References
Alho, K. (1995). Cerebral generators of mismatch negativity (MMN) and its magnetic counterpart (MMNm) elicited by sound changes.
Ear and Hearing,
16(1), 38–51. https://doi.org/
10.1097/00003446-199502000-00004 Aloe, A. M., & Becker, B. J. (2010). An effect size for regression predictors in meta-analysis. Journal of Educational and Behavioral Statistics, 37(2), 278–297. https://doi.org/10.3102/1076998610396901
Baldeweg, T., Richardson, A., Watkins, S., Foale, C., & Gruzelier, J. (1999). Impaired auditory frequency discrimination in dyslexia detected with mismatch evoked potentials.
Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 45, 495–503.
https://doi.org/10.1002/1531-8249(199904)45:4<495::AID-ANA11>3.0.CO;2-M Barry, R. J., Cocker, K. I., Anderson, J. W., Gordon, E., & Rennie, C. (1992). Does the N100 evoked potential really habituate? Evidence from a paradigm appropriate to a clinical setting.
International Journal of Psychophysiology,
13(1), 9–16.
https://doi.org/10.1016/0167-8760(92)90014-3Boersma, P. (2001). Praat, a system for doing phonetics by computer. Glot International, 5(9–10), 341–345.
Bourbon, W. T., Will, K. W., Gary, H. E., Jr., & Papanicolaou, A. C. (1987). Habituation of auditory event-related potentials: a comparison of self-initiated and automated stimulus trains.
Electroencephalography and Clinical Neurophysiology, 66, 160–166.
https://doi.org/10.1016/0013-4694(87)90185-4 Boutros, N. N., & Belger, A. (1999). Midlatency evoked potentials attenuation and augmentation reflect different aspects of sensory gating. Biological Psychiatry, 45(7), 917–922. https://doi.org/10.1016/s0006-3223(98)00253-4
Boutros, N. N., Belger, A., Campbell, D., D’Souza, C., & Krystal, J. (1999). Comparison of four components of sensory gating in schizophrenia and normal subjects: a preliminary report.
Psychiatry Research,
88(2), 119–130.
https://doi.org/10.1016/s0165-1781(99)00074-8Brunet, D., Murray, M. M., & Michel, C. M. (2011). Spatiotemporal analysis of multichannel EEG: CARTOOL.
Computational Intelligence and Neuroscience, 2011, Article 813870,
https://doi.org/10.1155/2011/813870
Budd, T. W., Barry, R. J., Gordon, E., Rennie, C., & Michie, P. T. (1998). Decrement of the N1 auditory event-related potential with stimulus repetition: habituation vs. refractoriness.
International Journal of Psychophysiology, 31(1), 51–68.
https://doi.org/10.1016/s0167-8760(98)00040-3 Bühler, J. C., Schmid, S., & Maurer, U. (2017). Influence of dialect use on speech perception: a mismatch negativity study.
Language, Cognition and Neuroscience,
32(6), 757–775. https://doi.org/
10.1080/23273798.2016.1272704 Butler, R. A. (1968). Effect of changes in stimulus frequency and intensity on habituation of the human vertex potential.
The Journal of the Acoustical Society of America,
44(4), 945–950.
https://doi.org/10.1121/1.1911233Butler, R. A. (1972). Frequency specificity of the auditory evoked response to simultaneously and successively presented stimuli.
Electroencephalography and Clinical Neurophysiology,
33(3), 277–282.
https://doi.org/10.1016/0013-4694(72)90154-x Carbajal, G. V., & Malmierca, M. S. (2018). The neuronal basis of predictive coding along the auditory pathway: From the subcortical roots to cortical deviance detection. Trends in Hearing, 22. https://doi.org/10.1177/2331216518784822
Chennu, S., Noreika, V., Gueorguiev, D., Blenkmann, A., Kochen, S., Ibanez, A., Owen, A. M., & Bekinschtein, T. A. (2013). Expectation and attention in hierarchical auditory prediction.
Journal of Neuroscience, 33(27), 11194–11205.
https://doi.org/10.1523/jneurosci.0114-13.2013Cooper, R. J., Atkinson, R. J., Clark, R. A., & Michie, P. T. (2013). Event-related potentials reveal modelling of auditory repetition in the brain. International Journal of Psychophysiology, 88(1), 74–81. https://doi.org/10.1016/j.ijpsycho.2013.02.003
Costa-Faidella, J., Baldeweg, T., Grimm, S., & Escera, C. (2011a). Interactions between “what” and “when” in the auditory system: Temporal predictability enhances repetition suppression.
Journal of Neuroscience,
31(50), 18590–18597.
https://doi.org/10.1523/jneurosci.2599-11.2011Costa-Faidella, J., Grimm, S., Slabu, L., Díaz-Santaella, F., & Escera, C. (2011b). Multiple time scales of adaptation in the auditory system as revealed by human evoked potentials.
Psychophysiology,
48(6), 774–783.
https://doi.org/10.1111/j.1469-8986.2010.01144.xCowan, N., Winkler, I., Teder, W., & Näätänen, R. (1993). Memory prerequisites of mismatch negativity in the auditory event-related potential (ERP).
Journal of Experimental Psychology: Learning, Memory, and Cognition,
19(4), 909–921. https://doi.org/
10.1037//0278-7393.19.4.909 Crowley, K. E., & Colrain, I. M. (2004). A review of the evidence for P2 being an independent component process: age, sleep and modality.
Clinical Neurophysiology, 115(4),
732–744.
https://doi.org/10.1016/j.clinph.2003.11.021 Fogarty, J. S., Barry, R. J., & Steiner, G. Z. (2020). The first 250 ms of auditory processing: No evidence of early processing negativity in the Go/NoGo task.
Scientific Reports, 10(1), Article 4041.
https://doi.org/10.1038/s41598-020-61060-9Freedman, R., Adler, L. E., Gerhardt, G. A., Waldo, M., Baker, N., Rose, G. M., Drebing, C., Nagamoto, H., Bickford-Wimer, P., & Franks, R. (1987). Neurobiological studies of sensory gating in schizophrenia. Schizophrenia Bulletin, 13(4), 669–678. https://doi.org/10.1093/schbul/13.4.669
Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1456), 815–836. https://doi.org//10.1098/rstb.2005.1622
Fruhstorfer, H., Soveri, P., & Järvilehto, T. (1970). Short-term habituation of the auditory evoked response in man. Electroencephalography and Clinical Neurophysiology, 28(2), 153–161. https://doi.org/10.1016/0013-4694(70)90183-5
Garrido, M. I., Friston, K. J., Kiebel, S. J., Stephan, K. E., Baldeweg, T., & Kilner, J. M. (2008). The functional anatomy of the MMN: a DCM study of the roving paradigm.
Neuroimage, 42(2), 936–944.
https://doi.org/10.1016/j.neuroimage.2008.05.018 Garrido, M. I., Kilner, J. M., Kiebel, S. J., Stephan, K. E., Baldeweg, T., & Friston, K. J. (2009a). Repetition suppression and plasticity in the human brain.
Neuroimage, 48(1), 269– 279.
https://www.10.1016/j.neuroimage.2009.06.034 Garrido, M. I., Kilner, J. M., Stephan, K. E., & Friston, K. J. (2009b). The mismatch negativity: a review of underlying mechanisms.
Clinical Neurophysiology, 120(3), 453–463.
https://doi.org/10.1016/j.clinph.2008.11.029 Grill-Spector, K., Henson, R., & Martin, A. (2006). Repetition and the brain: neural models of stimulus-specific effects. Trends in Cognitive Sciences, 10(1), 14–23. https://doi.org/10.1016/j.tics.2005.11.006
Haenschel, C., Vernon, D. J., Dwivedi, P., Gruzelier, J. H., & Baldeweg, T. (2005). Event-related brain potential correlates of human auditory sensory memory-trace formation.
Journal of Neuroscience, 25(45), 10494–10501.
https://doi.org/10.1523/JNEUROSCI.1227-05.2005 Hari, R., Kaila, K., Katila, T., Tuomisto, T., & Varpula, T. (1982).
Interstimulus interval dependence of the auditory vertex response and its magnetic counterpart: implications for their neural generation. Electroencephalography and Clinical Neurophysiology, 54(5), 561–569.
https://doi.org/10.1016/0013-4694(82)90041-4 Hari, R., Sams, M., & Järvilehto, T. (1979). Auditory evoked transient and sustained potentials in the human EEG: I. Effects of expectation of stimuli. Psychiatry Research, 1(3), 297–306. https://doi.org/10.1016/0165-1781(79)90011-8
Herholz, S. C., Lappe, C., & Pantev, C. (2009). Looking for a pattern: an MEG study on the abstract mismatch negativity in musicians and nonmusicians.
BMC Neuroscience, 10, Article 42.
https://doi.org/10.1186/1471-2202-10-42 Holm, S. (1979). A simple sequentially rejective multiple test procedure.
Scandinavian Journal of Statistics, 6(2), 65–70. https://doi.org/
10.2307/4615733Jääskeläinen, I. P., Ahveninen, J., Bonmassar, G., Dale, A. M., Ilmoniemi, R. J., Levänen, S., Lin, F. S., May, P., Melcher, J., Stufflebeam, S., Tiitine, H., & Belliveau, J. W. (2004). Human posterior auditory cortex gates novel sounds to consciousness.
Proceedings of the National Academy of Sciences, 101(17),
6809–6814.
https://doi.org/10.1073/pnas.0303760101 Jaffe-Dax, S., Frenkel, O., & Ahissar, M. (2017). Dyslexics’ faster decay of implicit memory for sounds and words is manifested in their shorter neural adaptation.
Elife, 6, Article e20557.
https://doi.org/10.7554/eLife.20557 Jost, L. B., Eberhard-Moscicka, A. K., Pleisch, G., Heusser, V., Brandeis, D., Zevin, J. D., & Maurer, U. (2015). Native and non-native speech sound processing and the neural mismatch responses: A longitudinal study on classroom-based foreign language learning.
Neuropsychologia,
72, 94–104. https://doi.org/
10.1016/j.neuropsychologia.2015.04.029Koenig, T., Kottlow, M., Stein, M., & Melie-García, L. (2011). Ragu: a free tool for the analysis of EEG and MEG event-related scalp field data using global randomization statistics.
Computational Intelligence and Neuroscience, 2011. Article 938925. https://doi.org/10.1155/2011/938925
Kujala, T., & Näätänen, R. (2001). The mismatch negativity in evaluating central auditory dysfunction in dyslexia. Neuroscience & Biobehavioral Reviews, 25(6), 535–543. https://doi.org/10.1016/s0149-7634(01)00032-x
Kuravi, P., & Vogels, R. (2017). Effect of adapter duration on repetition suppression in inferior temporal cortex. Scientific Reports, 7(1), Article 3162. https://doi.org/10.1038/s41598-017-03172-3
Lanting, C. P., Briley, P. M., Sumner, C. J., & Krumbholz, K. (2013). Mechanisms of adaptation in human auditory cortex.
Journal of Neurophysiology,
110(4), 973–983.
https://doi.org/10.1152/jn.00547.2012Lecaignard, F., Bertrand, O., Caclin, A., & Mattout, J. (2021). Neurocomputational underpinnings of expected surprise. The Journal of Neuroscience, 42(3), 474–486. https://doi.org/10.1523/jneurosci.0601-21.2021
Loveless, N. (1983). The orienting response and evoked potentials in man. In D. Siddle (Ed.), Orienting and Habituation: Perspectives in Human Research (pp. 71–103). John Wiley and Sons.
May, P., Tiitinen, H., Ilmoniemi, R. J., Nyman, G., Taylor, J. G., & Näätänen, R. (1999). Frequency change detection in human auditory cortex. Journal of Computational Neuroscience, 6(2), 99–120. https://doi.org/10.1023/A:1008896417606 Michel, C. M., & Murray, M. M. (2012). Towards the utilization of EEG as a brain imaging tool. Neuroimage, 61(2), 371–385. https://doi.org/10.1016/j.neuroimage.2011.12.039
Näätänen, R., Tervaniemi, M., Sussman, E., Paavilainen, P., & Winkler, I. (2001). ‘Primitive intelligence’ in the auditory cortex.
Trends in Neurosciences, 24(5), 283–288.
https://doi.org/10.1016/s0166-2236(00)01790-2 Özesmio, Ç., Dolu, N., Süer, C., Gölgelio, A., & Aşçioglu, M. (2000). Habituation of the auditory evoked potential in a short interstimulus interval paradigm.
International Journal of Neuroscience, 105(1-4), 87–95.
https://doi.org/10.3109/00207450009003268 Pereira, D. R., Cardoso, S., Ferreira-Santos, F., Fernandes, C., Cunha-Reis, C., Paiva, T. O., Almeida, P. R., Silveira, C., Barbosa, F., & Marques-Teixeira, J. (2014). Effects of inter-stimulus interval (ISI) duration on the N1 and P2 components of the auditory event-related potential. International Journal of Psychophysiology, 94(3), 311–318. https://doi.org/10.1016/j.ijpsycho.2014.09.012
Peter, B., McCollum, H., Daliri, A., & Panagiotides, H. (2019). Auditory gating in adults with dyslexia: an ERP account of diminished rapid neural adaptation.
Clinical Neurophysiology, 130(11),
2182–2192.
https://doi.org/10.1016/j.clinph.2019.07.028 Polich, J. (1986). P300 development from auditory stimuli. Psychophysiology, 23(5), 590–597. https://doi.org/10.1111/j.1469-8986.1986.tb00677.x
Recasens, M., Leung, S., Grimm, S., Nowak, R., & Escera, C. (2015). Repetition suppression and repetition enhancement underlie auditory memory-trace formation in the human brain: an MEG study.
NeuroImage,
108, 75–86.
https://doi.org/10.1016/j.neuroimage.2014.12.031Ringo, J. L. (1996). Stimulus specific adaptation in inferior temporal and medial temporal cortex of the monkey. Behavioural Brain Research, 76(1–2), 191–197. https://doi.org/10.1016/0166-4328(95)00197-2
Rosburg, T., & Mager, R. (2021). The reduced auditory evoked potential component N1 after repeated stimulation: Refractoriness hypothesis vs. habituation account.
Hearing Research,
400, Article 108140.
https://doi.org/10.1016/j.heares.2020.108140Rosburg, T., & Sörös, P. (2016). The response decrease of auditory evoked potentials by repeated stimulation – Is there evidence for an interplay between habituation and sensitization? Clinical Neurophysiology, 127(1), 397–408. https://doi.org/10.1016/j.clinph.2015.04.071
Rosburg, T., Trautner, P., Boutros, N. N., Korzyukov, O. A., Schaller, C., Elger, C. E., & Kurthen, M. (2006). Habituation of auditory evoked potentials in intracranial and extracranial recordings.
Psychophysiology, 43(2),
137–144.
https://doi.org/10.1111/j.1469-8986.2006.00391.x Rosburg, T., Weigl, M., & Mager, R. (2022). No evidence for auditory N1 dishabituation in healthy adults after presentation of rare novel distractors.
International Journal of Psychophysiology,
174, 1–8.
https://doi.org/10.1016/j.ijpsycho.2022.01.013Rosburg, T., Zimmerer, K., & Huonker, R. (2010). Short-term habituation of auditory evoked potential and neuromagnetic field components in dependence of the interstimulus interval. Experimental Brain Research, 205(4), 559–570. https://doi.org/10.1007/s00221-010-2391-3
Sambeth, A., Maes, J. H. R., Quiroga, R. Q., & Coenen, A. M. L. (2004). Effects of stimulus repetitions on the event-related potential of humans and rats. International Journal of Psychophysiology, 53(3), 197–205. https://doi.org/10.1016/j.ijpsycho.2004.04.004
Symonds, R. M., Lee, W. W., Kohn, A., Schwartz, O., Witkowski, S., & Sussman, E. S. (2017). Distinguishing neural adaptation and predictive coding hypotheses in auditory change detection.
Brain Topography, 30(1), 136–148.
https://doi.org/10.1007/s10548-016-0529-8 Todorovic, A., & de Lange, F. P. (2012). Repetition suppression and expectation suppression are dissociable in time in early auditory evoked fields.
Journal of Neuroscience, 32(39), 13389–13395.
https://doi.org/10.1523/JNEUROSCI.2227-12.2012 Todorovic, A., van Ede, F., Maris, E., & de Lange, F. P. (2011). Prior expectation mediates neural adaptation to repeated sounds in the auditory cortex: an MEG study
. Journal of Neuroscience, 31(25), 9118–9123.
https://doi.org/10.1523/JNEUROSCI.1425-11.2011 Wacongne, C., Labyt, E., van Wassenhove, V., Bekinschtein, T., Naccache, L., & Dehaene, S. (2011). Evidence for a hierarchy of predictions and prediction errors in human cortex.
Proceedings of the National Academy of Sciences, 108(51), 20754–20759.
https://doi.org/10.1073/pnas.1117807108 Woods, D. L. (1995). The component structure of the N1 wave of the human auditory evoked potential. Electroencephalography and Clinical Neurophysiology-Supplements Only, 44, 102–109.
Wunderlich, J. L., & Cone-Wesson, B. K. (2001). Effects of stimulus frequency and complexity on the mismatch negativity and other components of the cortical auditory-evoked potential.
The Journal of the Acoustical Society of America,
109(4), 1526–1537.
https://doi.org/10.1121/1.1349184 Author Notes
Funding: This work was supported by the General Research Fund of the
Research Grants Council of Hong Kong awarded to the corresponding author
(RGC-GRF 14600919).
Acknowledgments: This article is based on M.Phil thesis submitted by the first author to the Chinese University of Hong Kong. We thank Mr. Oscar Wong Kwun Pok for his assistance with some of the data collection in this study.