References
Airik, M., McCourt, B., Ozturk, T. T., Huynh, A. B., Zhang, X., Tometich, J. T., . . . Airik, R. (2022). Mitigation of portal fibrosis and cholestatic liver disease in ANKS6-deficient livers by macrophage depletion. Faseb j , 36 (2), e22157.https://doi.org/10.1096/fj.202101387R
Casini, A., Ceni, E., Salzano, R., Biondi, P., Parola, M., Galli, A., . . . Surrenti, C. (1997). Neutrophil-derived superoxide anion induces lipid peroxidation and stimulates collagen synthesis in human hepatic stellate cells: role of nitric oxide. Hepatology , 25 (2), 361-367.https://doi.org/10.1053/jhep.1997.v25.pm0009021948
Cheng, D., Chai, J., Wang, H., Fu, L., Peng, S., & Ni, X. (2021). Hepatic macrophages: Key players in the development and progression of liver fibrosis. Liver Int , 41 (10), 2279-2294.https://doi.org/10.1111/liv.14940
Chigbu, D. I., Loonawat, R., Sehgal, M., Patel, D., & Jain, P. (2019). Hepatitis C Virus Infection: Host⁻Virus Interaction and Mechanisms of Viral Persistence. Cells , 8 (4).https://doi.org/10.3390/cells8040376
Choi, W. M., Ryu, T., Lee, J. H., Shim, Y. R., Kim, M. H., Kim, H. H., . . . Jeong, W. I. (2021). Metabotropic Glutamate Receptor 5 in Natural Killer Cells Attenuates Liver Fibrosis by Exerting Cytotoxicity to Activated Stellate Cells. Hepatology , 74 (4), 2170-2185.https://doi.org/10.1002/hep.31875
Duan, S., Li, X., Fan, G., & Liu, R. (2022). Targeting bile acid signaling for the treatment of liver diseases: From bench to bed.Biomed Pharmacother , 152 , 113154.https://doi.org/10.1016/j.biopha.2022.113154
Fehniger, T. A., Carson, W. E., Mrózek, E., & Caligiuri, M. A. (1997). Stem cell factor enhances interleukin-2-mediated expansion of murine natural killer cells in vivo. Blood , 90 (9), 3647-3653.
Guicciardi, M. E., Trussoni, C. E., Krishnan, A., Bronk, S. F., Lorenzo Pisarello, M. J., O’Hara, S. P., . . . Gores, G. J. (2018). Macrophages contribute to the pathogenesis of sclerosing cholangitis in mice.J Hepatol , 69 (3), 676-686.https://doi.org/10.1016/j.jhep.2018.05.018
Guo, M., Wang, Z., Dai, J., Fan, H., Yuan, N., Gao, L., . . . Cheng, X. (2022). Glycyrrhizic acid alleviates liver fibrosis in vitro and in vivo via activating CUGBP1-mediated IFN-γ/STAT1/Smad7 pathway.Phytomedicine , 112 , 154587.https://doi.org/10.1016/j.phymed.2022.154587
Huang, Y., Zhou, M., Li, C., Chen, Y., Fang, W., Xu, G., & Shi, X. (2016). Picroside II protects against sepsis via suppressing inflammation in mice. Am J Transl Res , 8 (12), 5519-5531.
Kisseleva, T., & Brenner, D. (2021). Molecular and cellular mechanisms of liver fibrosis and its regression. Nat Rev Gastroenterol Hepatol , 18 (3), 151-166.https://doi.org/10.1038/s41575-020-00372-7
Li, T., Xu, L., Zheng, R., Wang, X., Li, L., Ji, H., & Hu, Q. (2020). Picroside II protects against cholestatic liver injury possibly through activation of farnesoid X receptor. Phytomedicine , 68 , 153153.https://doi.org/10.1016/j.phymed.2019.153153
Li, Y. J., Liu, R. P., Ding, M. N., Zheng, Q., Wu, J. Z., Xue, X. Y., . . . Li, X. (2022). Tetramethylpyrazine prevents liver fibrotic injury in mice by targeting hepatocyte-derived and mitochondrial DNA-enriched extracellular vesicles. Acta Pharmacol Sin , 43 (8), 2026-2041.https://doi.org/10.1038/s41401-021-00843-w
Liu, R., Li, X., Zhu, W., Wang, Y., Zhao, D., Wang, X., . . . Zhou, H. (2019). Cholangiocyte-Derived Exosomal Long Noncoding RNA H19 Promotes Hepatic Stellate Cell Activation and Cholestatic Liver Fibrosis.Hepatology , 70 (4), 1317-1335.https://doi.org/10.1002/hep.30662
Liu, Y., Chen, K., Li, F., Gu, Z., Liu, Q., He, L., . . . Feng, W. (2020). Probiotic Lactobacillus rhamnosus GG Prevents Liver Fibrosis Through Inhibiting Hepatic Bile Acid Synthesis and Enhancing Bile Acid Excretion in Mice. Hepatology , 71 (6), 2050-2066.https://doi.org/10.1002/hep.30975
Ma, P. F., Gao, C. C., Yi, J., Zhao, J. L., Liang, S. Q., Zhao, Y., . . . Qin, H. Y. (2017). Cytotherapy with M1-polarized macrophages ameliorates liver fibrosis by modulating immune microenvironment in mice. J Hepatol , 67 (4), 770-779.https://doi.org/10.1016/j.jhep.2017.05.022
Ma, S., Wang, X., Lai, F., & Lou, C. (2020). The beneficial pharmacological effects and potential mechanisms of picroside II: Evidence of its benefits from in vitro and in vivo. Biomed Pharmacother , 130 , 110421.https://doi.org/10.1016/j.biopha.2020.110421
Martí-Rodrigo, A., Alegre, F., Moragrega Á, B., García-García, F., Martí-Rodrigo, P., Fernández-Iglesias, A., . . . Blas-García, A. (2020). Rilpivirine attenuates liver fibrosis through selective STAT1-mediated apoptosis in hepatic stellate cells. Gut , 69 (5), 920-932.https://doi.org/10.1136/gutjnl-2019-318372
Melhem, A., Muhanna, N., Bishara, A., Alvarez, C. E., Ilan, Y., Bishara, T., . . . Safadi, R. (2006). Anti-fibrotic activity of NK cells in experimental liver injury through killing of activated HSC. J Hepatol , 45 (1), 60-71.https://doi.org/10.1016/j.jhep.2005.12.025
Parola, M., & Pinzani, M. (2019). Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues. Mol Aspects Med ,65 , 37-55.https://doi.org/10.1016/j.mam.2018.09.002
Rao, J., Wang, H., Ni, M., Wang, Z., Wang, Z., Wei, S., . . . Lu, L. (2022). FSTL1 promotes liver fibrosis by reprogramming macrophage function through modulating the intracellular function of PKM2.Gut , 71 (12), 2539-2550.https://doi.org/10.1136/gutjnl-2021-325150
Ravichandran, G., Neumann, K., Berkhout, L. K., Weidemann, S., Langeneckert, A. E., Schwinge, D., . . . Tiegs, G. (2019). Interferon-γ-dependent immune responses contribute to the pathogenesis of sclerosing cholangitis in mice. J Hepatol , 71 (4), 773-782.https://doi.org/10.1016/j.jhep.2019.05.023
Scozzi, D., & Gelman, A. E. (2023). Avoid being trapped by your liver: ischemia-reperfusion injury in liver transplant triggers S1P-mediated NETosis. J Clin Invest , 133 (3).https://doi.org/10.1172/jci167012
Shah, R. A., & Kowdley, K. V. (2020). Current and potential treatments for primary biliary cholangitis. Lancet Gastroenterol Hepatol ,5 (3), 306-315.https://doi.org/10.1016/s2468-1253(19)30343-7
Shi, T., Malik, A., Yang Vom Hofe, A., Matuschek, L., Mullen, M., Lages, C. S., . . . Miethke, A. G. (2022). Farnesoid X receptor antagonizes macrophage-dependent licensing of effector T lymphocytes and progression of sclerosing cholangitis. Sci Transl Med , 14 (675), eabi4354.https://doi.org/10.1126/scitranslmed.abi4354
Sliz, A., Locker, K. C. S., Lampe, K., Godarova, A., Plas, D. R., Janssen, E. M., . . . Hoebe, K. (2019). Gab3 is required for IL-2- and IL-15-induced NK cell expansion and limits trophoblast invasion during pregnancy. Sci Immunol , 4 (38).https://doi.org/10.1126/sciimmunol.aav3866
Tacke, F. (2017). Targeting hepatic macrophages to treat liver diseases.J Hepatol , 66 (6), 1300-1312.https://doi.org/10.1016/j.jhep.2017.02.026
Tacke, F., & Zimmermann, H. W. (2014). Macrophage heterogeneity in liver injury and fibrosis. J Hepatol , 60 (5), 1090-1096.https://doi.org/10.1016/j.jhep.2013.12.025
Taylor, A. E., Carey, A. N., Kudira, R., Lages, C. S., Shi, T., Lam, S., . . . Miethke, A. G. (2018). Interleukin 2 Promotes Hepatic Regulatory T Cell Responses and Protects From Biliary Fibrosis in Murine Sclerosing Cholangitis. Hepatology , 68 (5), 1905-1921.https://doi.org/10.1002/hep.30061
Tian, X., Wang, Y., Lu, Y., Wang, W., Du, J., Chen, S., . . . Xiao, Y. (2021). Conditional depletion of macrophages ameliorates cholestatic liver injury and fibrosis via lncRNA-H19. Cell Death Dis ,12 (7), 646.https://doi.org/10.1038/s41419-021-03931-1
Tsuchida, T., & Friedman, S. L. (2017). Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol , 14 (7), 397-411.https://doi.org/10.1038/nrgastro.2017.38
Wang, Y., Hong, Y., Zhang, C., Shen, Y., Pan, Y. S., Chen, R. Z., . . . Chen, Y. H. (2019). Picroside II attenuates hyperhomocysteinemia-induced endothelial injury by reducing inflammation, oxidative stress and cell apoptosis. J Cell Mol Med , 23 (1), 464-475.https://doi.org/10.1111/jcmm.13949
Wen, J., Zhou, Y., Wang, J., Chen, J., Yan, W., Wu, J., . . . Cai, W. (2017). Interactions between Th1 cells and Tregs affect regulation of hepatic fibrosis in biliary atresia through the IFN-γ/STAT1 pathway.Cell Death Differ , 24 (6), 997-1006.https://doi.org/10.1038/cdd.2017.31
Wu, J., Zhang, C., He, T., Zhang, S., Wang, Y., Xie, Z., . . . Cao, L. (2023). Polyunsaturated fatty acids drive neutrophil extracellular trap formation in nonalcoholic steatohepatitis. Eur J Pharmacol ,945 , 175618.https://doi.org/10.1016/j.ejphar.2023.175618
Zhang, D., Chen, G., Manwani, D., Mortha, A., Xu, C., Faith, J. J., . . . Frenette, P. S. (2015). Neutrophil ageing is regulated by the microbiome. Nature , 525 (7570), 528-532.https://doi.org/10.1038/nature15367
Zhou, Z., Xu, M. J., Cai, Y., Wang, W., Jiang, J. X., Varga, Z. V., . . . Gao, B. (2018). Neutrophil-Hepatic Stellate Cell Interactions Promote Fibrosis in Experimental Steatohepatitis. Cell Mol Gastroenterol Hepatol , 5 (3), 399-413.https://doi.org/10.1016/j.jcmgh.2018.01.003