
GEOCHEMISTRY, GEOPHYSICS, GEOSYSTEMS

Supporting Information for “Reconciling Surface1

Deflections From Simulations of Global Mantle2

Convection”3

Conor P. B. O’Malley1,2, Gareth G. Roberts1, James Panton3, Fred D.

Richards1, J. Huw Davies3, Victoria M. Fernandes1,4, Siavash Ghelichkhan5

1Department of Earth Science & Engineering, Imperial College London, London SW7 2BP, UK4

2now at Cathie Group, 2-4 Hanover Square, Newcastle upon Tyne NE1 3NP, UK5

3School of Earth & Environmental Sciences, University of Cardiff, Park Place, Cardiff CF10 3AT, UK6

4now at Section 4.6 Geomorphology, GFZ Potsdam, Telegrafenberg, 14473 Potsdam, Germany7

5Research School of Earth Sciences, Australian National University, 142 Mills Road, Acton, ACT 0200, Australia8

Contents of this file9

1. Equations of motion and description of numerical approach to solving them.10

2. Table summarising model parameters.11

3. Summary of spherical harmonic expansion used to estimate surface deflections.12

4. Figures S1 to S19.13

Corresponding authors: C. P. O’Malley or G. G. Roberts, Department of Earth Science

& Engineering, Imperial College London, London SW7 2BP, UK. (c omalley1@msn.com or

gareth.roberts@imperial.ac.uk)

March 22, 2024, 1:46pm



X - 2 O’MALLEY ET AL.: RECONCILING MANTLE CONVECTION SIMULATIONS

1. Introduction

This Supporting Information document includes an extended description of the equa-14

tions of motion solved to predict mantle convection. It summarises the numeric approach15

adopted to solve them using the TERRA code, the spherical harmonic expansion and16

model parameters. The approaches used to calculate surface deflections are included with17

the main manuscript.18

19

This document also includes nineteen figures in three groups. First, Figures S1–S220

summarise the setup of the numerical simulations, and show examples of results and21

resultant surface deflections. They expand upon the results shown in Figures 1–2 in22

the main manuscript. Secondly, Figures S3–S7 show surface deflections and sensitivity23

kernels calculated by solving the equations of motion analytically using the propagator24

matrix approach and associated statistics. They show results for models that include self-25

consistent radial gravitation and removal of shallow structure, expanding upon the results26

shown in Figures 3–5 in the main manuscript. Figures S8–S14 show calculated vertical27

surface deflections from models in which viscosity and density are modified. These fig-28

ures includes comparisons of surface deflections calculated using the different approaches29

(numeric and analytic) and model parametrizations. They extend the results shown in30

Figures 7–8 in the main manuscript. Figures S15–S19 show effective contributions from31

density anomalies in the mantle to instantaneous surface deflections. In the main text,32

we show spherical harmonic solutions up to a maximum spherical harmonic degree l = 5033

(see Figure 9). Here, results are presented for maximum degrees 40, 30, 20, 10 and 5. The34
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results demonstrate the importance of contributions from short wavelength (high degree)35

density structure to surface deflections, especially at shallow depths.36

37

2. Equations Governing Predicted Mantle Convection

In the main manuscript we explore how calculated surface deflections are impacted by38

the choice of methodology and assumptions used in solving equations of motion for mantle39

convection. This section expands on the numeric approach used to solve the equations.40

The analytic approach is discussed in the main manuscript.41

42

Theoretical predictions of surface displacements from mantle convection arise from the43

application of physical laws that take the form of conservation equations for mass, mo-44

mentum and energy (see, e.g., Hager & O’Connell, 1981; Parsons & Daly, 1983). Here, we45

solve those equations across a 3D spherical domain using the finite element code TERRA46

(Baumgardner, 1985; Bunge & Baumgardner, 1995, etc.). Under this formulation, the-47

oretical convection in an incompressible fluid can be expressed by the following three48

dimensionless equations (e.g., Baumgardner, 1985; Davies et al., 2013; McKenzie et al.,49

1974; Parsons & Daly, 1983). First, the continuity condition for conservation of mass,50

∇ · u = 0, (1)

where u is the fluid velocity vector. Since the Prandtl number is likely to always be51

extremely large in this system—mantle viscosity is expected to be many orders of mag-52
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nitude larger than the product of density and thermal diffusivity—inertial terms can be53

neglected (e.g., Parsons & Daly, 1983). Second, the equation of motion,54

∇σ = −ρ′g, (2)

where55

ρ′ = −αρ0(T − Tref). (3)

σ is the 3×3 stress tensor where the (radial) hydrostatic component balancing the reference56

density structure has been subtracted, ρ′ is the density difference due to temperature, α is57

the coefficient of thermal expansion, T is temperature, Tref is a radially varying reference58

temperature structure, which has a constant value in the mid-mantle and joins to a cold59

thermal boundary layer near the surface and a hot one at the CMB, reaching the surface,60

Ts, and core mantle boundary, TCMB temperatures at the respective boundaries, and61

g is gravitational acceleration acting radially (see Table S1). This stress tensor σij is62

decomposed into deviatoric and lithostatic components:63

σij = τij − pδij, (4)

where τij is the deviatoric stress tensor, p is dynamic pressure and δij is the Kronecker64

delta function. The deviatoric stress tensor and the strain-rate tensor, ϵ̇ij, are related by:65

τij = 2ηϵ̇ij = η

(
∂ui

∂xj

+
∂uj

∂xi

)
, (5)
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where η is viscosity, and ∂/∂xi is the spatial partial derivative. By combining equations66

2, 4 and 5 we solve the equation of motion:67

∂(ηϵij)

∂xj

− ∂p

∂xi

= −ρ′gδir, (6)

where g is the scalar value of g and δir is the Kronecker delta selecting the radial direction r.68

69

We first examine predictions from models in which viscosity varies only with depth,70

i.e., η = η0 × ηr, where η0 is reference viscosity (see Table S1), and ηr is a scaling factor71

dependent only on radius, plotted with model results as appropriate throughout this72

manuscript. We then include temperature dependence of viscosity, i.e., η = η0 × ηr × ηT ,73

where74

ηT = exp(z′ − 2T ′). (7)

Dimensionless depth, z′ = z/d, where d = zsurface−zCMB = 2890 km, and dimensionless75

temperature T ′ = (T − Ts)/(TCMB − Ts), where TCMB − Ts = 2700 K.76

77

Finally, the heat transport equation is solved to ensure conservation of energy:78

∂T

∂t
+ u · ∇T = κ∇2T +

H

Cp

, (8)

where κ is thermal diffusivity, H is internal heat generation and Cp is specific heat capacity.79

See Table S1 for parameter values and units. Heat generation within the mantle depends80

on the distribution of radiogenic isotopes (e.g., Ricard, 2015). Concentrations of such81
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elements can be tracked in TERRA, using particles, varying as a consequence of flow and82

melting (see, e.g., Panton et al., 2023; van Heck et al., 2016, for full explanation). The83

bulk composition field, C, which varies between 0 and 1, is also tracked on particles84

and calculated for each of the finite elements in the model. The end-members represent85

completely depleted/harzburgitic material (C = 0), and fully enriched/basaltic material86

(C = 1). As a result, radiogenic heat production across the whole mantle volume varies,87

being ≈ 24 TW (5.8× 10−12 W kg−1) at 1.2 Ga, and ∼ 18 TW (4.5× 10−12 W kg−1) by88

0 Ma. Simulations are initialised such that the average mantle composition is C = 0.2089

(Panton et al., 2023), and composition obeys the conservation equation:90

∂C

∂t
= −∇ · (Cu). (9)

2.1. Numerical Modelling Strategy

The Stokes equations described above are solved by the finite element method on a91

series of stacked spherical shells composed of nodes based on a subdivision of a regular92

icosahedron, with an identical geometry for each shell when projected onto the CMB93

(see, e.g., Figure 1 of Baumgardner, 1985). The radial spacing of consecutive shells is94

45 km, which is the same as the mean horizontal spacing of the elements across the en-95

tire model domain. The stacking of identically partitioned shells leads to a finer mean96

horizontal resolution of ≈ 33 km at the CMB, and a coarser resolution of ≈ 60 km at97

the surface. The surfaces of the uppermost elements in the shallowest shell lie at zero98

depth. To enable estimates of stress from these models to be directly compared with an-99

alytical solutions obtained from Green’s functions across layer boundaries, the predicted100

March 22, 2024, 1:46pm



O’MALLEY ET AL.: RECONCILING MANTLE CONVECTION SIMULATIONS X - 7

values of deviatoric stress were calculated using the calculated velocities from the near-101

est shells using the interpolating linear shape functions of the underlying finite elements,102

while the dynamic pressure is calculated directly at the surface (see the main manuscript).103

104

Each numerical model presented in this paper has two computational stages: ‘spin-up’,105

which is used to initialize the model, and the geologically more realistic ‘main’ stage, from106

which we generate predictions of surface deflections. The spin-up stage includes 2.2 billion107

years of model run-time. It has the following conditions imposed to avoid sharp veloc-108

ity and temperature gradients, and sudden reorganization of mantle flow when the main109

model starts. First, a free-slip condition is imposed at the surface. Second, an initial,110

random white noise temperature field generated with power across spherical harmonic111

degrees 1-19, is inserted. Mean mantle temperature is initially 2000 K. Mantle convection112

arises naturally over the first two billion years of model run-time. A fixed-slip surface113

velocity condition is then applied to the surface for 200 Ma. These velocities are set to114

be equal to those at 1 Ga extracted from the reconstructions of Merdith et al. (2021); the115

vertical component of slip is zero. The resultant mantle structure is used as the initial116

condition for the main model.117

118

The main model routine predicts flow from 1 Ga to the present-day (0 Ma). It includes119

an isothermal condition imposed at the surface, Ts = 300 K. A fixed-slip condition is120

imposed such that the vertical component of u is zero. Horizontal slip is prescribed using121

the plate reconstructions of Merdith et al. (2021); these are applied in 1 Ma long stages.122

As such, stirring by plate drift and slab sinking play a role in driving mantle flow in these123
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models. An isothermal condition is also imposed at the core-mantle boundary such that124

TCMB = 3000 K. A free-slip velocity boundary condition is imposed there, so the radial125

component of the mantle flow velocity (ur) = 0. While this radial velocity boundary con-126

dition is of the Dirichlet type, in a free-slip boundary condition no tangential restriction is127

imposed on the flow velocity but rather on the tangential deviatoric stresses acting on the128

boundary (τrθ, τrϕ where r, θ and ϕ are the radial and two tangential directions respec-129

tively), which are zero. Horizontal components of slip are allowed to naturally emerge and130

evolve subject to lowermost mantle flow. Plume behaviour is not artificially suppressed131

or instigated.132

133

To ensure numerical stability and computational accuracy in these simulations, the ref-134

erence viscosity, η0, is set to 4× 1021 Pa s. This value is probably an order of magnitude135

greater than the viscosity of the actual upper mantle (e.g., Forte, 2007; Ghelichkhan et136

al., 2021; Mitrovica & Forte, 2004, and references therein). Consequently, flow velocities137

in the simulations are likely to be significantly slower than in actuality. An obvious cause138

for concern is that using actual (comparatively fast) plate velocities as surface boundary139

conditions atop a relatively slowly convecting ‘mantle’ is likely to induce unrealistic flow.140

To address this issue, imposed plate velocities are scaled such that the root-mean squared141

(RMS) values of the actual applied velocities (≈ 5 cm yr−1 unscaled) match RMS values142

of surface velocities (≈ 2.5 cm yr−1) calculated during the spin-up phase (before plate143

velocities are imposed on the model) when the model mantle is convecting naturally and144

not being driven by surface velocities. The applied surface plate velocities are therefore145

scaled by a factor of 0.5 (i.e., 2.5/5) in the simulations examined in this study. To ensure146
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that volumetric fluxes through ridges and subduction zones are realistic, simulation run147

times are increased by a factor of 2; i.e., the 1 Myr long plate stages are run for twice148

their elapsed time (2 Myr), but at half the speed. All times stated throughout the rest of149

this manuscript refer to times re-scaled for real-world comparison; i.e., the actual age of150

the respective plate stage.151

152

For the reference case (Model 1), these conditions lead to the density distributions shown153

in Figure S1. Surface layer density anomalies occur only as a result of predicted com-154

positional variation, since the surface temperature, Ts, is constant globally. This model155

represents the first of two reference numerical models examined in this contribution. It156

has the radial viscosity structure shown in Figure 2c of the main manuscript. Later, in157

the main manuscript, we investigate a second numerical model incorporating temperature-158

dependent viscosity (Equation 7). In the main manuscript we describe numeric and an-159

alytic approaches that use output from these models to calculate instantaneous surface160

deflections. Both approaches make use of spherical harmonics.161

3. Spherical Harmonics

Any real, square-integrable function over the surface of the Earth can be described as

a function of longitude θ and latitude ϕ by a linear combination of spherical harmonics

of degree l and order m,

f(θ, ϕ) =
L∑
l=1

l∑
m=−l

flmYlm(θ, ϕ). (10)

The spherical harmonic functions Ylm are the natural orthogonal set of basis functions162

on the sphere, and flm are the spherical harmonic coefficients. As an example, Figure 2d163
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in the main manuscript shows spherical harmonic expansion of the surface stress field164

predicted by Model 1 at 0 Ma (cf. Figure 2a in the main manuscript). We call this result165

Model 1b, and the original, full-resolution numerical result is referred to as Model 1a.166

The fidelity of the spherical harmonic expansion is demonstrated by the similarity of the167

maps and histograms shown in panels a–b and d–e of Figure 2 in the main manuscript.168

Pl =
l∑

m=−l

f 2
lm (11)

gives the total power across all spherical harmonics of a given degree l. Average power169

for each mode m within degree l, P̂l = Pl/(2l + 1), since there are 2l + 1 modes (orders)170

per degree—we do not explore this definition of power in this contribution, and present171

only total power per degree (see, e.g., Hoggard et al., 2016; Holdt et al., 2022).172
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Table S1. Summary of Model Parameters.

Parameter Symbol Value Units

Surface temperature Ts 300 K

Core-mantle boundary temperature TCMB 3000 K

Internal heating rate H See text. W kg−1

Thermal expansivity α 2.5× 10−5 K−1

Thermal conductivity K 4 W m−1K−1

Thermal diffusivity κ 8.08 ×10−7 m2s−1

Specific heat capacity Cp 1100 J kg−1K−1

Reference viscosity η0 4× 1021 Pa s

Reference density ρ0 4500 kg m−3

Overlying fluid density ρw 1 or 1030 kg m−3
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Figure S1. Model 1: Densities predicted from numerical simulation of mantle

convection. (a) Predicted present-day density ρ, at surface (z=0), from TERRA model with

viscosity independent of temperature (Model 1a), plotted at grid resolution of 1 degree. (b)

Histogram of values shown in (a), weighted by latitude to correct to equal-area. (c–d) As (a–b)

but for densities at a depth of 270 km. (e–h) As (a–d) but for time slice at 10 Ma; paleo-coastlines

generated from Phanerozoic plate rotation history of Merdith et al. (2021). (i–l) As (a–d) but

for time slice at 100 Ma.
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Figure S2. Model 1: Predicted water- and air-loaded surface deflections. (a) Water-

loaded, present day, surface deflection predicted by Model 1a. Figure S2a shows normal stress,

σ, used with Equation 2 in the main manuscript to calculate surface deflections, h; ρw = 1030 kg

m−3. (b) Spherical harmonic fit (Model 1b) up to degree l = 50 of grid shown in (a), calculated

using the approach of Hoggard et al. (2016). (c–d) Histogram of values shown in (a) and (b)

respectively, weighted by latitude to correct to equal-area. (e) Black line = power spectrum in

terms of total power per degree, from spherical harmonic expansion shown in (b); gray line and

band = expected dynamic topography from Kaula’s rule using admittance Z = 12 ± 3 mGal

km−1 (Kaula, 1963). Orange dashed line = expected power spectrum for water-loaded residual

topography from Holdt et al. (2022) via analytical solution of special case of Equation 4 of the

main manuscript. χp = total root-mean-squared difference between distribution of modeled and

theoretical surface deflection power (see Equation 9 in the main manuscript). (f–j) As (a–e) but

for air-loaded surface deflection; ρw = 1 kg m−3.
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Figure S3. Model 2: Propagator matrix solution for surface deflection with as-

sociated sensitivity kernels. (a) Surface deflection sensitivity kernel Al, as a function of

spherical harmonic degree, l, and depth, calculated for the radial viscosity structure (and other

parameters) which were used to generate Model 1; see Equation 5 in the main manuscript.

(b) Present-day predicted water-loaded surface deflection, calculated using propagator matrix

method, from spherical harmonic expansion (to maximum degree l = 50) of density structure

(e.g., Figure S1) and radial viscosity structure (e.g., Figure 2c; Corrieu et al., 1995; Hager et al.,

1985; Parsons & Daly, 1983). Note that for comparison with numeric calculations shown in Fig-

ure 3, no terms related to flow-related perturbation of gravitational potential terms are included

(see Equations 5 and 6 in the main manuscript), and gravitational acceleration g = 10 m s−2

everywhere. (c) Histogram of values shown in (b), weighted by latitude to correct to equal-area.

(d) Black line = power spectrum in terms of total power per degree, from surface deflection

prediction shown in (a); gray line and band = expected dynamic topography from Kaula’s rule

using admittance Z = 12± 3 mGal km−1 (Kaula, 1963). Orange dashed line = power spectrum

of water-loaded residual topography from Holdt et al. (2022), via analytical solution of special

case of Equation 4 in the main manuscript. χp = total root-mean-squared difference between

distribution of modeled and theoretical surface deflection power (see Equation 9 in the main

manuscript). (e–h) As (a–d) but for air-loaded surface deflection; ρw = 1 kg m−3.
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Figure S4. Model 3: Predicted surface deflection from mantle convection in pres-

ence of radial gravitation. (a) Predicted present-day water-loaded surface deflection calcu-

lated using propagator matrix method, incorporating radial gravitation i.e., g(r), black curve in

(b).(b) Black curve = profile of gravitational acceleration as a function of radius, given density

distribution predicted by Model 1a; gray dashed line = constant value of g = 10 m s−2 used

within TERRA model runs and in previous figures. (c) As (a) but calculated using g = 10 m s−2

everywhere, i.e., same as Figure S3a–d (see dashed line in panel b). Associated sensitivity kernels

are shown in Figure S6. (d) Difference between surface deflections predicted by Models 3 and 2

(panels a and c). (e) Histogram of values in (d), weighted by latitude to correct to equal-area.
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Figure S5. Model 4: Comparing predicted surface deflections with and without

stress perturbations induced by gravitational potential of deflected surface. (a) Pre-

dicted present-day water-loaded surface deflection calculated using propagator matrix method,

with g = 10 m s−2 everywhere, including terms describing stress perturbation due to change

in gravitational potential (i.e., u3 term in Equation 5 in the main manuscript). (b) As (a) but

calculated excluding u3 term, i.e., same as Figure S3a. See Figure S6 for associated sensitivity

kernels. (c) Difference between Models 4 and 2 (panels a and b). Note same colour scales are used

as in Figure S4. (d) Histogram of values in (d), weighted by latitude to correct to equal-area.
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Figure S6. Comparison of sensitivity kernels generated with different treatment of

gravitation. (a–c) Sensitivity kernels of Models 2 (M2; g = 10 m s−2), 3 (M3; g = g(r)) and

4 (M4; gravitational potential of perturbed surface is included and g = 10 m s−2); see Figures

3–4 & S3–S5. (d) Comparison of sensitivity kernels from Models 2 and 3; Model 3 kernel is

subtracted from Model 2 kernel. (e–f) Comparisons of kernels from Models 2 & 4, and 3 & 4.
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Figure S7. Models 5–7: Effect of removing shallow structure from analytic sur-

face deflection calculations. (a) Model 5: Predicted water-loaded surface deflection from

propagator matrix solution for Model 2, i.e., as Figure S3b, but with effect of upper 50 km of

density anomaly structure ignored in calculation. (b) Black line = power spectrum of surface

deflection shown in (a); gray line and band = expected dynamic topography from Kaula’s rule

using admittance Z = 12± 3 mGal km−1 (Kaula, 1963). Orange dashed line = expected power

spectrum for water-loaded residual topography from Holdt et al. (2022), via analytical solution

of special case of Equation 4 in the main manuscript. χp = total root-mean-squared difference

between distribution of modeled and theoretical surface deflection power (see Equation 9 in the

main manuscript). (c) Difference between Models 5 and 2, i.e., between panel (a) and original

propagator matrix solution, Model 2, shown in Figure S3b. (d) Spectral correlation coefficient,

rl, between Model 5 and 2; Equation 8 in the main manuscript. (e–h) and (i–l) as (a–d) but for

depth cut-offs of 100 (Model 6) and 200 km (Model 7), respectively.
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Figure S8. Model 11: Numerical simulation of mantle convection with temperature

dependent viscosity, η, and spherical harmonic representation. (a) Present-day viscosity

at surface from Model 11a, expressed as percentage deviation from layer mean, δη, plotted at

grid resolution of 1 degree. (b) Histogram of values shown in (a), weighted by latitude to correct

to equal-area. (c) Black line and gray band = global mean and extreme viscosity values as a

function of depth; pink band = depth slice shown in (a). (d) Model 11b: Spherical harmonic fit

up to degree l = 50 of grid shown in (a), using inverse approach of Hoggard et al. (2016). (e–h)

As (a–d) but for depth slice at 271 km below surface. (i–l) and (m–p) 587 km and 2032 km

depth slices.
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Figure S9. Model 11: Densities predicted by numerical simulation with

temperature-dependent viscosity. (a) Predicted present-day density ρ, at surface (z=0),

from TERRA model. (b) Histogram of values shown in (a), weighted by latitude. (c–d) As panels

(a–b) but for densities at 270 km depth. (e–h) and (i–l) As panels (a–d) for time slices at 10

and 100 Ma (see caption of Figure S1 for expanded description; Figure S8 for viscosity structure;

Equation 7 of this document).
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Figure S10. Model 11: Predictions of surface stresses and deflections from sim-

ulations with temperature dependent viscosity. (a) Predicted present-day surface radial

stress, σrr from numerical TERRA model (Model 11a), plotted at grid resolution of 1 degree. (b)

Model 11b: Spherical harmonic representation of Model 11a up to degree l = 50. (c) Histogram

of values shown in (a), weighted by latitude to correct to equal-area. (d) Histogram of values

shown in panel (b). (e) Power spectrum of surface stresses. (f–i) Calculated water-loaded surface

deflections and associated histograms for full resolution numerical solutions (f, h) and spherical

harmonic representation (g, i). (j) Power spectrum (black) of water-loaded surface deflection

(panel g), Kaula’s rule (grey curve and band), and water-loaded residual topography (orange);

see Figure S2 for expanded description.
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Figure S11. Model 12: Analytical (propagator matrix) predictions of surface de-

flections from simulations with temperature dependent viscosity. Radial viscosity is

calculated using mean (radial) values from numerical model with temperature-dependent viscos-

ity (i.e., Model 11a; Figure S10). (a–d) Present-day, water-loaded, surface deflection calculated

analytically using propagator matrix solution; see Figure S3 for expanded description of panels.

(e–h) Air-loaded deflection and associated metrics.
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Figure S12. Comparing surface deflections calculated using normal stresses from

numeric simulations (Models 1 and 11) and analytic estimates (Models 2 and 12)

with and without temperature dependent viscosity. (a) Difference in predicted sur-

face deflection, ∆h, between numerical simulations with (Model 11a) and without (Model 1a)

temperature-dependent viscosity. Full-resolution surface radial stresses are converted into sur-

face deflections, h, using Equation 2 of the main manuscript. (b) Histogram of values shown

in (a). (c) Pixel-wise comparison of predicted surface deflection between the two models; χ =

root-mean-squared difference between predictions, see Equation 7 of the main manuscript; gray

dashed line = 1:1 ratio. (d–f) as (a–c) but for surface deflection calculated using spherical har-

monic expansion of surface radial stresses (Model 1b vs. 11b). (g) Spectral correlation coefficient,

rl, between model predictions (with and without temperature dependent viscosity; see Equation 8

of the main manuscript). (h–k) as (d–g) but for surface deflections calculated for each model

using the propagator matrix approach (Model 2 vs. 12).
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Figure S13. Models 13–16: Sensitivity of calculated analytic surface deflection

to adjusted radial viscosity. (a) Model 13: Black curve = prediction of present-day radial

mean viscosity from Model 11; red line = adjusted radial profile with viscosity decreased by a

factor of 10 between depths of ∼ 300–500 km; gray dashed lines = viscosity profiles used in

other studies (see Figure 2c). (b) Sensitivity kernel generated using adjusted viscosity shown

in (a). (c) Surface deflection calculated using propagator matrix approach parameterised using

adjusted viscosity profile (red curve in panel a), and resulting sensitivity kernel shown in panel (b).

(d) Difference between propagator matrix solutions generated using adjusted and un-adjusted

viscosity profiles, i.e., panel (c) minus Figure 7b (Model 13 vs. 12). Value of root-mean-squared

difference, χ, (between calculated surface deflections for un-adjusted and adjusted viscosity) is

stated (see Equation 7 of the main manuscript). (e–h) Model 14: As (a–d) but applying an

increase in viscosity of a factor of 10 between ∼ 300–500 km. (i–l) Model 15: As (a–d) but

applying an increase in viscosity of a factor of 100 between ∼ 300–500 km. (m–p) Model 16:

As (a–d) but applying an constant viscosity of ≈ 7.5 × 1022 Pa s (i.e., the mean value of the

reference profile) across all depths.
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Figure S14. Models 17–20: Sensitivity of calculated analytic surface deflection

to adjusted density anomalies. Annotation is as for Figure S13 but for adjusted density

anomalies (red lines in left panels), by directly scaling spherical harmonic coefficients (l > 0) up

or down by a factor of 2 (Models 17 & 19, panels a–c & g–i, respectively) or 1
2
(Models 18 & 20:

d–f & j–l ). Viscosity structure applied in each case is same as that used to generate Figure 7b.

Sensitivity kernels for surface deflection are not shown since they are invariant with respect to

density anomalies, ∆ρ, depending only on viscosity structure.
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Figure S15. Surface deflections and effective densities up to maximum degree 40.

(a–d) Net contribution to present-day water-loaded surface deflection calculated using analytical

approach with maximum l = 40. Depth slices at 45, 135, 360 and 1445 km depth. (e) Great-circle

slice (180°) showing contributions to surface deflection; globe to right shows transect location

and calculated surface deflection, up to maximum l = 40. White circles = 20° intervals; filled

black circle is for orientation; dashed line = 660 km depth contour. (f) White-black curve =

surface deflection along transect shown atop globe in panel (e); red dashed curve = surface

deflection from Model 2. (g) Cartesian version of panel (e). (h) Grey dashed curve = mean

absolute value of density anomalies in Model 12—see top axis for values. Black curve = global

mean amplitude (modulus) of contribution from density structure up to maximum l = 40 to total

surface deflection h.

March 22, 2024, 1:46pm



X - 36 O’MALLEY ET AL.: RECONCILING MANTLE CONVECTION SIMULATIONS

Figure S16. Surface deflections and effective densities up to maximum degree 30.

As Figure S15, but for maximum spherical harmonic degree l = 30.
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Figure S17. Surface deflections and effective densities up to maximum degree 20.

As Figure S15, but for maximum spherical harmonic degree l = 20.
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Figure S18. Surface deflections and effective densities up to maximum degree 10.

As Figure S15, but for maximum spherical harmonic degree l = 10.
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Figure S19. Surface deflections and effective densities up to maximum degree 5.

As Figure S15, but for maximum spherical harmonic degree l = 5.
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