenotypic changes and gene-associated methylome repatterning warranted 
deeper investigation to uncover functional relationships with gene expression. We first identified 
DMGs (Methyl-IT 0.3.1.2) based on statistically significant differences in DMP counts from treated 
corals relative to control groups (Fig. S2). RNA-sequencing was carried out on the same samples 
used for WGBS, with DEGs identified (DESeq2 3.12.0.) via pairwise comparison between control 
and treatment groups. A total of 32 methylomes and 32 transcriptomes were analyzed with a range 
of 861 – 2255 DMGs and 1334 – 6479 DEGs detected (Fig. S6). We used a network-based 
approach to integrate the information, which provided us with a collection of nodes and edges 
representing putative gene interactions (42). Since network-based analyses can be influenced by 
the available annotation for a given species, we performed a weighted correlation network analysis 
of coral gene expression and methylome modification (Fig. S2). To understand the interaction 
between the change in methylomes (n = 32) and transcriptomes (n = 32), we combined DMG and 
DEG datasets to one large dataset genes/coordinates. Dimensionality was reduced with HC (Fig. 
4A), PCA and a linear discriminant analysis. We assigned gene discriminatory power from PC-
scores (gene-score) (Fig. S7). The network was built in R-package Weighted Gene Correlation 
Network Analysis (WGCNA 1.71) (43), with visualization and statistical analysis in Cytoscape 3.8.2 
(19). Network’s centrality measures, edge weight, and node PC-scores were included in clustering 
analyses to identify putative central regulators or hub genes. Hub loci are critical network 
components, with loss or mutation predicted to cause breakdown of the network or lethality to the 
organism (19, 42).  

Methylome-transcriptome-derived gene network information revealed an extraordinary 
number of hub genes likely to be integral to morphologic plasticity in symbiotic corals. General 
biological processes included visual and sensory perception, growth and immunity, including 
carriers, transporters and receptors. Two main cluster categories were identified (Fig. 4B). A Type 
I subnetwork (Fig. 4C) showed genes with strong gene-gene interaction (edges with strongest 
correlation weights), denotating genes with similar contribution to the change in phenotype. The 
main sub-network under this category was enriched in Extracellular matrix (ECM) gene products, 
collagen-like domains, signaling activity, cell-cell adhesion and EGF-domains, putatively 
associated with soft tissue growth and biomineralization (R-HSA-2022090, R-HSA-1474244, R-
HSA-1474290, R-HSA-2022090, R-HSA-388844, R-HSA-8849932). 139/199 genes in this 
subnetwork were found to be differentially methylated, highlighting the influence of methylation to 
changes in coral skeletal growth. Interestingly, we observed low gene-score values in this cluster, 
meaning that individually each gene carries small proportion of the whole phenotypic variance. 
Seemingly, these genes were co-methylated to give rise to a quantitative cumulative effect on 
phenotypic variation among treatments, leading to the change in growth pattern, but with low 
discriminatory power individually. 
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Subnetworks Type II represented critical genes with the strongest discriminatory power, 
denoting hub genes with strongest contribution to the change in phenotype (Fig. 4D, E). 
Accordingly, we considered these loci to be strong candidates for biomarker identification. 
Annotated hub genes included DEGSLC7A2, DEGSLC22A13, DEGSLC17A6B, DEGPANP, DEGIFI30, 
DEGTRIM71, DEGMELC2, DEGADAMTS18, DEGCTRC, DMGHECTD4, DMGLIPK, DEGTNR, DMGC0H691, 
DMGTRPV6, DEGHSP-16.2, DEGSUSD2, DEGCOL6A5, DEGBTBD2, DEGCASR DMGGPR133, DMGRABL6, 
DEGPRSS27, DEGSSTR5, DMGMPDZ, DMGSPTAN1, DEGABHD4, DEGCOL12A1, DEGSPDEF, DEGHES4-
a, DEGPTK7, DEGASIC3 DEGMFSD6, DEGCOL11A1, DMGCHMP6, DEGPRDM6, DMGFGFR1, 
DMGTMPRSS15, DMGTMPRSS11D, DEGB3GAT3. 

Predicted biological networks: network-associated responses from DMGs 

We further aimed to investigate gene interactions in available experimental data by consulting 
pathways from curated databases (44, 45) to identify predicted networks (see Methods; Fig. S2). 
With the set of DMGs as input in stringApp (Cytoscape 3.8.2), we built a baseline network and 
performed clustering analyses (with network centrality measures). Independent of the destination 
light condition and genet, enriched function categories were posttranscriptional protein variants 
(kw-0621 polymorphism, kw-0025 alternative splicing, kw-0597 phosphoprotein), cytoskeleton 
proteins (kw-0206), calcium-dependent proteins (kw-0106 calcium), growth associated proteins 
(kw-0131 cell cycle, kw-0965 cell-junction), and phagocytosis (kw-0966 cell projection) (Fig. S8). 
A common feature of main candidate hub genes (Fig. S8, ATR, PIF1, FANCD, SIRT1) was DNA 
damage-repair-response (DRR), a mechanism regulated by chromatin conformation. Chromatin 
remodeling complexes, at the core of DRR (46), are essential in DNA methylation patterning (47). 

We used the set of DEGs to run the same network analyses separately (Fig. S9). However, 
we found significant lower values of node Eigenvector of centrality (Fig. S10). This limited the 
identification of hubs from gene expression data alone.  

Predicted biological networks: network-associated responses from DMGs and DEGs. 

The identification of key regulators in DMG sub-networks led us to investigate integrated DMG 
and DEG networks in available experimental data and pathways from curated databases (44, 45). 
We detected sub-networks of hub genes contributing to phenotypic changes and associated 
cellular processes, including inter-partner recognition and phagocytosis, regulation of host-
symbiont biomass, and calcification (reviewed in (48)). Sub-networks aligned with these processes, 
independent of the destination light conditions and genet, and generally targeting the same 
enriched categories, pathways, or protein families (Fig. 5, Fig. S11-S14). Network topology and 
node hierarchy based on Eigenvector od Centrality suggested a general DMG-DEG interplay 
targeting key regulators (hubs) and triggering a cascade of responses, evident when source-sink 
nodes (Fig. 5A CEP290; Fig. 5B THBS1, PTK2, SOX9; Fig. 5C RAB1A; Fig 5D ANAPC1) 
interacted with strongly connected clusters. 

Cells have mechanisms to detect specific environmental signals to transduce and trigger the 
appropriate responses. We identified a symbiont-independent photoreception-phototransduction 
sub-network (Fig. 5A, 51 nodes and 139 edges) potentially involved in animal sensing of a light 
stimulus (p-Cluster I). Network Enrichment Analysis (NEA) yielded mainly cilium assembly 
(GO.0060272, 19 enriched genes, FDR < 0.001). The putative hub gene DMG-DEGSPTAN1 interacted 
with DMGCEP290 and a transcriptional non-hub cluster (USH2A, CRB1, EYS, MYO3A) involved in 
phototransduction-reception. Interestingly, this sub-network further interacted with growth and 
calcification sub-networks (Fig. 5B). Previous work has elucidated the role of light in the coral 
animal independent symbiont metabolism. It was found that enhanced coral calcification but not 
photosynthesis occurs under blue light exposure (49), and evidence suggests a light-mediated 
electrical potential in coral epithelia (50). Moreover, Cnidaria constitutes the earliest branching 
phylum containing a well-developed visual system. Some jellyfish, like Cubozoa, have camera-type 
eyes with photoreceptor cells that are more similar to vertebrate than to invertebrate eyes (51). 
These findings suggest that coral animal photoreception-transduction is implicated in changes in 
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growth pattern and skeletal features, although the role of photoreception-associated proteins is yet 
to be explored. 

Consistent with significant changes in coral skeletal features for the optimization of light 
harvesting and utilization, we identified a coral growth and biomineralization sub-network (Fig. 5B, 
86 nodes and 200 edges) that revealed NEA categories related to ECM proteins (KW-0272, 18 
enriched genes, FDR < 0.001), cell-cell adhesion (KW-0130, 14 enriched genes, FDR < 0.001) and 
EGF-domains (KW-0245, 13 enriched genes, FDR < 0.001) as most prominent. From the sub-
network of hub genes, integrin and spectrins interacted with glycoproteins and lipoproteins 
(DMGPTK2, DMG-DEGTHBS1, and DMGLRP5) involved in coral biomineralization (52–54). 
Thrombospondin has previously been suggested for its role in biomineral remodeling (55). 
Consistent with this network topology, an important transcriptional interaction identified was SOX9, 
a transcription factor (TF) with a role in skeletal development. Associated nodes involved TFs 
DEGHIF1A, DEGHOPX, and DEGFOXL1, with the receptor protein DEGNOTCH2 up regulated in this 
transcriptional interaction (independent of the destination light condition). All hub genes interacted 
with a strongly connected cluster of collagen-like domains that was mainly transcriptional and up-
regulated when transplanted to HL, while down-regulated when transplanted to LL. Collagen plays 
a structural role in the skeletal organic matrix (SOM), and presence of SOM in calcifying organisms 
appears to be a prerequisite for the formation and growth of biominerals (55, 56).  

Holobiont biometrics showed the strong regulation of algal symbiont density by light-mediated 
adjustments in skeletal features. These changes are achieved by phagocytosis-exocytosis-
endocytosis with associated innate immune recognition (48). We identified associated sub-
networks with enriched categories related to vesicle/vacuole-mediated transport (GO.0016192, 41 
enriched genes, FDR < 0.001) (Fig. 5C, 78 nodes and 174 edges). The core sub-network of hub 
genes (Fig. 5C) interacted with spectrins, ankyrins, and key regulators of intracellular membrane 
traffic GTPases-RAB. Previous studies have emphasized pattern recognition receptors (PRR) as 
key players in symbiosis establishment (48). Main PPR identified are endocytosis mediator C-type 
lectin domain family member (DMG-DEGMRC1) and Toll-like and Toll/interleukin-like receptors 
(DEGTLR6 and DEGTLR1). Furthermore, we identified a sub-network associated to immune system 
responses (NEA, HSA-1280218, 18 enriched genes, FDR < 0.001) (Fig. 5D, 30 nodes and 195 
edges), were hub genes (DMG-DEGPOLA1, DMGATR, DMGPIF1, DMGFBXO18) interacted with the 
strongly connected component through an E3 ubiquitin ligase that targets cell cycle regulatory 
proteins for degradation (DMGANAPC1). The targeted cluster was mainly transcriptional (both up- 
and down-regulated) and the few DMGs were also E3 ubiquitin ligases (DMG-DEGHECTD1, 
DMGHERC1, DMGHUWE1). 

Concluding remarks 

Whole colony plasticity in the branching coral A. palmata resulted from the integration of 
modular responses to local variation in light availability. The plasticity of local modules was evident 
when fragments were transplanted to contrasting light environments, where significant changes in 
skeletal features prompted the optimization of light absorption and utilization to maximize metabolic 
outputs and growth. Recognizing this modular concept of plasticity is important in the face of 
heritability of colony-level traits versus local module-level traits. Animal colonies consisting of many 
modules may remain coherent entities where colony traits have the evolutionary potential to 
respond to natural selection (57). Remarkably, variants may arise locally, and single modules may 
have some evolutionary potential (58). 

Local modular plasticity was accompanied by significant methylome and transcriptome 
modifications. Enhanced resolution with the MethyIT pipeline allowed us to examine meaningful 
associations between a natural phenotype, transcriptome and methylome modifications. Our data 
showed a significant light-mediated change in coral morphology, a phenotypic adjustment that was 
reflected in molecular signatures of changes in growth, including soft tissue growth and 
biomineralization. These observations suggest that symbiotic corals have acquired the capability 
of effecting an epigenomic response that incorporates whole methylome repatterning and is 
associated to changes in coral morphology. This interpretation aligns with previous whole genome 
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views that focused on the function of DNA methylation in phenotypic plasticity (59). The resolution 
allowed us to integrate genome-wide DNA methylation with gene expression datasets into 
meaningful biological networks. Our comprehensive network approach based on interactions from 
correlation matrix networks and gene interaction from curated databases for predicted networks 
offered a powerful approach to identify potential markers of plasticity in the interaction of DMGs 
and DEGs. Annotated genes COL6A5, SPTAN1, PTK7, FGFR1, FBXO30, P4HA2, TNR, NID1, 
ITGAX, ANK3, RCHY1, GBF1, and the transcription factor SHOX, were key regulators identified in 
sub-networks of hub genes in both analyses. These genes are involved in regulation of cell cycle, 
ECM, vesicular trafficking, immune regulation, regulation of transcription and transduction, and 
biomineralization. They represent candidates for further study. 

Our analysis provides evidence of association of genic methylation repatterning with 
programmed changes in phenotype. One interpretation of these outcomes is that dramatic shifts in 
gene expression are accompanied by methylation changes that stabilize local chromatin to help 
reestablish homeostasis. However, environmental changes also induce non-random changes in 
gene body methylation that influence alternative splicing activity to modulate gene expression and 
phenotype (14, 60–62). While our data do not specifically provide information on regulation of gene 
expression, the integration of methylation and transcriptional information makes significant inroads 
in the identification of networks underpinning coral phenotypic plasticity and provides a roadmap 
for studies of other non-model organisms. As methylome repatterning is a signature of chromatin 
reorganization and 3D architecture, integrating datasets enhances the potential to identify essential 
interactions and likely signatures of gene-network coordination that may not be seen in DEG 
datasets alone (63). Our integrated analyses offered the potential to predict phenotype at the gene-
network level and further postulate a light-mediated sequential response triggered by animal-
sensing of initial light stimulus to the change in skeletal morphology (Fig. 6). 
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Materials and Methods 
 

Light exposure conditions 

We first characterized the natural light exposure within colonies of the coral Acropora palmata 
by measuring the incident light on both upperside and underside surfaces of in situ branches (base, 
mid-branch, tips). We estimated the vertical attenuation coefficient (Kd) of the water column and 
retrieved daily irradiance cycles from SAMMO light sensors (Meteorological and Oceanographic 
Monitoring Academic Service at UNAM). Light measurements were taken with a cosine-corrected 
quantum sensor (Diving-PAM, Walz, Germany) previously calibrated against a manufacturer-
calibrated quantum sensor (LI-1400, LI-COR, USA). We identified two daily integrated PAR 
(Photosynthetically Active Radiation) conditions for in situ colonies that we also used for the 
experimental setup: High Light (HL) surfaces represent fragments from upperside surfaces of 
branches exposed to ~20 mol quanta m2 day-1 and Low Light (LL) surfaces represent fragments 
exposed to ~2 mol quanta m2 day-1 (4-10% of upperside exposure). 

Coral sample collection and experimental setup 

To induce phenotypic plasticity, we performed a reciprocal transplant experiment in the reef-
lagoon (30 m from the reef crest) in Puerto Morelos Reef National Park, Mexican Caribbean (Fig 
2A). We sampled 3 colonies (representing 3 distinct multilocus genotypes, or genets, as detected 
with Standard Tools for Acroporid Genotyping STAGdb (64)) from a depth of 2-3 m (permits No. 
SGPA/DGVS/06960/17 and No. SGPA/DGVS/07846/17), each at least 300 m apart. We collected 
~7 cm2 fragments from HL (n= 42) and LL (n = 42) surfaces of branch surfaces keeping track of 
genet identification. We settled them in a reef-deployed PVC structure designed to simulate the 
light condition and colony position of source colonies.  

We placed all coral fragments in their original light condition and orientation (i.e. HL facing up) 
and allowed them to heal and acclimate for 8 weeks (when new growth was observed). 
Subsequently, we randomly divided HL fragments into control and treatment groups, equal 
grouping was done for LL fragments. To induce phenotypic plasticity, coral fragments in treatment 
groups were flipped to the opposite light condition and position (i.e. high light fragments were 
flipped to a low light condition, while LL fragments were flipped to a HL position) (Fig. 2A). This 
second acclimatory period was carried out for 5+ weeks. We estimated maximum excitation 
pressure over Photosystem II (Qm=1 - [(ΔF/Fm’ at noon) / (Fv/Fm at dusk)]) to determine successful 
acclimation to destination light condition (65). We further compared Qm between experimental coral 
fragments (N=84) and in situ colonies (30 colonies, N=30 datapoints from upper and N=30 from 
underside surface of branches) (Fig. S3A). 

Four group conditions were analyzed after 13+ weeks of experiment: HL controls (n= 21), 
HL⇾LL treatments (High Light to Low Light, n = 21) LL controls (n= 21), LL⇾HL treatments (Low 
Light to High Light, n = 21).  

Phenotype data analysis 

Structural traits 

Phenotypic traits were measured based on parameters describing coral morphology and 
physiology after 13+ weeks of experiment (Table 1). (n = 12 per group condition for non-invasive 
techniques, and n=9 per group condition for invasive techniques such as host total protein content, 
chlorophyll a content, and symbiont cell counts) (Fig. S1). Morphological features were described 
by polyp density (number of polyps per area) and by corallite height (mm), defined as the vertical 
distance between the corallite base and the top of the theca. Corallite height was delineated into 
‘height classes’ C1 (0 - 1.5 mm), C2 (>1.5 - 3 mm), and C3 (>3 mm) to further estimate polyp density 
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at each height class. The projected area of each fragment was estimated with photography and 
used to normalize physiological and morphological parameters.  

To describe the structural and optical properties of the tissue we measured reflectance (R) of 
the intact coral tissue as [De675 = log (1/R675)] and estimated absorbance at 675 nm (De675) (66, 
67). In addition, we estimated symbiont density, Chlorophyll (Chl) a and c from each fragment (66–
68). Briefly, tissue extractions were carried out using an air gun and filtered sea water (FSW). 
Slurries obtained from this method were subsequently homogenized at low temperature (Tissue-
Tearor Homogenizer BioSpec Inc, USA) and centrifuged. The resulting pellet was re-suspended in 
filtered seawater and preserved for symbiont cell counts (counted in a hemocytometer after the 
addition of 200 µl of iodine preservation solution), and for Chl concentration (extracted with 
acetone/dimethyl sulfoxide 95:5 vol/vol). Chla and c concentrations (ρ pigment content per 
projected surface area in mg Chl m-2) were estimated spectrophotometrically (3 reads per sample) 
with a modular spectrometer (Flame-T-UV-VIS, Ocean Optics Inc., USA) using the equations 
described by Jeffrey and Humphrey (69).  

Downstream calculations of optical properties were performed integrating the parameters 
detailed above (35, 66). Symbiont density and Chla were normalized to calculate Chla per symbiont 
cell (Ci in pg Chla sym−1). The specific absorption coefficient of Chla (a*Chla), a descriptor of the light 
absorption efficiency of the holobiont, was estimated as [a*Chla=(De675/ρ)·ln(10)] (66). Other 
calculations included the specific absorption coefficient of symbionts in hospite (a*sym), a descriptor 
of the light absorption efficiency of symbionts. The host mass-specific efficiency (a*M), a descriptor 
of the light absorption efficiency per host mass, a descriptor that quantifies the potential benefits 
returned to the host, from the capacity of the symbiosis to collect solar energy. 

Physiological traits 

To estimate metabolic rates, we measured photosynthesis in hospite and estimated derived 
parameters. Photosynthetic responses (Photosynthesis - Quantum Energy curves, PE curves) of 
coral fragments were measured using a laboratory-made water-jacketed respirometer (70). Corals 
were incubated in filtered sea water at a constant temperature (28 °C) and constant water flow 
(generated by continuous agitation from magnetic stirrers). A Light Emitting Diode LED-system was 
designed to enable automation of light increments every 10 minutes. Oxygen evolution was 
measured continuously with a fiber-optic oxygen meter system (FireSting, Pyroscience) and the 
photosynthetic efficiency (α), compensation irradiance (Ec), saturation irradiance (Ek), respiration 
rates (Rd), and maximum photosynthetic rates (Pmax), were calculated from the light-limited and 
light-saturated regions of the PE curves (68, 71). As a downstream calculation, the minimum 
quantum requirement of photosynthesis (𝚽-1O2) was estimated based on the linear regression of 
photosynthetic rates during the light-limited region of PE curves. 𝚽-1O2 is defined in terms of the 
light being absorbed and used to drive photosynthesis or photosynthetic utilizable radiation (PUR). 
The ratio of absorbed light is derived from previous measurements of reflectance [A = 1- R]. 

Similarities in phenotypic traits among the different group conditions and genets were 
analyzed with non-metric multidimensional scaling (NMDS) ordination, plotted via Bray-Curtis 
dissimilarity matrix and 9999 permutations in vegan R-package. Statistical support for the NMDS 
clustering is provided by the permutation-based hypothesis test analysis of similarities (ANOSIM) 
for experimental groups and for genets. 

Coral tissue sampling and nucleic acid extraction 

After 13+ weeks of experiment (Table 1), coral tissue from each fragment (n = 12 per group 
condition) was split into two samples and preserved, both in 95% ethanol and RNAlater (Ambion, 
Life Technology) and stored at -80 ºC until processing. 

Genomic DNA (gDNA) was extracted from 32 A. palmata fragments (n= 8 per group condition; 
16 fragments per genet). We used the DNeasy Blood and Tissue Kit (Qiagen, Switzerland), as per 
the manufacturer’s protocol. gDNA concentration was quantified at 0.5-1.5 μg (Qubit® dsDNA BR 
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Assay Kit on a Qubit® 2.0. Fluorometer) and sent for Whole Genome Bisulfite Sequencing (WGBS) 
at Admera Health (New Jersey, USA). 

Total RNA was extracted from the same 32 A. palmata fragments used in WGBS as previously 
noted. The tissue from each fragment was homogenized in TRIzol reagent (Ambion, Life 
Technology) before centrifugation with chloroform for 15 minutes at 12,000 x g at 4 ºC. The 
aqueous phase was then isolated and cleaned using Qiagen RNeasy Mini kit (Qiagen), as per the 
manufacturer’s protocol with an additional on-column DNase treatment using RNase-Free DNase 
Set (Qiagen). To maximize concentration of eluted RNA, the same 35 µl of RNAse-free water was 
twice passed through the spin column for the final isolation step. Concentration and purity (A260/280) 
were analyzed via NanoDrop ND-1000 spectrometer and quality assessed (RIN > 7) with Agilent 
2100 Bioanalyzer (Agilent Technologies). Total RNA was sent to Admera Health (New Jersey, 
USA) where concentration and purity was re-analyzed (Qubit® dsDNA BR Assay Kit on a Qubit® 
2.0. Fluorometer). 

Methylome sequencing and data processing 

Sequencing libraries were prepared with an average sequencing library insert size of 450 bp 
and according to TruSeq® DNA Methylation Kit protocol, Sample Preparation Guide (Illumina Inc., 
USA). Briefly, standard reaction mix consisting of 130 µl of the CT Conversion Reagent and 20 µl 
of each DNA sample were used for bisulfite conversion (EZ DNA Methylation-Gold™ Kit) in a 
thermal cycler (Eppendorf® Mastercycler® Pro S). After the incubation period, bisulfite converted 
DNA was purified following the protocol of EZ DNA Methylation-Gold™ Kit. The bisulfite converted 
sequencing library was enriched following the TruSeq® DNA Methylation Kit protocol. Libraries 
were validated and quantified with qPCR. Sequencing was performed in Illumina Hi-Seq platform 
with pair-end reads of 2x150 and a mean depth coverage of 30x (Illumina Inc., USA). The estimated 
number of passed filter reads per sample was 110-120 million paired-end reads (55-60M reads in 
each direction).  

The expected bisulfate conversion efficiency for this method is >99%. While Lambda DNA 
was not spiked-in to estimate non-conversion and mis-sequencing rate, we can assume that only 
CpG methylation context occurs in corals (27, 72), hence, non-CpG methylation should be close to 
zero. We detected an average of 13.96% (SE=0.07) methylation in CpG context and an insignificant 
0.54% (SE = 0.01) in non-CpG contexts (CHG and CHH, where H is A, T, or C), which resulted in 
an inferred bisulfite conversion efficiency of ~99.5%. 

Data processing. Methylation analysis was performed using Bismark 020.0 (Krueger and 
Andrews, 2011). Briefly (Fig. S2), FASTQ files were quality-filtered, and adapter sequences 
trimmed using Trim Galore 0.5.0 (Krueger, 2018). A bisulfite-converted reference genome file was 
generated using Bismark-Bowtie2 algorithm, and the epigenome library sequenced data was 
aligned to the Acropora palmata genome (JAOVVL01). Methylation information was then extracted 
from the output SAM files and resulting genome tracks were used for the visualization and reporting 
of downstream differential methylation calculations. Methylated and unmethylated read counts for 
all cytosines across the genome in the CG, CHG, and CHH context were obtained from census 
files. 

The approach used for downstream analysis was based on the identification of Differentially 
Methylated Positions (DMPs) and Differentially Methylated Genes (DMGs) using R package 
Methyl-IT 0.3.1.2 (19, 21, 41) (Fig. S2). Briefly, methylation count (COV) files were read into R to 
calculate Hellinger Divergence (HD, a variable used to measure methylation level divergence) by 
using the pool of methylation counts for control samples as reference. Potential DMPs (pDMPs) 
were estimated based on critical values of 𝐻𝐷a!"."$	 for each sample from the best fitted probability 
distribution model; in this case, a 3-parameter gamma distribution model. Final DMPs were 
estimated from the set of pDMPs by calculating the optimal cutoff threshold for HD based on 
Youden index. Generalized linear regression analysis (generalized linear model, GLM) was applied 
to test the difference between group DMP counts (among control and treatment groups; HL vs 
HL⇾LL, LL vs LL⇾HL) for selected genomic features. The fitting algorithm approaches provided 

https://www.ncbi.nlm.nih.gov/nuccore/JAOVVL000000000.1/
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by glm and glm.nb functions from the R packages stat and MASS were used for Poisson (PR), 
Quasi-Poisson (QPR) and Negative Binomial (NBR) models with logarithmic link. The ‘countTest2’ 
function in Methyl-IT was used to implement the selected model. The following parameters were 
applied to identify significant DMGs (41): 1) the minimum DMP count per bp on gene-body: 
CountPerBp = 2.5; 2) a minimum count per sample (on average) in at least 5 DMPs in one group: 
minCountPerIndv = 5; 3) a maximum coefficient of variance for each group: maxGrpCV = 1, 4)  
minimum value of the logarithm of fold-changes: Minlog2FC ≤ 1; 5) p-value cutoff: pvalCutOff = 
0.01, 6) p-value adjustment was performed by Benjamini & Hochberg method: pAdjustMethod = 
“BH”. Parameters 1 to 3 are addressed to prevent spurious DMGs, which cannot be rejected by the 
generalized linear regression algorithms.  

Genes overcoming constraints 1 to 5 and displaying significant difference between control 
and treatment comparison according to likelihood ratio test (LRT) derived by the anova function 
from stats packages were identified as DMGs (Fig. S2). A detailed description of how to define and 
compute DMPs and potential DMGs is included in the Methyl-IT vignettes and the package manual, 
available at https://github.com/genomaths/MethylIT. Acropora palmata genome annotation file 
Apalm_assembly_v2.0_180910.gff3 was used to annotate genome features. 

Methyl-IT downstream analysis (Methyl-IT.utils). A Hierarchical clustering (HC) was 
performed to provide an initial estimation of the number of possible groups and information on their 
members. The effectivity of HC depends on the experimental dataset, the metric used, and the 
glomeration algorithm applied. Ward’s agglomeration algorithm was used as it performs much 
better on biological experimental datasets than the other of the available algorithms (e.g. UPGMA, 
UPGMC).  

RNA sequencing and data processing 

RNA libraries for 2x150bp paired-end sequencing were prepared using the NEBNext Ultra 
II Nondirectional Library Prep Kit with polyA selection (New England Biolabs, Inc.). Samples were 
run on one plate of the Illumina NovaSeq platform. Illumina universal adapters and reads below 
PHRED of 22 were trimmed using Cutadapt(73). Filtered reads were mapped to the Acropora 
palmata genome (JAOVVL01) using the RNA-seq aligner STAR (2.5.3a) with read count data 
generated by the –quantMode GeneCount parameter. Reads were verified using the generated 
BAM files for input into htseq-count. 

Differential gene expression analysis. Gene count normalization and differential 
expression analysis was performed using DESeq2 3.12.0. Significant Differentially Expressed 
Genes (DEGs) were determined via pairwise comparison among control and treatment groups (HL 
vs HL⇾LL, LL vs LL⇾HL) and genet, with a false discovery rate-adjusted P value (FDR) of < 0.05 
(Fig. S2). 

Network-associated responses 

A network provides a collection of nodes and edges that represent our system of elements 
(genes) interacting or regulating each other (42). Based on available data, we chose gene-gene 
interaction networks (predicted protein-protein interaction networks), as they are undirected, and 
the graph is non-sequential (X affects Y, but we do not know how) (74). A key feature for the 
biological interpretation of graph properties are hubs. Small-degree nodes (with small number of 
interactions) are the most abundant, but high-degree nodes or hubs, although less frequent, have 
a much higher number of interactions (75). In this context, the likelihood that a gene is essential 
correlates with the number of interactions, and random node disruption will not lead to major losses 
of connectivity. In contrast, the loss of hubs will cause a major breakdown of the network (42, 76, 
77). 

Agnostic biological network analysis: Network-based integration of DMG and DEG 
datasets (Fig. S2).  

https://github.com/genomaths/MethylIT
https://www.ncbi.nlm.nih.gov/nuccore/JAOVVL000000000.1/
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To understand the interaction between the change in methylomes (n = 32) and transcriptomes 
(n = 32), and how genes contributed to the change in phenotype, we performed a Weighted Gene 
Correlation Network Analysis (WGCNA 1.71) (43). We generated a dataset (gene list) comprising 
the subsets of 1) all DMGs (from Methyl-IT 0.3.1.2) and 2) DEGs (from DESeq2 3.12.0) that 
presented at least one DMP (from Methyl-IT 0.3.1.2) after the change in light treatment. This 
dataset included outputs from all groups (HL, HL⇾LL, LL, LL⇾HL) and genets to discover general 
patterns of gene contribution. Additionally, a binary annotation was included to keep track of DMG, 
DEG and both DMG-DEG. As a results, each sample was represented as vector of 3272 
genes/coordinates, where each coordinate was given by the sum of HD at each DMP on the given 
gene. 

We first performed a hierarchical clustering (HC) applying Ward’s agglomeration algorithm to 
provide an initial estimation of the number of possible groups and information on their members. 
Methyl-IT function pcaLDA was used to perform a Principal Component Analysis (PCA) and a PCA 
+ Linear Discriminant Analysis (LDA). Unlike hierarchical clustering (HC) and PCA, LDA is a 
supervised machine learning approach, therefore, we must provide a prior classification of the 
samples, which can be derived, for example, from the HC, or from a previous exploratory analysis 
with PCA. Based on the cumulative proportion of variance, the PC1 and PC2 carried 92% of the 
total sample variance and could split the samples into meaningful groups. We saved the loadings 
from each gene. Loadings are coefficients in linear combination predicting a variable by the 
(standardized) components. The sum of loading squares within each component are the 
eigenvalues (components’ variances), which is 1 for standardized loadings. In other words, 
loadings are “standard deviations” and the square of the loading of gene “A” quantitatively 
expresses the percent of the PC variance carried by gene “A”. PC-scores for each gene indicate 
the discriminatory power in the clustering (control vs treatment) and its genomic/epigenomic 
contribution (in terms of proportion of the whole phenotypic variance) to the change in phenotype. 

Genes PC-scores (gene-score) from 14 PCs were then used to build the pairwise correlation 
matrix for the WGCNA. Kendal's tau correlation was selected since it is better at detecting nonlinear 
behaviors and is more conservative than Pearson’s correlation. The resulting weighted correlation 
matrix was then constructed as a network in the R-package WGCNA (43) and exported as edge 
list (interactions with weights) and node list files with assigned modules into Cytoscape 3.8.2 for 
visualization. Each entity of the dataset is a (gene) node, and 2 nodes are connected if their 
correlation or distance reach a threshold (here set to 0.4). Network topology included gene 
discriminatory power (gene-scores) and a measure of how similarly they contributed to this 
classification (weight from correlation). The correlation network was analyzed and visualized in 
Cytoscape 3.8.2 (19). 

Predicted biological networks: network-associated responses from DMGs (Fig. S2). To 
identify the biological meaning of potential relationships among DMGs we inferred gene interaction 
networks from stringApp in Cytoscape 3.8.2. The associations in the string database provides 
known and predicted protein−protein associations data for many organisms, including both physical 
interactions and functional associations, by integrating available experimental data and pathways 
from curated databases (44, 45). We used only our detected DMGs (without network expansion) 
as input in string protein query (Swiss-Prot hit name) to retrieve an arbitrary long list of nodes and 
interactions. This approach is generally used to retrieve string networks from proteomics and 
transcriptomics studies (44, 45) . 

The best hit for baseline networks was reached with string query for Homo sapiens. We 
recognize that cross-species knowledge transfer is quite challenging because the phylum cnidaria 
diverged from Bilateria 550 million years ago and may have fundamentally different genetic 
architectures. Also, as species diverge, protein functions change and are re-purposed through 
divergent and convergent evolution, and genetic interactions are often rewired (78). Parallel to this, 
in network-based approaches most predicted interactions for each species are not experimentally 
verified. Despite these limitations, the best hit in string query was still Homo sapiens, perhaps, due 
to the presence of conserved stress response, conserved pathways (e.g. extrinsic and intrinsic 
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apoptotic pathways, ion trafficking system) and (predicted) gene products between early and late 
branching metazoans at the molecular level (48, 53, 79–81). Furthermore, genes that emerged 
from our data and clustering analyses predicted gene interactions associated to coral biological 
processes that aligned well to the measured phenotypes, suggesting our analytical approach was 
plausible. 

The retrieved baseline network was then analysed statistically incorporating extended 
centrality measures from CentiScape 2.2 App (EigenVector of centrality). We chose Eigenvector 
centrality because this attribute ranks nodes by taking into consideration not only the number of 
interactions of a node (degree), but also, the centrality of the interactions that it is connected to. In 
other words, a node is important if it is interacting with other important nodes. The output dataset 
generated from Methyl-IT 0.3.1.2 was imported into this network to assign node attributes. 

To identify hub genes, we assigned methylation signal and Eigenvector of centrality as 
attributes to the nodes (19). In networks, a protein with a very high Eigenvector is a protein 
interacting with several important proteins (regulating them or being regulated by them), thus 
suggesting a central super-regulatory role or a critical target of a regulatory pathway. We used 
Eigenvector as parameter to perform k-means clustering algorithm (clusterMakerApp in Cytoscape 
3.8.2.) (19) to identify clusters of hub genes. To identify over-represented functions in the large set 
of DMGs, we performed Network Enrichment Analysis (NEA). Enriched terms were retrieved as 
UniProt KnowledgeBase (kw) categories in String Enrichment App in Cytoscape 3.8.2 (19). 

Predicted biological networks: Network-associated responses from DEGs. To identify 
the biological meaning of potential relationships among DEGs we inferred gene interaction 
networks from stringApp in Cytoscape 3.8.2 with the same workflow as for DMGs interaction 
networks. The output dataset generated in DESeq2 3.12.0 was imported to this baseline network 
to assign gene regulation (up-regulated or down-regulated) as a node attribute. 

Predicted biological networks: Network-based integration of DMG and DEG datasets.  

To further explore the association between DMGs and DEGs, we integrated DEGs to DMGs 
network data sets. The integration was done at the cluster level (after clusterMakerApp 
independent analyses) with the criteria that a DEG-cluster be selected if it contained at least one 
gene also identified as DMG. The output datasets generated from Methyl-IT 0.3.1.2 and DESeq2 
3.12.0 were imported to this baseline network to assign node attributes. With this approach we 
were able to enhance networks by adding new attributes to the nodes: DMG, DEG, both DMG-
DEG. We maintained the attributes Eigenvector of centrality, methylation signal (from Methyl-IT 
0.3.1.2), and gene regulation (upregulated or downregulated from DESeq2 3.12.0). A new 
clustering was performed based of Eigenvector of centrality ranks and 1st, 2nd and 3rd neighbours 
of high ranked nodes. To identify over-represented functions in the DMGs-DEGs integrated 
clusters, we performed a Network Enrichment Analysis (NEA) to each new cluster. Enriched terms 
were retrieved as UniProt KnowledgeBase categories (kw) in String Enrichment App (19). Because 
key coral biological processes emerged from the new clustering, we further explored potential key 
regulators and candidate genes involved in light-mediated phenotypic plasticity of structural traits 
in corals. 
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Figures and Tables 
 

 
Figure 1. Phenotypic plasticity of Acropora palmata in response to light availability. (A) 

A. palmata colonies have a strong intracolonial light gradient. The branching morphology exhibits 
modules (polyps) exposed to direct sunlight (HL surfaces) and modules growing in the shade (LL 
surfaces). (B) Morphological skeletal features of the branch cross-section showing the transition 
from upperside to underside of the branch. (C) HL surfaces and (D) LL surfaces show distinct 
skeletal morphology, (E) with corallites significantly taller in the surface exposed to HL. (F-N) 
Phenotypic traits of HL (n= 21) and LL surfaces (n=21) from 3 genets. Center lines show the median 
and center squares the mean; box limits indicate the 25th and 75th percentiles; whiskers extend 1 
time the interquartile range. For all panels, ***P <0.001; **P <0.01; *P<0.05; nsP >0.05, two-tailed, 
unpaired Student’s t test. (F) Polyp density (# polyps cm-2), (G) Density of corallites larger than 3 
mm in height (# polyps cm-2), (H) soluble host protein (mg protein cm-2), (I) symbiont density (# sym 
cm-2), (J) Chla per symbiont cell (Ci, pg Chla sym−1), (K) Chla density (mg Chla m-2), (L) 
photosynthetic efficiency (µmol O2 µmol quanta), (M) respiration rate (µmol O2 m-2 s-1), (N) 
maximum photosynthetic rate (µmol O2 m-2 s-1). 
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Figure 2. Induced phenotypic plasticity with reciprocal transplants. (A) Schematic 
representation of the experimental design. Control fragments from HL (n=7 per genet) and LL (n=7 
per genet) remained unchanged, while treatment fragments (HL⇾LL, n=7 per genet; LL⇾HL, n=7 
per genet) were manipulated in a reciprocal transplant that altered their light exposure by ~80%. 
After 13 weeks, light phenotypes were described, and tissue was collected for genomic and 
epigenomic analyses. (B) Fold change of main phenotypic traits showing the acclimatory 
mechanism to the destination light condition. (C) Visual inspection of one genet after 5+ weeks 
showing the change in corallite height and density. (D-E) Changes in optical traits based on specific 
absorption coefficients, a*Chla which describes the holobiont’s efficiency to absorb light and a*sym , 
which describes in hospite light absorption efficiency of the algal symbionts. 
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Figure 3. DNA Methylation context and light-mediated methylome repatterning. (A) 
Proportion of methylated cytosines (n = 8 per group condition) where highest in the CpG context 
and insignificant in CHG, and CHH contexts. Pie charts show the number of Cytosines (x 106) in 
each context. (B) Mean methylation levels of all cytosines were highest at genic regions; 2kb 
upstream of Transcription Start Site (TSS), and 2kb downstream of Transcription End Site (TES) 
are shown. Methylation levels were computed, divided to 60 bins, and plotted by genet and group 
condition. (C) Number of DMPs per group conditions identified by Methyl-IT, with centroid of control 
groups used as reference. DMPs were always higher in treatments than control samples. Two A. 
palmata genets are shown for comparison. (D) Hierarchical clustering of DMPs in genic regions 
classified by Hellinger Divergence. Classification of samples separated control (purple) and 
treatment (red) samples regardless of genet or destination light treatment.  
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Figure 4. Methylomes-transcriptomes-derived agnostic network, analysis with WGCNA. The 
data was prepared by combining DMG and DEG datasets to one large dataset. To estimate the 
initial number of possible groups we performed a (A) hierarchical clustering (Ward’s agglomeration 
algorithm), which showed a classification of samples separating controls (purple) and treatments 
(red) groups regardless of genet or destination light treatment. PCA (PC1 and PC2 carried 92% of 
the total sample variance) and a linear discriminant analysis (Fig. S7) were further performed to 
assign gene discriminatory power from PC-scores (gene-score) and build the pairwise correlation 
matrix (Kendal's tau correlation). The network was constructed in WGCNA 1.71, with module 
visualization and statistical analysis in Cytoscape 3.8.2. (B) Whole network of gene-gene 
interactions. (C) Type I subnetwork showing genes with strongest gene-gene interactions (edges 
with strongest weights from correlation but low gene-score), denotating genes that have similar 
contribution to the change in phenotype (n = 199 genes). (D, E) Type II subnetworks of hub genes 
showing strong interactions and loadings (highest gene-scores), denotes hub genes with strongest 
contribution to the change in phenotype (discriminatory power of treatments from controls). (F-H) 
Top 10-20 genes based on gene-score in each subnetwork. The colored line between genes 
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represents weight values from correlation matrix, low weight values (yellow) to high weight values 
(purple), node color indicates if DMG (yellow), both DMG-DEG (blue), DEG (grey).  
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Figure 5. Predicted network-associated responses from DMGs and DEGs. Main subnetworks 
of hub genes retrieved from integration of DMGs and DEGs. (A) photoreception-phototransduction 
(network from StringApp without attributes: https://version11.string-
db.org/cgi/network.pl?networkId=sqcU0gyKux2Y). (B) ECM-proteins, cell-cell adhesion and EGF-
domains associated with soft tissue growth and calcification (network from StringApp without 
attributes: https://version11.string-db.org/cgi/network.pl?networkId=8RQKxPbg9zzZ). (C) 
Vesicle/vacuole mediated transport, Ca2+ metabolism and cytoskeletal protein binding associated 
with symbiont trafficking (network from StringApp without attributes: https://version11.string-
db.org/cgi/network.pl?networkId =Cefq2PjoZN5R). (D) Innate immune response associated to 
interpartner recognition (network from StringApp without attributes: https://version11.string-
db.org/cgi/network.pl?networkId= pZerNp9HZxM0). Larger nodes indicate key regulators or a 
critical target of a regulatory pathway. The line between genes represents interactions. Node color 
indicates if DMG (yellow), both DMG-DEG (blue), DEG (grey). Font size represents methylation 
(signal density variation from Methyl-IT) and font color up (red) - down (blue) regulation. Genet 1 
LL to HL are shown for interpretation.  

https://version11.string-db.org/cgi/network.pl?networkId=sqcU0gyKux2Y
https://version11.string-db.org/cgi/network.pl?networkId=sqcU0gyKux2Y
https://version11.string-db.org/cgi/network.pl?networkId=8RQKxPbg9zzZ
https://version11.string-db.org/cgi/network.pl?networkId%20=Cefq2PjoZN5R
https://version11.string-db.org/cgi/network.pl?networkId%20=Cefq2PjoZN5R
https://version11.string-db.org/cgi/network.pl?networkId=%20pZerNp9HZxM0
https://version11.string-db.org/cgi/network.pl?networkId=%20pZerNp9HZxM0
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Figure 6. Predicted model for light-mediated phenotypic plasticity of structural traits in the 
branching coral Acropora palmata based on key regulators from DMGs-DEGs integrated 
networks. A significant change in the light environment activates photoreception mechanisms to 
detect cues and transduce information within cells (symbionts, cytoskeleton, extra cellular matrix-
ECM, and nucleus-Nu are labeled). This activates signaling pathways to control growth, both soft 
tissue and skeletal growth; and in parallel, to initiate cellular transport related to symbiont 
recognition and changes in symbiont population densities (network from StringApp without 
attributes: https://version11.string-db.org/cgi/network.pl?networkId=uh6Y1lbNXqJR).  

https://version11.string-db.org/cgi/network.pl?networkId=uh6Y1lbNXqJR
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Table 1. Table of terms, definitions, and units for the structural, optical, and photosynthetic 
parameters used to describe phenotypes. 

Traits Parameters Units 

Structural 

Corallite density at height class: 
C1: 0 - 1.5 mm height,  
C2: >1.5 - 3 mm height,  
C3: >3 mm height 

 
# CH1-corallites cm-2 
# CH2-corallites cm-2 
# CH3-corallites cm-2 

Total polyp density # corallites cm-2 
Soluble host protein per projected area mg protein cm-2 
Chla density per projected area mg Chla m-2 
Algal density per projected area #sym cm-2 
Chla per algal cell (Ci) pg Chla sym−1 

Optical 

Host mass-specific absorption efficiency (a*M) cm2 mg protein-1 
Light absorption efficiency of symbionts in hospite (a*Sym) m2 sym−1 
Light absorption efficiency of the holobiont (a*Chla) m2 mg Chla−1 
Estimated Absorbance (De 675 nm) Dimensionless 

Physiological 

Photosynthetic efficiency (𝛂) µmol O2 µmol quanta 
Minimum Quantum Requirement (𝚽-1O2) mol photons mol-1O2 
Maximum gross photosynthetic rate per area (Pmax) µmol O2 m-2 s-1 
Saturation irradiance (Ek) µmol quanta m-2 s-1 
Compensation irradiance (Ec) µmol quanta m-2 s-1 
Post-illumination respiration rate (RL) µmol O2 m-2 s-1 
Pressure over Photosystem II (Qm) Dimensionless 

 
 
 


