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 30 
Abstract 31 

Acclimation through phenotypic plasticity represents a more rapid response to environmental change than 32 

adaptation and is vital to optimize organisms’ performance in different conditions. Generally, animals are 33 

less phenotypically plastic than plants, but reef-building corals exhibit plant properties. They are light-34 

dependent with a sessile and modular construction that facilitates rapid morphological changes within their 35 

lifetime. We induced phenotypic changes by altering light exposure in a reciprocal transplant experiment 36 

and found that coral plasticity is a colony trait emerging from comprehensive morphological and 37 

physiological changes at the local level. Plasticity in skeletal features optimized coral light harvesting and 38 

utilization and paralleled with significant methylome and transcriptome modifications. Network-associated 39 

responses resulted in the identification of hub genes and clusters associated to the change in phenotype: 40 

inter-partner recognition and phagocytosis, soft tissue growth and biomineralization. Furthermore, we 41 

identified hub genes putatively involved in animal photoreception-phototransduction. These findings 42 

fundamentally alter our understanding of how cnidarian invertebrates repattern the methylome and adjust 43 

a phenotype, revealing an important role of light sensing by the coral animal to optimize photosynthetic 44 

performance of the symbionts. 45 

Significance Statement 46 

Stony corals shape the benthic topography of the ocean by the net accumulation of calcium carbonate, 47 

engineering biodiversity hotspots that provide food security, livelihood opportunities, and protection from 48 

coastal erosion worldwide. Corals optimize growth through morphological plasticity, however, genomic 49 

and epigenomic underpinnings of such plasticity are largely unknown. We applied comprehensive 50 

biometrics, machine learning to identify divergent methylation, and methylome-transcriptome-derived 51 

network analyses. We revealed an extraordinary number of hub genes likely to be integral to morphologic 52 

plasticity. Accordingly, DNA methylation may represent an important mechanism facilitating the evolution 53 

of the biomineralization process. The integration of methylation and transcriptional information makes 54 
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significant inroads in the identification of networks underpinning phenotypic changes and provides a 55 

roadmap for studies of non-model organisms.   56 
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Main Text 57 

Introduction 58 

The modification of an organism’s physical features (phenotype) through development and growth 59 

is affected by the interaction of gene expression (genotype) with environmental cues. This capacity for 60 

phenotypic plasticity allows organisms to optimize their physiological performance under different 61 

environmental conditions (Chevin et al., 2010; Nicotra et al., 2010; Torda et al., 2017). While most organisms 62 

exhibit some degree of plasticity, the sessile condition of plants prevents movement to new environments if 63 

conditions become unfavorable. Consequently, they have evolved broad plasticity in their physical 64 

characteristics, such as leaf size or shape, root architecture or reproductive behaviors, to cope with 65 

changing environments and maintain optimal light harvesting (Borges, 2008). Animals generally exhibit far 66 

less plasticity than plants; except for reef-building corals. With similar life-histories to plants, their colonies 67 

display high levels of morphological plasticity.  68 

Corals are modular, sessile organisms responsible for the net accumulation of calcium carbonate 69 

in coral reefs. The power to calcify is the result of animals acquiring photosynthetically-fixed carbon through 70 

an obligate symbiosis with dinoflagellates (or microalgae) (family Symbiodiniaceae) (Falkowski et al., 1984; 71 

Gattuso et al., 1999; LaJeunesse et al., 2018; Trench, 1993). This means that corals, much like plants, 72 

make their living from light capture. The metabolic integration is such that coral skeletons evolved to be 73 

efficient light collectors (Enríquez et al., 2017) with skeletal morphology adjusted in response to depth-74 

dependent light availability (Malik et al., 2021). It is, therefore, not surprising that corals exhibit molecular 75 

signatures for perceiving and responding rapidly to changes in light availability. 76 

While observed phenotypic plasticity is shaped by the interaction between genomes and 77 

environments, the role of epigenomes in this plasticity has captivated the interest of biologists. Phenotypic 78 

adjustments induced by environmental cues and gene expression may be influenced by chromatin factors 79 

like DNA cytosine methylation, a dynamic feature of many eukaryotic genomes, including plants, animals, 80 

and fungi. DNA methylation is a process where methyl groups are added to cytosine bases of the DNA 81 

molecule and, in association with histone modifications, modify chromatin conformation (Buitrago et al., 82 
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2021; Hashimshony et al., 2003). High-density methylation within promoter regions can silence genes, 83 

whereas lower-density intragenic methylation repatterning can influence alternative splicing activity, leading 84 

to changes in an organism's phenotype (Bossdorf et al., 2010; Lev Maor et al., 2015). This is a reversible 85 

process influenced by environmental conditions, hence allowing phenotypic plasticity to occur (Verhoeven 86 

et al., 2010, 2016). Moreover, methylation repatterning accompanies chromatin response to environmental 87 

changes without altering the DNA sequence and with the potential for heritable transmission. The 88 

repatterning is generally associated with other epigenetic effects such as histone modifications and changes 89 

in noncoding RNA. These methylome modifications can be assayed at single nucleotide resolution, 90 

providing the robust datasets required for identifying responsive underlying gene networks that could explain 91 

phenotypic adjustments (Hafner & Mackenzie, 2023; Kundariya et al., 2022; Sanchez et al., 2019; Sanchez 92 

& Mackenzie, 2016a, 2020; Yang & Mackenzie, 2020). 93 

DNA methylation is evolutionarily ancient; however, its distribution and functions are diverse, 94 

debatable, or unknown among taxa. In plants, phenotypic plasticity and its heritability has been associated 95 

with changes in DNA methylation patterns (Verhoeven et al., 2010, 2016), but the functional significance in 96 

coral phenotypic plasticity is still tenuous. Several studies have associated coral DNA methylation with 97 

plasticity (Dimond et al., 2017; Dimond & Roberts, 2016; Dixon et al., 2018; Durante et al., 2019; Liew et 98 

al., 2018a; Putnam et al., 2016; Roberts & Gavery, 2012; Rodríguez-Casariego et al., 2020), with whole-99 

genome bisulfite sequencing (WGBS) contributing to single base-pair resolution (Liew et al., 2018a). 100 

However, WGBS data analysis can be challenging due to the highly dynamic features of methylome 101 

datasets. This stochasticity has complicated discrimination of treatment-associated signal from natural 102 

background variation, and the understanding of treatment-associated phenotypic adjustments with 103 

methylome modifications (Hafner & Mackenzie, 2023; Yang & Mackenzie, 2020). As advances in 104 

computational biology demonstrate the effect of single cytosine changes in phenotypic responses, novel 105 

methods have been addressing challenges in conventional methodologies (Hafner & Mackenzie, 2023; 106 

Kundariya et al., 2022; Sanchez et al., 2019; Sanchez & Mackenzie, 2016a, 2020; Yang & Mackenzie, 107 

2020). One approach to discriminate treatment-associated differential methylation is to incorporate signal 108 

detection and machine learning (Hafner & Mackenzie, 2023; Kundariya et al., 2022; Sanchez et al., 2019; 109 
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Sanchez & Mackenzie, 2016a, 2016b) with MethyIT (R package Methyl-IT 0.3.1.2, (Sanchez et al., 2019)). 110 

The approach treats methylation data as probability distributions, permitting variation within multiple control 111 

samples to be subtracted from the treatment datasets to discriminate treatment-specific variation. Machine 112 

learning then permits validation of treatment association with over 98% confidence. Further validation of this 113 

approach is accomplished, in models like Arabidopsis, with incorporation of mutations in the RNA-directed 114 

DNA methylation pathway (Kundariya et al., 2022). However, the approach is especially valuable in non-115 

model systems where changes cannot be confirmed with targeted mutation(s). The association between 116 

phenotype change and treatment-associated methylome modification is informative in understanding the 117 

underlying molecular features of the phenotypic change by directly identifying responsive gene networks 118 

(Hafner & Mackenzie, 2023; Kundariya et al., 2022; Sanchez et al., 2019; Sanchez & Mackenzie, 2016a, 119 

2016b). 120 

To examine the phenotype to methylome association, we conducted a reciprocal transplant 121 

experiment to induce light-mediated phenotypic responses in the reef-building Elkhorn coral Acropora 122 

palmata and investigated DNA methylation and transcriptional responses potentially responsible for 123 

plasticity. Extensive biometrics revealed not only changes in coral tissue pigmentation and metabolic rates 124 

but also in skeletal morphology after five weeks. This skeletal remodeling was accompanied by intragenic 125 

methylome repatterning, discovered by signal detection with machine learning-based analysis. We further 126 

integrated differentially methylated (DMG) and expressed (DEG) gene datasets to elucidate how light 127 

responses integrate into gene regulatory networks controlling functional traits. By exploring the resulting 128 

hub genes and gene clusters, we were able to predict functional associations with observed phenotype 129 

changes and identify markers of plasticity in reef-building corals. Moreover, our results contribute to 130 

emerging evidence that epigenetics contribute to the machinery that can alter DNA structure during skeletal 131 

remodeling in metazoans. 132 

Results and Discussion 133 

Corals exploit intra-colonial environmental differences through plasticity 134 
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The branching coral Acropora palmata is the dominant reef-builder on shallow, wave-exposed 135 

Caribbean reefs. Colonies exhibit tree-like morphologies with strong intra-colonial light gradients ranging 136 

from 3 to 100% of sub-superficial irradiance (Es). In our experiment, we quantified intra-colonial phenotypic 137 

plasticity by measuring traits from High Light (HL) surfaces (fragments from upperside surfaces of branches, 138 

n = 12) exposed to 70% of Es and Low Light (LL) surfaces (fragments from underside surfaces of branches, 139 

n =12) exposed to 3-7% of Es (Fig. 1A, Table 1). Structural, optical, and physiological traits of HL and LL 140 

fragments releveled two distinct phenotypes. HL phenotypes had significantly greater total polyp density 141 

(Fig. 1F), density of taller corallites (Fig. 1G), total host protein (Fig. 1H) and algal density (Fig 1I). Surfaces 142 

with taller corallites can favor the formation of internal light gradients, increase levels of pigment self-143 

shading, and reduce the proportion of polyp-surface exposed to the external high-light levels (Enríquez et 144 

al., 2017; Ow & Todd, 2010). In contrast, LL phenotypes showed a small number of short corallites that can 145 

facilitate the lateral spread of light. 146 

We expected these differences in skeletal features to affect how corals collect and utilize light for colony 147 

growth. To disentangle this, we used algal symbiont density, chlorophyll a (chla), host soluble proteins, and 148 

in vivo light absorption of the intact coral tissue (Table S1) to describe light absorption efficiency of HL and 149 

LL phenotypes. We estimated three optical traits: a*Chla (m2 mg Chla−1), which describes the holobiont’s 150 

efficiency to absorb light (Enríquez et al., 2005a), a*sym (m2 sym−1) that describes in hospite light absorption 151 

efficiency of the algal symbionts, and a*M (cm2 mg protein−1 ) indicative of the potential return for the host 152 

(mass) of the energy absorbed (Falkowski et al., 1985; Scheufen et al., 2017) (Table S1). We detected less 153 

algal cell densities (Fig. 1I) but more chla per cell in LL phenotypes (Fig. 1J), and opposite traits in HL 154 

phenotypes. This resulted in equal chla concentration in both HL and LL phenotypes (Fig 1K). These 155 

findings contradict the assumption that more light always induces lower pigmentation in multicellular 156 

photosynthetic organisms and confirms the ability of coral skeletal features to rewire the algal light 157 

environment. Conversely, a*Chla showed that both phenotypes of the coral colony are equally efficient in 158 

absorbing light (Table S1), a response reached by adjusting skeletal features. 159 
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A. palmata exploits a wide range of light environments without changing its symbiont species 160 

(Symbiodinium ‘fitti’), (Baums et al., 2014) in contrast to other reef-building corals (Kemp et al., 2015). 161 

Instead, A. palmata colonies fine-tune structural traits; algal density, chla density, and skeletal morphology 162 

(Fig. 1). This mechanism minimizes “pigment packing” in underside surfaces in response to LL conditions, 163 

resulting in light collectors as efficient as those of HL surfaces. Although photosynthesis is more active on 164 

upper side surfaces (Fig. 1N), the ratio of photosynthesis/respiration (P/R = 3), photosynthetic efficiency 165 

(Fig. 1L) and minimum quantum requirement (Table S1) were similar in both sides of branches. These 166 

observations further highlight the ability of A. palmata to optimize light absorption and utilization through 167 

plasticity as a central strategy to exploit the strong intra-colonial light gradient and maximize colony 168 

productivity for growth. 169 

Induced morphological plasticity with reciprocal transplants 170 

A. palmata frequently reproduce asexually via branch fragmentation, a result of physical disturbance 171 

(i.e. waves and storms) (Baums et al., 2006). Branches are often turned upside down when they land on the 172 

benthos. Fragmentation thus induces strong and rapid changes in light regimes, where survival is dependent 173 

on their successful acclimatization to the new light conditions. Presumably, upper and underside branch 174 

surfaces interchange phenotypes through acclimation to new light regimes. We took advantage of this life 175 

history trait to induce plasticity by altering light exposure in a reciprocal transplant experiment (see Methods, 176 

Fig. 2A). Coral fragments from three colonies representing three distinct genets (detected with Standard 177 

Tools for Acroporid Genotyping STAGdb (Kitchen et al., 2020)) were manipulated, so that HL phenotypes 178 

(n = 21) and LL phenotypes (n = 21) experienced unchanged light fields, and treated fragments were 179 

switched to the opposite light condition HL⇾LL (High Light to Low Light, n = 21) and LL⇾HL (Low Light to 180 

High Light, n = 21) (Fig. 2A). Within 5 weeks, treated coral fragments significantly adjusted their phenotype. 181 

The acclimation was gradual (tracked by visual inspection), and transplants became increasingly similar in 182 

morphology to coral surfaces of the destination light condition (Fig. 2C, Fig. S4), comparable to what is 183 

observed when coral colonies are transplanted along depth gradients (Malik et al., 2021). Pressure over 184 

photosystem II (Qm), metabolic rates and visual growth indicated that corals acclimated successfully to the 185 
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destination light conditions (Fig. 2B, C, Table S1). Interestingly, a*Chla, the holobiont’s efficiency to absorb 186 

light, indicated that fragments may continue changing pigmentation and skeletal features to fully optimize 187 

performance (Fig. 2D, E). Nonetheless, most significant changes were observed in skeletal features (taller 188 

corallites per area), polyp density and the balance between chla density and symbiont density (Fig. 2, Table 189 

S1). Significant differences were found among the 4 group conditions (R = 0.336, P<0.001, Fig. S5), 190 

suggesting a response driven by light-mediated phenotypes and not the genet (R = 0.188, P> 0.05). 191 

Phenotypic plasticity was induced by altering ~80% of light availability (~18 mol quanta m-2 day-1). 192 

These were drastic changes that are nevertheless commonly experienced by coral species during their life 193 

cycle. Whole colony metabolic performance is optimized by adjustments at the module (polyp) level for 194 

resource acquisition. Similarly, phenotypic plasticity in plants results from a local response (e.g. of shaded 195 

branches) which optimizes light harvesting and utilization for growth (De Kroon et al., 2005). While corals 196 

are colonial animals, and each polyp (module) is akin to an individual organism, a coral’s response to the 197 

light environment should consider the integrated response to local conditions experienced by local modules. 198 

Accordingly, modular plasticity may be one evolving trait under selection, as has been suggested for plants 199 

(De Kroon et al., 2005). 200 

Reading the methylome with Methyl-IT: Light-mediated methylome repatterning 201 

Following induced light-mediated phenotypic plasticity, we investigated DNA methylome response to 202 

coral group conditions (n = 8 per group condition). With WGBS (30X coverage), we documented methylation 203 

of the A. palmata genome. We identified CpG context methylation (~14%) to be higher in the A. palmata 204 

than in any other invertebrate (Liew et al., 2018a; Pelizzola & Ecker, 2011). We detected insignificant levels 205 

of methylation in CHG or CHH context (<0.6%) (H = A, T, or C) (Fig. 3A), and CpG methylation was 206 

prevalent in genic regions (Fig. 3B) as previously reported in other coral species (Dimond & Roberts, 2016; 207 

Dixon et al., 2018; Liew et al., 2018a). 208 

To associate the observed coral phenotypic plasticity with high-resolution DNA methylome variation, 209 

we used a signal detection-machine learning approach (R package Methyl-IT 0.3.1.2) (Sanchez et al., 210 
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2019), designed to discriminate methylation signal induced by environmental variation at individual cytosine 211 

positions (Sanchez et al., 2019; Sanchez & Mackenzie, 2020; Yang et al., 2020). We assessed gene-212 

associated, differentially methylated positions (DMPs) with no regard to methylation density, context, or 213 

directionality (hypo/hypermethylation) (Methods, Fig. 3C). Parallel analysis of DMP variation within control 214 

samples allowed discrimination of treatment-associated DMPs and their classification on the basis of 215 

hierarchical clustering (HC) and principal component analysis (PCA) (Methyl-IT), which enabled an 216 

unbiased view of methylome repatterning (Fig. 3D). There was significant separation of control and 217 

treatment samples, indicating that light-mediated methylome modifications were driving the first two 218 

principal components. Genes with the strongest discriminatory power from PC-scores in PC1 were 219 

associated with cell cycle, extracellular matrix (ECM), regulation of transcription and transduction, and 220 

biomineralization (Table S2). 221 

Agnostic biological network analysis with WGCNA: Network-based integration of DMG and DEG 222 

datasets 223 

Significant coral phenotypic changes and gene-associated methylome repatterning warranted deeper 224 

investigation to uncover functional relationships with gene expression. We first identified DMGs (Methyl-IT 225 

0.3.1.2) based on statistically significant differences in DMP counts from treated corals relative to control 226 

groups (Fig. S2). RNA-sequencing was carried out on the same samples used for WGBS, with DEGs 227 

identified (DESeq2 3.12.0.) via pairwise comparison between control and treatment groups. A total of 32 228 

methylomes and 32 transcriptomes were analyzed with a range of 861 – 2255 DMGs and 1334 – 6479 229 

DEGs detected (Fig. S6). We used a network-based approach to integrate the information, which provided 230 

us with a collection of nodes and edges representing putative gene interactions (Albert, 2005). Since 231 

network-based analyses can be influenced by the available annotation for a given species, we performed a 232 

weighted correlation network analysis of coral gene expression and methylome modification (Fig. S2). To 233 

understand the interaction between the change in methylomes (n = 32) and transcriptomes (n = 32), we 234 

combined DMG and DEG datasets to one large dataset genes/coordinates. Dimensionality was reduced 235 

with HC (Fig. 4A), PCA and a linear discriminant analysis. We assigned gene discriminatory power from 236 
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PC-scores (gene-score) (Fig. S7). The network was built in R-package Weighted Gene Correlation Network 237 

Analysis (WGCNA 1.71) (Langfelder & Horvath, 2008), with visualization and statistical analysis in 238 

Cytoscape 3.8.2 (Sanchez & Mackenzie, 2020). Network’s centrality measures, edge weight, and node PC-239 

scores were included in clustering analyses to identify putative central regulators or hub genes. Hub loci are 240 

critical network components, with loss or mutation predicted to cause breakdown of the network or lethality 241 

to the organism (Albert, 2005; Sanchez & Mackenzie, 2020).  242 

Methylome-transcriptome-derived gene network information revealed an extraordinary number of hub 243 

genes likely to be integral to morphologic plasticity in symbiotic corals. General biological processes 244 

included visual and sensory perception, growth and immunity, including carriers, transporters and receptors. 245 

Two main cluster categories were identified (Fig. 4B). A Type I subnetwork (Fig. 4C) showed genes with 246 

strong gene-gene interaction (edges with strongest correlation weights), denotating genes with similar 247 

contribution to the change in phenotype. The main sub-network under this category was enriched in 248 

Extracellular matrix (ECM) gene products, collagen-like domains, signaling activity, cell-cell adhesion and 249 

EGF-domains, putatively associated with soft tissue growth and biomineralization (R-HSA-2022090, R-250 

HSA-1474244, R-HSA-1474290, R-HSA-2022090, R-HSA-388844, R-HSA-8849932). 139/199 genes in 251 

this subnetwork were found to be differentially methylated, highlighting the influence of methylation to 252 

changes in coral skeletal growth. Interestingly, we observed low gene-score values in this cluster, meaning 253 

that individually each gene carries small proportion of the whole phenotypic variance. Seemingly, these 254 

genes were co-methylated to give rise to a quantitative cumulative effect on phenotypic variation among 255 

treatments, leading to the change in growth pattern, but with low discriminatory power individually. 256 

Subnetworks Type II represented critical genes with the strongest discriminatory power, denoting hub 257 

genes with strongest contribution to the change in phenotype (Fig. 4D, E). Accordingly, we considered these 258 

loci to be strong candidates for biomarker identification. Annotated hub genes included DEGSLC7A2, 259 

DEGSLC22A13, DEGSLC17A6B, DEGPANP, DEGIFI30, DEGTRIM71, DEGMELC2, DEGADAMTS18, DEGCTRC, 260 

DMGHECTD4, DMGLIPK, DEGTNR, DMGC0H691, DMGTRPV6, DEGHSP-16.2, DEGSUSD2, DEGCOL6A5, 261 

DEGBTBD2, DEGCASR DMGGPR133, DMGRABL6, DEGPRSS27, DEGSSTR5, DMGMPDZ, DMGSPTAN1, 262 
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DEGABHD4, DEGCOL12A1, DEGSPDEF, DEGHES4-a, DEGPTK7, DEGASIC3 DEGMFSD6, DEGCOL11A1, 263 

DMGCHMP6, DEGPRDM6, DMGFGFR1, DMGTMPRSS15, DMGTMPRSS11D, DEGB3GAT3. 264 

Predicted biological networks: network-associated responses from DMGs 265 

We further aimed to investigate gene interactions in available experimental data by consulting 266 

pathways from curated databases (Doncheva et al., 2019; Szklarczyk et al., 2017) to identify predicted 267 

networks (see Methods; Fig. S2). With the set of DMGs as input in stringApp (Cytoscape 3.8.2), we built a 268 

baseline network and performed clustering analyses (with network centrality measures). Independent of the 269 

destination light condition and genet, enriched function categories were posttranscriptional protein variants 270 

(kw-0621 polymorphism, kw-0025 alternative splicing, kw-0597 phosphoprotein), cytoskeleton proteins (kw-271 

0206), calcium-dependent proteins (kw-0106 calcium), growth associated proteins (kw-0131 cell cycle, kw-272 

0965 cell-junction), and phagocytosis (kw-0966 cell projection) (Fig. S8). A common feature of main 273 

candidate hub genes (Fig. S8, ATR, PIF1, FANCD, SIRT1) was DNA damage-repair-response (DRR), a 274 

mechanism regulated by chromatin conformation. Chromatin remodeling complexes, at the core of DRR 275 

(Stadler & Richly, 2017), are essential in DNA methylation patterning (Huck-Hui & Bird, 1999). 276 

We used the set of DEGs to run the same network analyses separately (Fig. S9). However, we found 277 

significant lower values of node Eigenvector of centrality (Fig. S10). This limited the identification of hubs 278 

from gene expression data alone.  279 

Predicted biological networks: network-associated responses from DMGs and DEGs. 280 

The identification of key regulators in DMG sub-networks led us to investigate integrated DMG and 281 

DEG networks in available experimental data and pathways from curated databases (Doncheva et al., 2019; 282 

Szklarczyk et al., 2017). We detected sub-networks of hub genes contributing to phenotypic changes and 283 

associated cellular processes, including inter-partner recognition and phagocytosis, regulation of host-284 

symbiont biomass, and calcification (reviewed in (Davy et al., 2012)). Sub-networks aligned with these 285 

processes, independent of the destination light conditions and genet, and generally targeting the same 286 

enriched categories, pathways, or protein families (Fig. 5, Fig. S11-S14). Network topology and node 287 
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hierarchy based on Eigenvector od Centrality suggested a general DMG-DEG interplay targeting key 288 

regulators (hubs) and triggering a cascade of responses, evident when source-sink nodes (Fig. 5A CEP290; 289 

Fig. 5B THBS1, PTK2, SOX9; Fig. 5C RAB1A; Fig 5D ANAPC1) interacted with strongly connected 290 

clusters. 291 

Cells have mechanisms to detect specific environmental signals to transduce and trigger the 292 

appropriate responses. We identified a symbiont-independent photoreception-phototransduction sub-293 

network (Fig. 5A, 51 nodes and 139 edges) potentially involved in animal sensing of a light stimulus (p-294 

Cluster I). Network Enrichment Analysis (NEA) yielded mainly cilium assembly (GO.0060272, 19 enriched 295 

genes, FDR < 0.001). The putative hub gene DMG-DEGSPTAN1 interacted with DMGCEP290 and a 296 

transcriptional non-hub cluster (USH2A, CRB1, EYS, MYO3A) involved in phototransduction-reception. 297 

Interestingly, this sub-network further interacted with growth and calcification sub-networks (Fig. 5B). 298 

Previous work has elucidated the role of light in the coral animal independent symbiont metabolism. It was 299 

found that enhanced coral calcification but not photosynthesis occurs under blue light exposure (Cohen et 300 

al., 2016), and evidence suggests a light-mediated electrical potential in coral epithelia (Taubner et al., 301 

2019). Moreover, Cnidaria constitutes the earliest branching phylum containing a well-developed visual 302 

system. Some jellyfish, like Cubozoa, have camera-type eyes with photoreceptor cells that are more similar 303 

to vertebrate than to invertebrate eyes (Kozmik et al., 2008). These findings suggest that coral animal 304 

photoreception-transduction is implicated in changes in growth pattern and skeletal features, although the 305 

role of photoreception-associated proteins is yet to be explored. 306 

Consistent with significant changes in coral skeletal features for the optimization of light harvesting and 307 

utilization, we identified a coral growth and biomineralization sub-network (Fig. 5B, 86 nodes and 200 308 

edges) that revealed NEA categories related to ECM proteins (KW-0272, 18 enriched genes, FDR < 0.001), 309 

cell-cell adhesion (KW-0130, 14 enriched genes, FDR < 0.001) and EGF-domains (KW-0245, 13 enriched 310 

genes, FDR < 0.001) as most prominent. From the sub-network of hub genes, integrin and spectrins 311 

interacted with glycoproteins and lipoproteins (DMGPTK2, DMG-DEGTHBS1, and DMGLRP5) involved in coral 312 

biomineralization (Drake et al., 2013; Gutner-Hoch et al., 2017; Hemond et al., 2014). Thrombospondin has 313 
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previously been suggested for its role in biomineral remodeling (Mummadisetti et al., 2021). Consistent with 314 

this network topology, an important transcriptional interaction identified was SOX9, a transcription factor 315 

(TF) with a role in skeletal development. Associated nodes involved TFs DEGHIF1A, DEGHOPX, and 316 

DEGFOXL1, with the receptor protein DEGNOTCH2 up regulated in this transcriptional interaction 317 

(independent of the destination light condition). All hub genes interacted with a strongly connected cluster 318 

of collagen-like domains that was mainly transcriptional and up-regulated when transplanted to HL, while 319 

down-regulated when transplanted to LL. Collagen plays a structural role in the skeletal organic matrix 320 

(SOM), and presence of SOM in calcifying organisms appears to be a prerequisite for the formation and 321 

growth of biominerals (Allemand et al., 1998; Mummadisetti et al., 2021).  322 

Holobiont biometrics showed the strong regulation of algal symbiont density by light-mediated 323 

adjustments in skeletal features. These changes are achieved by phagocytosis-exocytosis-endocytosis with 324 

associated innate immune recognition (Davy et al., 2012). We identified associated sub-networks with 325 

enriched categories related to vesicle/vacuole-mediated transport (GO.0016192, 41 enriched genes, FDR 326 

< 0.001) (Fig. 5C, 78 nodes and 174 edges). The core sub-network of hub genes (Fig. 5C) interacted with 327 

spectrins, ankyrins, and key regulators of intracellular membrane traffic GTPases-RAB. Previous studies 328 

have emphasized pattern recognition receptors (PRR) as key players in symbiosis establishment (Davy et 329 

al., 2012). Main PPR identified are endocytosis mediator C-type lectin domain family member (DMG-330 

DEGMRC1) and Toll-like and Toll/interleukin-like receptors (DEGTLR6 and DEGTLR1). Furthermore, we 331 

identified a sub-network associated to immune system responses (NEA, HSA-1280218, 18 enriched genes, 332 

FDR < 0.001) (Fig. 5D, 30 nodes and 195 edges), were hub genes (DMG-DEGPOLA1, DMGATR, DMGPIF1, 333 

DMGFBXO18) interacted with the strongly connected component through an E3 ubiquitin ligase that targets 334 

cell cycle regulatory proteins for degradation (DMGANAPC1). The targeted cluster was mainly transcriptional 335 

(both up- and down-regulated) and the few DMGs were also E3 ubiquitin ligases (DMG-DEGHECTD1, 336 

DMGHERC1, DMGHUWE1). 337 

Concluding remarks 338 
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Whole colony plasticity in the branching coral A. palmata resulted from the integration of modular 339 

responses to local variation in light availability. The plasticity of local modules was evident when fragments 340 

were transplanted to contrasting light environments, where significant changes in skeletal features prompted 341 

the optimization of light absorption and utilization to maximize metabolic outputs and growth. Recognizing 342 

this modular concept of plasticity is important in the face of heritability of colony-level traits versus local 343 

module-level traits. Animal colonies consisting of many modules may remain coherent entities where colony 344 

traits have the evolutionary potential to respond to natural selection (Simpson et al., 2020). Remarkably, 345 

variants may arise locally, and single modules may have some evolutionary potential (Vasquez Kuntz et al., 346 

2022). 347 

Local modular plasticity was accompanied by significant methylome and transcriptome modifications. 348 

Enhanced resolution with the MethyIT pipeline allowed us to examine meaningful associations between a 349 

natural phenotype, transcriptome and methylome modifications. Our data showed a significant light-350 

mediated change in coral morphology, a phenotypic adjustment that was reflected in molecular signatures 351 

of changes in growth, including soft tissue growth and biomineralization. These observations suggest that 352 

symbiotic corals have acquired the capability of effecting an epigenomic response that incorporates whole 353 

methylome repatterning and is associated to changes in coral morphology. This interpretation aligns with 354 

previous whole genome views that focused on the function of DNA methylation in phenotypic plasticity (Liew 355 

et al., 2018b). The resolution allowed us to integrate genome-wide DNA methylation with gene expression 356 

datasets into meaningful biological networks. Our comprehensive network approach based on interactions 357 

from correlation matrix networks and gene interaction from curated databases for predicted networks offered 358 

a powerful approach to identify potential markers of plasticity in the interaction of DMGs and DEGs. 359 

Annotated genes COL6A5, SPTAN1, PTK7, FGFR1, FBXO30, P4HA2, TNR, NID1, ITGAX, ANK3, RCHY1, 360 

GBF1, and the transcription factor SHOX, were key regulators identified in sub-networks of hub genes in 361 

both analyses. These genes are involved in regulation of cell cycle, ECM, vesicular trafficking, immune 362 

regulation, regulation of transcription and transduction, and biomineralization. They represent candidates 363 

for further study. 364 
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Our analysis provides evidence of association of genic methylation repatterning with programmed 365 

changes in phenotype. One interpretation of these outcomes is that dramatic shifts in gene expression are 366 

accompanied by methylation changes that stabilize local chromatin to help reestablish homeostasis. 367 

However, environmental changes also induce non-random changes in gene body methylation that influence 368 

alternative splicing activity to modulate gene expression and phenotype (Ausin et al., 2012; Lev Maor et al., 369 

2015; Yang et al., 2014; Zhang et al., 2020). While our data do not specifically provide information on 370 

regulation of gene expression, the integration of methylation and transcriptional information makes 371 

significant inroads in the identification of networks underpinning coral phenotypic plasticity and provides a 372 

roadmap for studies of other non-model organisms. As methylome repatterning is a signature of chromatin 373 

reorganization and 3D architecture, integrating datasets enhances the potential to identify essential 374 

interactions and likely signatures of gene-network coordination that may not be seen in DEG datasets alone 375 

(Ouyang et al., 2020). Our integrated analyses offered the potential to predict phenotype at the gene-376 

network level and further postulate a light-mediated sequential response triggered by animal-sensing of 377 

initial light stimulus to the change in skeletal morphology (Fig. 6). 378 

  379 
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 380 

Materials and Methods 381 

 382 

Light exposure conditions 383 

We first characterized the natural light exposure within colonies of the coral Acropora palmata by 384 

measuring the incident light on both upperside and underside surfaces of in situ branches (base, mid-385 

branch, tips). We estimated the vertical attenuation coefficient (Kd) of the water column and retrieved daily 386 

irradiance cycles from SAMMO light sensors (Meteorological and Oceanographic Monitoring Academic 387 

Service at UNAM). Light measurements were taken with a cosine-corrected quantum sensor (Diving-PAM, 388 

Walz, Germany) previously calibrated against a manufacturer-calibrated quantum sensor (LI-1400, LI-COR, 389 

USA). We identified two daily integrated PAR (Photosynthetically Active Radiation) conditions for in situ 390 

colonies that we also used for the experimental setup: High Light (HL) surfaces represent fragments from 391 

upperside surfaces of branches exposed to ~20 mol quanta m2 day-1 and Low Light (LL) surfaces represent 392 

fragments exposed to ~2 mol quanta m2 day-1 (4-10% of upperside exposure). 393 

Coral sample collection and experimental setup 394 

To induce phenotypic plasticity, we performed a reciprocal transplant experiment in the reef-lagoon 395 

(30 m from the reef crest) in Puerto Morelos Reef National Park, Mexican Caribbean (Fig 2A). We sampled 396 

3 colonies (representing 3 distinct multilocus genotypes, or genets, as detected with Standard Tools for 397 

Acroporid Genotyping STAGdb (Kitchen et al., 2020)) from a depth of 2-3 m (permits No. 398 

SGPA/DGVS/06960/17 and No. SGPA/DGVS/07846/17), each at least 300 m apart. We collected ~7 cm2 399 

fragments from HL (n= 42) and LL (n = 42) surfaces of branch surfaces keeping track of genet identification. 400 

We settled them in a reef-deployed PVC structure designed to simulate the light condition and colony 401 

position of source colonies.  402 

We placed all coral fragments in their original light condition and orientation (i.e. HL facing up) and 403 

allowed them to heal and acclimate for 8 weeks (when new growth was observed). Subsequently, we 404 
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randomly divided HL fragments into control and treatment groups, equal grouping was done for LL 405 

fragments. To induce phenotypic plasticity, coral fragments in treatment groups were flipped to the opposite 406 

light condition and position (i.e. high light fragments were flipped to a low light condition, while LL fragments 407 

were flipped to a HL position) (Fig. 2A). This second acclimatory period was carried out for 5+ weeks. We 408 

estimated maximum excitation pressure over Photosystem II (Qm=1 - [(ΔF/Fm’ at noon) / (Fv/Fm at dusk)]) to 409 

determine successful acclimation to destination light condition (Iglesias-Prieto et al., 2004). We further 410 

compared Qm between experimental coral fragments (N=84) and in situ colonies (30 colonies, N=30 411 

datapoints from upper and N=30 from underside surface of branches) (Fig. S3A). 412 

Four group conditions were analyzed after 13+ weeks of experiment: HL controls (n= 21), HL⇾LL 413 

treatments (High Light to Low Light, n = 21) LL controls (n= 21), LL⇾HL treatments (Low Light to High Light, 414 

n = 21).  415 

Phenotype data analysis 416 

Structural traits 417 

Phenotypic traits were measured based on parameters describing coral morphology and physiology 418 

after 13+ weeks of experiment (Table 1). (n = 12 per group condition for non-invasive techniques, and n=9 419 

per group condition for invasive techniques such as host total protein content, chlorophyll a content, and 420 

symbiont cell counts) (Fig. S1). Morphological features were described by polyp density (number of polyps 421 

per area) and by corallite height (mm), defined as the vertical distance between the corallite base and the 422 

top of the theca. Corallite height was delineated into ‘height classes’ C1 (0 - 1.5 mm), C2 (>1.5 - 3 mm), and 423 

C3 (>3 mm) to further estimate polyp density at each height class. The projected area of each fragment was 424 

estimated with photography and used to normalize physiological and morphological parameters.  425 

To describe the structural and optical properties of the tissue we measured reflectance (R) of the intact 426 

coral tissue as [De675 = log (1/R675)] and estimated absorbance at 675 nm (De675) (Enríquez et al., 2005b; 427 

Vásquez-Elizondo et al., 2017). In addition, we estimated symbiont density, Chlorophyll (Chl) a and c from 428 

each fragment (Enríquez et al., 2005b; Iglesias-Prieto R. & Trench, 1994; Vásquez-Elizondo et al., 2017). 429 
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Briefly, tissue extractions were carried out using an air gun and filtered sea water (FSW). Slurries obtained 430 

from this method were subsequently homogenized at low temperature (Tissue-Tearor Homogenizer 431 

BioSpec Inc, USA) and centrifuged. The resulting pellet was re-suspended in filtered seawater and 432 

preserved for symbiont cell counts (counted in a hemocytometer after the addition of 200 µl of iodine 433 

preservation solution), and for Chl concentration (extracted with acetone/dimethyl sulfoxide 95:5 vol/vol). 434 

Chla and c concentrations (ρ pigment content per projected surface area in mg Chl m-2) were estimated 435 

spectrophotometrically (3 reads per sample) with a modular spectrometer (Flame-T-UV-VIS, Ocean Optics 436 

Inc., USA) using the equations described by Jeffrey and Humphrey (Jeffrey & Humphrey, 1975).  437 

Downstream calculations of optical properties were performed integrating the parameters detailed 438 

above (Enríquez et al., 2005b; Scheufen et al., 2017). Symbiont density and Chla were normalized to 439 

calculate Chla per symbiont cell (Ci in pg Chla sym−1). The specific absorption coefficient of Chla (a*Chla), a 440 

descriptor of the light absorption efficiency of the holobiont, was estimated as [a*Chla=(De675/ρ)·ln(10)] 441 

(Enríquez et al., 2005b). Other calculations included the specific absorption coefficient of symbionts in 442 

hospite (a*sym), a descriptor of the light absorption efficiency of symbionts. The host mass-specific efficiency 443 

(a*M), a descriptor of the light absorption efficiency per host mass, a descriptor that quantifies the potential 444 

benefits returned to the host, from the capacity of the symbiosis to collect solar energy. 445 

Physiological traits 446 

To estimate metabolic rates, we measured photosynthesis in hospite and estimated derived 447 

parameters. Photosynthetic responses (Photosynthesis - Quantum Energy curves, PE curves) of coral 448 

fragments were measured using a laboratory-made water-jacketed respirometer (Rodríguez-Román et al., 449 

2006). Corals were incubated in filtered sea water at a constant temperature (28 °C) and constant water 450 

flow (generated by continuous agitation from magnetic stirrers). A Light Emitting Diode LED-system was 451 

designed to enable automation of light increments every 10 minutes. Oxygen evolution was measured 452 

continuously with a fiber-optic oxygen meter system (FireSting, Pyroscience) and the photosynthetic 453 

efficiency (α), compensation irradiance (Ec), saturation irradiance (Ek), respiration rates (Rd), and maximum 454 

photosynthetic rates (Pmax), were calculated from the light-limited and light-saturated regions of the PE 455 
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curves (Iglesias-Prieto R. & Trench, 1994; Osinga et al., 2012). As a downstream calculation, the minimum 456 

quantum requirement of photosynthesis (𝚽-1O2) was estimated based on the linear regression of 457 

photosynthetic rates during the light-limited region of PE curves. 𝚽-1O2 is defined in terms of the light being 458 

absorbed and used to drive photosynthesis or photosynthetic utilizable radiation (PUR). The ratio of 459 

absorbed light is derived from previous measurements of reflectance [A = 1- R]. 460 

Similarities in phenotypic traits among the different group conditions and genets were analyzed with 461 

non-metric multidimensional scaling (NMDS) ordination, plotted via Bray-Curtis dissimilarity matrix and 9999 462 

permutations in vegan R-package. Statistical support for the NMDS clustering is provided by the 463 

permutation-based hypothesis test analysis of similarities (ANOSIM) for experimental groups and for 464 

genets. 465 

Coral tissue sampling and nucleic acid extraction 466 

After 13+ weeks of experiment (Table 1), coral tissue from each fragment (n = 12 per group condition) 467 

was split into two samples and preserved, both in 95% ethanol and RNAlater (Ambion, Life Technology) 468 

and stored at -80 ºC until processing. 469 

Genomic DNA (gDNA) was extracted from 32 A. palmata fragments (n= 8 per group condition; 16 470 

fragments per genet). We used the DNeasy Blood and Tissue Kit (Qiagen, Switzerland), as per the 471 

manufacturer’s protocol. gDNA concentration was quantified at 0.5-1.5 μg (Qubit® dsDNA BR Assay Kit on 472 

a Qubit® 2.0. Fluorometer) and sent for Whole Genome Bisulfite Sequencing (WGBS) at Admera Health 473 

(New Jersey, USA). 474 

Total RNA was extracted from the same 32 A. palmata fragments used in WGBS as previously noted. 475 

The tissue from each fragment was homogenized in TRIzol reagent (Ambion, Life Technology) before 476 

centrifugation with chloroform for 15 minutes at 12,000 x g at 4 ºC. The aqueous phase was then isolated 477 

and cleaned using Qiagen RNeasy Mini kit (Qiagen), as per the manufacturer’s protocol with an additional 478 

on-column DNase treatment using RNase-Free DNase Set (Qiagen). To maximize concentration of eluted 479 

RNA, the same 35 µl of RNAse-free water was twice passed through the spin column for the final isolation 480 
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step. Concentration and purity (A260/280) were analyzed via NanoDrop ND-1000 spectrometer and quality 481 

assessed (RIN > 7) with Agilent 2100 Bioanalyzer (Agilent Technologies). Total RNA was sent to Admera 482 

Health (New Jersey, USA) where concentration and purity was re-analyzed (Qubit® dsDNA BR Assay Kit 483 

on a Qubit® 2.0. Fluorometer). 484 

Methylome sequencing and data processing 485 

Sequencing libraries were prepared with an average sequencing library insert size of 450 bp and 486 

according to TruSeq® DNA Methylation Kit protocol, Sample Preparation Guide (Illumina Inc., USA). Briefly, 487 

standard reaction mix consisting of 130 µl of the CT Conversion Reagent and 20 µl of each DNA sample 488 

were used for bisulfite conversion (EZ DNA Methylation-Gold™ Kit) in a thermal cycler (Eppendorf® 489 

Mastercycler® Pro S). After the incubation period, bisulfite converted DNA was purified following the 490 

protocol of EZ DNA Methylation-Gold™ Kit. The bisulfite converted sequencing library was enriched 491 

following the TruSeq® DNA Methylation Kit protocol. Libraries were validated and quantified with qPCR. 492 

Sequencing was performed in Illumina Hi-Seq platform with pair-end reads of 2x150 and a mean depth 493 

coverage of 30x (Illumina Inc., USA). The estimated number of passed filter reads per sample was 110-120 494 

million paired-end reads (55-60M reads in each direction).  495 

The expected bisulfate conversion efficiency for this method is >99%. While Lambda DNA was not 496 

spiked-in to estimate non-conversion and mis-sequencing rate, we can assume that only CpG methylation 497 

context occurs in corals (Liew et al., 2018a; Trigg et al., 2022), hence, non-CpG methylation should be close 498 

to zero. We detected an average of 13.96% (SE=0.07) methylation in CpG context and an insignificant 499 

0.54% (SE = 0.01) in non-CpG contexts (CHG and CHH, where H is A, T, or C), which resulted in an inferred 500 

bisulfite conversion efficiency of ~99.5%. 501 

Data processing. Methylation analysis was performed using Bismark 020.0 (Krueger and Andrews, 502 

2011). Briefly (Fig. S2), FASTQ files were quality-filtered, and adapter sequences trimmed using Trim 503 

Galore 0.5.0 (Krueger, 2018). A bisulfite-converted reference genome file was generated using Bismark-504 

Bowtie2 algorithm, and the epigenome library sequenced data was aligned to the Acropora palmata genome 505 
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(JAOVVL01). Methylation information was then extracted from the output SAM files and resulting genome 506 

tracks were used for the visualization and reporting of downstream differential methylation calculations. 507 

Methylated and unmethylated read counts for all cytosines across the genome in the CG, CHG, and CHH 508 

context were obtained from census files. 509 

The approach used for downstream analysis was based on the identification of Differentially 510 

Methylated Positions (DMPs) and Differentially Methylated Genes (DMGs) using R package Methyl-IT 511 

0.3.1.2 (Sanchez et al., 2019; Sanchez & Mackenzie, 2020; Yang et al., 2020) (Fig. S2). Briefly, methylation 512 

count (COV) files were read into R to calculate Hellinger Divergence (HD, a variable used to measure 513 

methylation level divergence) by using the pool of methylation counts for control samples as reference. 514 

Potential DMPs (pDMPs) were estimated based on critical values of 𝐻𝐷a!"."$	 for each sample from the best 515 

fitted probability distribution model; in this case, a 3-parameter gamma distribution model. Final DMPs were 516 

estimated from the set of pDMPs by calculating the optimal cutoff threshold for HD based on Youden index. 517 

Generalized linear regression analysis (generalized linear model, GLM) was applied to test the difference 518 

between group DMP counts (among control and treatment groups; HL vs HL⇾LL, LL vs LL⇾HL) for selected 519 

genomic features. The fitting algorithm approaches provided by glm and glm.nb functions from the R 520 

packages stat and MASS were used for Poisson (PR), Quasi-Poisson (QPR) and Negative Binomial (NBR) 521 

models with logarithmic link. The ‘countTest2’ function in Methyl-IT was used to implement the selected 522 

model. The following parameters were applied to identify significant DMGs (Yang et al., 2020): 1) the 523 

minimum DMP count per bp on gene-body: CountPerBp = 2.5; 2) a minimum count per sample (on average) 524 

in at least 5 DMPs in one group: minCountPerIndv = 5; 3) a maximum coefficient of variance for each group: 525 

maxGrpCV = 1, 4)  minimum value of the logarithm of fold-changes: Minlog2FC ≤ 1; 5) p-value cutoff: 526 

pvalCutOff = 0.01, 6) p-value adjustment was performed by Benjamini & Hochberg method: pAdjustMethod 527 

= “BH”. Parameters 1 to 3 are addressed to prevent spurious DMGs, which cannot be rejected by the 528 

generalized linear regression algorithms.  529 

Genes overcoming constraints 1 to 5 and displaying significant difference between control and 530 

treatment comparison according to likelihood ratio test (LRT) derived by the anova function from stats 531 

https://www.ncbi.nlm.nih.gov/nuccore/JAOVVL000000000.1/
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packages were identified as DMGs (Fig. S2). A detailed description of how to define and compute DMPs 532 

and potential DMGs is included in the Methyl-IT vignettes and the package manual, available at 533 

https://github.com/genomaths/MethylIT. Acropora palmata genome annotation file 534 

Apalm_assembly_v2.0_180910.gff3 was used to annotate genome features. 535 

Methyl-IT downstream analysis (Methyl-IT.utils). A Hierarchical clustering (HC) was performed to 536 

provide an initial estimation of the number of possible groups and information on their members. The 537 

effectivity of HC depends on the experimental dataset, the metric used, and the glomeration algorithm 538 

applied. Ward’s agglomeration algorithm was used as it performs much better on biological experimental 539 

datasets than the other of the available algorithms (e.g. UPGMA, UPGMC).  540 

RNA sequencing and data processing 541 

RNA libraries for 2x150bp paired-end sequencing were prepared using the NEBNext Ultra II 542 

Nondirectional Library Prep Kit with polyA selection (New England Biolabs, Inc.). Samples were run on one 543 

plate of the Illumina NovaSeq platform. Illumina universal adapters and reads below PHRED of 22 were 544 

trimmed using Cutadapt(Martin, 2011). Filtered reads were mapped to the Acropora palmata genome 545 

(JAOVVL01) using the RNA-seq aligner STAR (2.5.3a) with read count data generated by the –quantMode 546 

GeneCount parameter. Reads were verified using the generated BAM files for input into htseq-count. 547 

Differential gene expression analysis. Gene count normalization and differential expression 548 

analysis was performed using DESeq2 3.12.0. Significant Differentially Expressed Genes (DEGs) were 549 

determined via pairwise comparison among control and treatment groups (HL vs HL⇾LL, LL vs LL⇾HL) 550 

and genet, with a false discovery rate-adjusted P value (FDR) of < 0.05 (Fig. S2). 551 

Network-associated responses 552 

A network provides a collection of nodes and edges that represent our system of elements (genes) 553 

interacting or regulating each other (Albert, 2005). Based on available data, we chose gene-gene interaction 554 

networks (predicted protein-protein interaction networks), as they are undirected, and the graph is non-555 

https://github.com/genomaths/MethylIT
https://www.ncbi.nlm.nih.gov/nuccore/JAOVVL000000000.1/
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sequential (X affects Y, but we do not know how) (Le Novere, 2015). A key feature for the biological 556 

interpretation of graph properties are hubs. Small-degree nodes (with small number of interactions) are the 557 

most abundant, but high-degree nodes or hubs, although less frequent, have a much higher number of 558 

interactions (Dennison & Alberte, 1982). In this context, the likelihood that a gene is essential correlates 559 

with the number of interactions, and random node disruption will not lead to major losses of connectivity. In 560 

contrast, the loss of hubs will cause a major breakdown of the network (Albert, 2005; Jeong et al., 2001; 561 

Said et al., 2004). 562 

Agnostic biological network analysis: Network-based integration of DMG and DEG datasets 563 

(Fig. S2).  564 

To understand the interaction between the change in methylomes (n = 32) and transcriptomes (n = 565 

32), and how genes contributed to the change in phenotype, we performed a Weighted Gene Correlation 566 

Network Analysis (WGCNA 1.71) (Langfelder & Horvath, 2008). We generated a dataset (gene list) 567 

comprising the subsets of 1) all DMGs (from Methyl-IT 0.3.1.2) and 2) DEGs (from DESeq2 3.12.0) that 568 

presented at least one DMP (from Methyl-IT 0.3.1.2) after the change in light treatment. This dataset 569 

included outputs from all groups (HL, HL⇾LL, LL, LL⇾HL) and genets to discover general patterns of gene 570 

contribution. Additionally, a binary annotation was included to keep track of DMG, DEG and both DMG-571 

DEG. As a results, each sample was represented as vector of 3272 genes/coordinates, where each 572 

coordinate was given by the sum of HD at each DMP on the given gene. 573 

We first performed a hierarchical clustering (HC) applying Ward’s agglomeration algorithm to provide 574 

an initial estimation of the number of possible groups and information on their members. Methyl-IT function 575 

pcaLDA was used to perform a Principal Component Analysis (PCA) and a PCA + Linear Discriminant 576 

Analysis (LDA). Unlike hierarchical clustering (HC) and PCA, LDA is a supervised machine learning 577 

approach, therefore, we must provide a prior classification of the samples, which can be derived, for 578 

example, from the HC, or from a previous exploratory analysis with PCA. Based on the cumulative 579 

proportion of variance, the PC1 and PC2 carried 92% of the total sample variance and could split the 580 

samples into meaningful groups. We saved the loadings from each gene. Loadings are coefficients in linear 581 
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combination predicting a variable by the (standardized) components. The sum of loading squares within 582 

each component are the eigenvalues (components’ variances), which is 1 for standardized loadings. In 583 

other words, loadings are “standard deviations” and the square of the loading of gene “A” quantitatively 584 

expresses the percent of the PC variance carried by gene “A”. PC-scores for each gene indicate the 585 

discriminatory power in the clustering (control vs treatment) and its genomic/epigenomic contribution (in 586 

terms of proportion of the whole phenotypic variance) to the change in phenotype. 587 

Genes PC-scores (gene-score) from 14 PCs were then used to build the pairwise correlation matrix 588 

for the WGCNA. Kendal's tau correlation was selected since it is better at detecting nonlinear behaviors and 589 

is more conservative than Pearson’s correlation. The resulting weighted correlation matrix was then 590 

constructed as a network in the R-package WGCNA (Langfelder & Horvath, 2008) and exported as edge 591 

list (interactions with weights) and node list files with assigned modules into Cytoscape 3.8.2 for 592 

visualization. Each entity of the dataset is a (gene) node, and 2 nodes are connected if their correlation or 593 

distance reach a threshold (here set to 0.4). Network topology included gene discriminatory power (gene-594 

scores) and a measure of how similarly they contributed to this classification (weight from correlation). The 595 

correlation network was analyzed and visualized in Cytoscape 3.8.2 (Sanchez & Mackenzie, 2020). 596 

Predicted biological networks: network-associated responses from DMGs (Fig. S2). To identify 597 

the biological meaning of potential relationships among DMGs we inferred gene interaction networks from 598 

stringApp in Cytoscape 3.8.2. The associations in the string database provides known and predicted 599 

protein−protein associations data for many organisms, including both physical interactions and functional 600 

associations, by integrating available experimental data and pathways from curated databases (Doncheva 601 

et al., 2019; Szklarczyk et al., 2017). We used only our detected DMGs (without network expansion) as 602 

input in string protein query (Swiss-Prot hit name) to retrieve an arbitrary long list of nodes and interactions. 603 

This approach is generally used to retrieve string networks from proteomics and transcriptomics studies 604 

(Doncheva et al., 2019; Szklarczyk et al., 2017) . 605 

The best hit for baseline networks was reached with string query for Homo sapiens. We recognize that 606 

cross-species knowledge transfer is quite challenging because the phylum cnidaria diverged from Bilateria 607 
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550 million years ago and may have fundamentally different genetic architectures. Also, as species diverge, 608 

protein functions change and are re-purposed through divergent and convergent evolution, and genetic 609 

interactions are often rewired (Fan et al., 2019). Parallel to this, in network-based approaches most 610 

predicted interactions for each species are not experimentally verified. Despite these limitations, the best 611 

hit in string query was still Homo sapiens, perhaps, due to the presence of conserved stress response, 612 

conserved pathways (e.g. extrinsic and intrinsic apoptotic pathways, ion trafficking system) and (predicted) 613 

gene products between early and late branching metazoans at the molecular level (Bhattacharya et al., 614 

2016; Courtial et al., 2017; Davy et al., 2012; Drake et al., 2013; Ottaviani et al., 2020). Furthermore, genes 615 

that emerged from our data and clustering analyses predicted gene interactions associated to coral 616 

biological processes that aligned well to the measured phenotypes, suggesting our analytical approach was 617 

plausible. 618 

The retrieved baseline network was then analysed statistically incorporating extended centrality 619 

measures from CentiScape 2.2 App (EigenVector of centrality). We chose Eigenvector centrality because 620 

this attribute ranks nodes by taking into consideration not only the number of interactions of a node (degree), 621 

but also, the centrality of the interactions that it is connected to. In other words, a node is important if it is 622 

interacting with other important nodes. The output dataset generated from Methyl-IT 0.3.1.2 was imported 623 

into this network to assign node attributes. 624 

To identify hub genes, we assigned methylation signal and Eigenvector of centrality as attributes to 625 

the nodes (Sanchez & Mackenzie, 2020). In networks, a protein with a very high Eigenvector is a protein 626 

interacting with several important proteins (regulating them or being regulated by them), thus suggesting a 627 

central super-regulatory role or a critical target of a regulatory pathway. We used Eigenvector as parameter 628 

to perform k-means clustering algorithm (clusterMakerApp in Cytoscape 3.8.2.) (Sanchez & Mackenzie, 629 

2020) to identify clusters of hub genes. To identify over-represented functions in the large set of DMGs, we 630 

performed Network Enrichment Analysis (NEA). Enriched terms were retrieved as UniProt KnowledgeBase 631 

(kw) categories in String Enrichment App in Cytoscape 3.8.2 (Sanchez & Mackenzie, 2020). 632 
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Predicted biological networks: Network-associated responses from DEGs. To identify the 633 

biological meaning of potential relationships among DEGs we inferred gene interaction networks from 634 

stringApp in Cytoscape 3.8.2 with the same workflow as for DMGs interaction networks. The output dataset 635 

generated in DESeq2 3.12.0 was imported to this baseline network to assign gene regulation (up-regulated 636 

or down-regulated) as a node attribute. 637 

Predicted biological networks: Network-based integration of DMG and DEG datasets.  638 

To further explore the association between DMGs and DEGs, we integrated DEGs to DMGs network 639 

data sets. The integration was done at the cluster level (after clusterMakerApp independent analyses) with 640 

the criteria that a DEG-cluster be selected if it contained at least one gene also identified as DMG. The 641 

output datasets generated from Methyl-IT 0.3.1.2 and DESeq2 3.12.0 were imported to this baseline 642 

network to assign node attributes. With this approach we were able to enhance networks by adding new 643 

attributes to the nodes: DMG, DEG, both DMG-DEG. We maintained the attributes Eigenvector of centrality, 644 

methylation signal (from Methyl-IT 0.3.1.2), and gene regulation (upregulated or downregulated from 645 

DESeq2 3.12.0). A new clustering was performed based of Eigenvector of centrality ranks and 1st, 2nd and 646 

3rd neighbours of high ranked nodes. To identify over-represented functions in the DMGs-DEGs integrated 647 

clusters, we performed a Network Enrichment Analysis (NEA) to each new cluster. Enriched terms were 648 

retrieved as UniProt KnowledgeBase categories (kw) in String Enrichment App (Sanchez & Mackenzie, 649 

2020). Because key coral biological processes emerged from the new clustering, we further explored 650 

potential key regulators and candidate genes involved in light-mediated phenotypic plasticity of structural 651 

traits in corals. 652 
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Figures and Tables 944 
 945 

 946 
Figure 1. Phenotypic plasticity of Acropora palmata in response to light availability. (A) A. 947 

palmata colonies have a strong intracolonial light gradient. The branching morphology exhibits modules 948 
(polyps) exposed to direct sunlight (HL surfaces) and modules growing in the shade (LL surfaces). (B) 949 
Morphological skeletal features of the branch cross-section showing the transition from upperside to 950 
underside of the branch. (C) HL surfaces and (D) LL surfaces show distinct skeletal morphology, (E) with 951 
corallites significantly taller in the surface exposed to HL. (F-N) Phenotypic traits of HL (n= 21) and LL 952 
surfaces (n=21) from 3 genets. Center lines show the median and center squares the mean; box limits 953 
indicate the 25th and 75th percentiles; whiskers extend 1 time the interquartile range. For all panels, ***P 954 
<0.001; **P <0.01; *P<0.05; nsP >0.05, two-tailed, unpaired Student’s t test. (F) Polyp density (# polyps cm-955 
2), (G) Density of corallites larger than 3 mm in height (# polyps cm-2), (H) soluble host protein (mg protein 956 
cm-2), (I) symbiont density (# sym cm-2), (J) Chla per symbiont cell (Ci, pg Chla sym−1), (K) Chla density (mg 957 
Chla m-2), (L) photosynthetic efficiency (µmol O2 µmol quanta), (M) respiration rate (µmol O2 m-2 s-1), (N) 958 
maximum photosynthetic rate (µmol O2 m-2 s-1). 959 
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 961 
Figure 2. Induced phenotypic plasticity with reciprocal transplants. (A) Schematic representation of 962 
the experimental design. Control fragments from HL (n=7 per genet) and LL (n=7 per genet) remained 963 
unchanged, while treatment fragments (HL⇾LL, n=7 per genet; LL⇾HL, n=7 per genet) were manipulated 964 
in a reciprocal transplant that altered their light exposure by ~80%. After 13 weeks, light phenotypes were 965 
described, and tissue was collected for genomic and epigenomic analyses. (B) Fold change of main 966 
phenotypic traits showing the acclimatory mechanism to the destination light condition. (C) Visual inspection 967 
of one genet after 5+ weeks showing the change in corallite height and density. (D-E) Changes in optical 968 
traits based on specific absorption coefficients, a*Chla which describes the holobiont’s efficiency to absorb 969 
light and a*sym , which describes in hospite light absorption efficiency of the algal symbionts. 970 
 971 
  972 
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 973 

 974 
Figure 3. DNA Methylation context and light-mediated methylome repatterning. (A) Proportion of 975 
methylated cytosines (n = 8 per group condition) where highest in the CpG context and insignificant in CHG, 976 
and CHH contexts. Pie charts show the number of Cytosines (x 106) in each context. (B) Mean methylation 977 
levels of all cytosines were highest at genic regions; 2kb upstream of Transcription Start Site (TSS), and 978 
2kb downstream of Transcription End Site (TES) are shown. Methylation levels were computed, divided to 979 
60 bins, and plotted by genet and group condition. (C) Number of DMPs per group conditions identified by 980 
Methyl-IT, with centroid of control groups used as reference. DMPs were always higher in treatments than 981 
control samples. Two A. palmata genets are shown for comparison. (D) Hierarchical clustering of DMPs in 982 
genic regions classified by Hellinger Divergence. Classification of samples separated control (purple) and 983 
treatment (red) samples regardless of genet or destination light treatment.  984 
  985 
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 986 
Figure 4. Methylomes-transcriptomes-derived agnostic network, analysis with WGCNA. The data was 987 
prepared by combining DMG and DEG datasets to one large dataset. To estimate the initial number of 988 
possible groups we performed a (A) hierarchical clustering (Ward’s agglomeration algorithm), which showed 989 
a classification of samples separating controls (purple) and treatments (red) groups regardless of genet or 990 
destination light treatment. PCA (PC1 and PC2 carried 92% of the total sample variance) and a linear 991 
discriminant analysis (Fig. S7) were further performed to assign gene discriminatory power from PC-scores 992 
(gene-score) and build the pairwise correlation matrix (Kendal's tau correlation). The network was 993 
constructed in WGCNA 1.71, with module visualization and statistical analysis in Cytoscape 3.8.2. (B) 994 
Whole network of gene-gene interactions. (C) Type I subnetwork showing genes with strongest gene-gene 995 
interactions (edges with strongest weights from correlation but low gene-score), denotating genes that have 996 
similar contribution to the change in phenotype (n = 199 genes). (D, E) Type II subnetworks of hub genes 997 
showing strong interactions and loadings (highest gene-scores), denotes hub genes with strongest 998 
contribution to the change in phenotype (discriminatory power of treatments from controls). (F-H) Top 10-999 
20 genes based on gene-score in each subnetwork. The colored line between genes represents weight 1000 
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values from correlation matrix, low weight values (yellow) to high weight values (purple), node color indicates 1001 
if DMG (yellow), both DMG-DEG (blue), DEG (grey).  1002 
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 1003 

 1004 
Figure 5. Predicted network-associated responses from DMGs and DEGs. Main subnetworks of hub 1005 
genes retrieved from integration of DMGs and DEGs. (A) photoreception-phototransduction (network from 1006 
StringApp without attributes: https://version11.string-db.org/cgi/network.pl?networkId=sqcU0gyKux2Y). (B) 1007 
ECM-proteins, cell-cell adhesion and EGF-domains associated with soft tissue growth and calcification 1008 
(network from StringApp without attributes: https://version11.string-1009 
db.org/cgi/network.pl?networkId=8RQKxPbg9zzZ). (C) Vesicle/vacuole mediated transport, Ca2+ 1010 
metabolism and cytoskeletal protein binding associated with symbiont trafficking (network from StringApp 1011 
without attributes: https://version11.string-db.org/cgi/network.pl?networkId =Cefq2PjoZN5R). (D) Innate 1012 
immune response associated to interpartner recognition (network from StringApp without attributes: 1013 
https://version11.string-db.org/cgi/network.pl?networkId= pZerNp9HZxM0). Larger nodes indicate key 1014 
regulators or a critical target of a regulatory pathway. The line between genes represents interactions. Node 1015 
color indicates if DMG (yellow), both DMG-DEG (blue), DEG (grey). Font size represents methylation (signal 1016 
density variation from Methyl-IT) and font color up (red) - down (blue) regulation. Genet 1 LL to HL are 1017 
shown for interpretation.  1018 

https://version11.string-db.org/cgi/network.pl?networkId=sqcU0gyKux2Y
https://version11.string-db.org/cgi/network.pl?networkId=8RQKxPbg9zzZ
https://version11.string-db.org/cgi/network.pl?networkId=8RQKxPbg9zzZ
https://version11.string-db.org/cgi/network.pl?networkId%20=Cefq2PjoZN5R
https://version11.string-db.org/cgi/network.pl?networkId=%20pZerNp9HZxM0
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 1019 
Figure 6. Predicted model for light-mediated phenotypic plasticity of structural traits in the 1020 
branching coral Acropora palmata based on key regulators from DMGs-DEGs integrated networks. 1021 
A significant change in the light environment activates photoreception mechanisms to detect cues and 1022 
transduce information within cells (symbionts, cytoskeleton, extra cellular matrix-ECM, and nucleus-Nu are 1023 
labeled). This activates signaling pathways to control growth, both soft tissue and skeletal growth; and in 1024 
parallel, to initiate cellular transport related to symbiont recognition and changes in symbiont population 1025 
densities (network from StringApp without attributes: https://version11.string-1026 
db.org/cgi/network.pl?networkId=uh6Y1lbNXqJR).  1027 

https://version11.string-db.org/cgi/network.pl?networkId=uh6Y1lbNXqJR
https://version11.string-db.org/cgi/network.pl?networkId=uh6Y1lbNXqJR
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Table 1. Table of terms, definitions, and units for the structural, optical, and photosynthetic 1028 
parameters used to describe phenotypes. 1029 

Traits Parameters Units 

Structural 

Corallite density at height class: 
C1: 0 - 1.5 mm height,  
C2: >1.5 - 3 mm height,  
C3: >3 mm height 

 
# CH1-corallites cm-2 
# CH2-corallites cm-2 
# CH3-corallites cm-2 

Total polyp density # corallites cm-2 
Soluble host protein per projected area mg protein cm-2 
Chla density per projected area mg Chla m-2 
Algal density per projected area #sym cm-2 
Chla per algal cell (Ci) pg Chla sym−1 

Optical 

Host mass-specific absorption efficiency (a*M) cm2 mg protein-1 
Light absorption efficiency of symbionts in hospite (a*Sym) m2 sym−1 
Light absorption efficiency of the holobiont (a*Chla) m2 mg Chla−1 
Estimated Absorbance (De 675 nm) Dimensionless 

Physiological 

Photosynthetic efficiency (𝛂) µmol O2 µmol quanta 
Minimum Quantum Requirement (𝚽-1O2) mol photons mol-1O2 
Maximum gross photosynthetic rate per area (Pmax) µmol O2 m-2 s-1 
Saturation irradiance (Ek) µmol quanta m-2 s-1 
Compensation irradiance (Ec) µmol quanta m-2 s-1 
Post-illumination respiration rate (RL) µmol O2 m-2 s-1 
Pressure over Photosystem II (Qm) Dimensionless 

 1030 
 1031 
 1032 


