8. Declaration of authors
The authors declare that there is no conflict of interest.
9. References
  1. Musa N, Wei LS, Wee W (2008). Phenotypic and genotypic characteristics of Vibrio harveyi isolated from black tiger shimp (Penaeus monodon). World Appl. Sci. J. 3(6), 885-902.
  2. Goodfellow M. and Haynes J.A. (1984). Actinomycetes in marine sediments. Ortiz-Ortiz L., Bojalil L. F., Yakoleff V. (Eds) Biological, Biochemical and Biomedical Aspects of Actinomycetes Academic Press Orlando. 453–472.
  3. Strohl W (2004). Antimicrobials. Microbial Diversity and Bioprospecting (Bull AT, ed), pp. 288–313. ASM Press, Washington, DC.  https://doi.org/10.1128/9781555817770.ch31.
  4. Berdy J. Bioactive microbial metabolites. J Antibiot (Tokyo). 2005 Jan;58(1):1-26. doi: 10.1038/ja.2005.1. Erratum in: J Antibiot (Tokyo). 2005; 58(4):C-1.
  5. Alam K, Mazumder A, Sikdar S, Zhao Y-M, Hao J, Song C, Wang Y, Sarkar R, Islam S, Zhang Y and Li A (2022). Streptomyces: The biofactory of secondary metabolites. Front. Microbiol. 13:968053. doi: 10.3389/fmicb.2022.968053.
  6. Oldfield C, Wood NT, Gilbert SC, Murray FD, Faure FR. Desulphurisation of benzothiophene and dibenzothiophene by actinomycete organisms belonging to the genus Rhodococcus, and related taxa. Antonie Van Leeuwenhoek. 1998; 74(1-3):119-132. doi: 10.1023/a:1001724516342.
  7. You, J. L., Cao, L. X., Liu, G. F. et al. Isolation and characterization of actinomycetes antagonistic to pathogenic Vibrio spp. from nearshore marine sediments. World J Microbiol Biotechnol 21(5), 679-682 (2005). https://doi.org/10.1007/s11274-004-3851-3.
  8. You J, Xue X, Cao L, Lu X, Wang J, Zhang L, Zhou S. Inhibition of Vibrio biofilm formation by a marine actinomycete strain A66. Appl Microbiol Biotechnol. 2007; 76(5):1137-1144. doi: 10.1007/s00253-007-1074-x.
  9. Aharonowitz Y, Demain AL. Carbon catabolite regulation of cephalosporin production in Streptomyces clavuligerus. Antimicrob Agents Chemother. 1978; 14(2):159-64. doi: 10.1128/AAC.14.2.159.
  10. Martin JF, Demain AL. Control of antibiotic biosynthesis. Microbiol Rev. 1980; 44(2):230-251. doi: 10.1128/mr.44.2.230-251.1980.
  11. Pereda A, Summers RG, Stassi DL, Ruan X, Katz L. The loading domain of the erythromycin polyketide synthase is not essential for erythromycin biosynthesis in Saccharopolyspora erythraea. Microbiology. 1998; 144 (Pt 2):543-553. doi: 10.1099/00221287-144-2-543.
  12. Box GEP, Wilson KB (1951). On the experimental attainment of optimum conditions. J. Roy. Stat. Soc. B. 13, 1-45.
  13. Singh I.S.B. and Philip R. (1993). Comparative efficiency of three media in isolating heterotrophic bacteria from the larvae and larval rearing water of Macrobrachium rosenbergii. Indian Journal of Microbiology, 33, 67–69.
  14. Lane, D.J. (1991) 16S/23S rRNA Sequencing. In: Stackebrandt, E. and Goodfellow, M., Eds., Nucleic Acid Techniques in Bacterial Systematics, John Wiley and Sons, Chichester, 115-175.
  15. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990; 215(3):403-10. doi: 10.1016/S0022-2836(05)80360-2.
  16. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987; 4(4):406-425. doi: 10.1093/oxfordjournals.molbev.a040454.
  17. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol. 2021; 38(7):3022-3027. doi: 10.1093/molbev/msab120.
  18. Augustine D, Jacob JC, Philip R (2015). Exclusion of Vibrio spp. by an antogonestic marine actinomycete Streptomyces rubrolavendulae M56, Aquaculture Research, 1–10. https://doi.org/10.1111/are.12746.
  19. Baltz RH. Marcel Faber Roundtable: is our antibiotic pipeline unproductive because of starvation, constipation or lack of inspiration? J Ind Microbiol Biotechnol. 2006 Jul;33(7):507-13. doi: 10.1007/s10295-005-0077-9.
  20. Robertsen HL, Musiol-Kroll EM. Actinomycete-derived polyketides as a source of antibiotics and lead structures for the development of new antimicrobial drugs. Antibiotics (Basel). 2019; 8(4):157. doi: 10.3390/antibiotics8040157.
  21. Thakur DA, Yadav BK, Gogoi TC, Bora TC (2007). Isolation and screening of Streptomyces in soil of protected forest areas from the states of Assam and Tirupura, India, for antimicrobial metabolites. J Mycol Med. 17(4), 242-249. https://doi.org/10.1016/j.mycmed.2007.08.001.
  22. Abo-Shadi M. A., Sidkey N. M. and Al-Mutrafy A. M. (2010). Antimicrobial agent producing microbes from some soils’ rhizosphere in Al-Madinah Al-Munawwarah, KSA. Journal of American Science 6 (10) 915- 925.
  23. Devi NKA, Jeyarani M, Balakrishnan K (2006). Isolation and identification of marine actinomycetes and their potential in antimicrobial activity. Pak. J. Biol. Sci. 9, 470-472.
  24. Dhanasekaran D, Thauddin N, Panneerselvam A (2009). Distribution and ecobiology of antagonistic Streptomyces from agriculture and coastal soil in Tamilnadu, India. Journal of Culture Collections. 6:10–20.
  25. Valli S, Suvathi SS, Aysha OS, Nirmala P, Vinoth KP, Reena A. Antimicrobial potential of Actinomycetes species isolated from marine environment. Asian Pac J Trop Biomed. 2012; 2(6):469-473. doi: 10.1016/S2221-1691(12)60078-1.
  26. Okazaki T, Okami Y. Studies on marine microorganisms. II. Actinomycetes in Sagami Bay and their antibiotic substances. J Antibiot (Tokyo). 1972; 25(8):461-466.
  27. Sujatha P, Bapi Raju KV, Ramana T. Studies on a new marine streptomycete BT-408 producing polyketide antibiotic SBR-22 effective against methicillin resistant Staphylococcus aureus. Microbiol Res. 2005; 160(2):119-126. doi: 10.1016/j.micres.2004.10.006.
  28. Fguira LFB, Fotso S, Ameur-Mehdi RB, Mellouli L, Laatsch H. Purification and structure elucidation of antifungal and antibacterial activities of newly isolated Streptomyces sp. strain US80. Res Microbiol. 2005; 156(3):341-7. doi: 10.1016/j.resmic.2004.10.006.
  29. Iwai Y, Omura S. Culture conditions for screening of new antibiotics. J Antibiot (Tokyo). 1982; 35(2):123-41. doi: 10.7164/antibiotics.35.123.
  30. Bode HB, Bethe B, Höfs R, Zeeck A. Big effects from small changes: possible ways to explore nature’s chemical diversity. Chembiochem. 2002; 3(7):619-27. doi: 10.1002/1439-7633(20020703)3:7<619::AID-CBIC619>3.0.CO;2-9.
  31. Wang YH, Yang B, Ren J, Dong ML, Liang D, Xu AL (2003). Optimization of medium composition for the production of clavulanic acid by Streptomyces clavuligerus. Process Biochem. 40(3-4), 1116-1166. https://doi.org/10.1016/j.procbio.2004.04.010.
  32. Gesheva V, Ivanova V, Gesheva R. Effects of nutrients on the production of AK-111-81 macrolide antibiotic by Streptomyces hygroscopicus. Microbiol Res. 2005;160(3):243-8. doi: 10.1016/j.micres.2004.06.005.
  33. Bibb MJ. Regulation of secondary metabolism in Streptomycetes. Curr Opin Microbiol. 2005; 8(2):208-15. doi: 10.1016/j.mib.2005.02.016.
  34. Schiewe HJ, Zeeck A. Cineromycins, gamma-butyrolactones and ansamycins by analysis of the secondary metabolite pattern created by a single strain of Streptomyces. J Antibiot (Tokyo). 1999; 52(7):635-42. doi: 10.7164/antibiotics.52.635.
  35. Defoirdt T, Boon N, Sorgeloos P, Verstraete W, Bossier P. Alternatives to antibiotics to control bacterial infections: luminescent vibriosis in aquaculture as an example. Trends Biotechnol. 2007; (10):472-9. doi: 10.1016/j.tibtech.2007.08.001.
  36. Moriarty DJW (1998). Control of luminous Vibrio species in penaeid aquaculture ponds. Aquaculture. 164(1-4), 351-358. https://doi.org/10.1016/S0044-8486(98)00199-9.
  37. Rengpipat S, Phianphak W, Piyatiratitivoraku S, Menasveta P (1998). Effects of a probiotic bacterium on black tiger shrimp Penaeus monodon survival and growth. Aquaculture. 167(3-4), 301–313. https://doi.org/10.1016/S0044-8486(98)00305-6.
  38. Vaseeharan B, Ramasamy P. Control of pathogenic Vibrio spp. by Bacillus subtilis BT23, a possible probiotic treatment for black tiger shrimp Penaeus monodon. Lett Appl Microbiol. 2003; 36(2):83-87. doi: 10.1046/j.1472-765x.2003.01255.x.
  39. Decamp, O; Moriarty, DJW; Lavens P (2008). Probiotics for shrimp larviculture: review of field data from Asia and Latin America. Aquaculture Research, 39(4), 334–338. doi:10.1111/j.1365-2109.2007.01664.x.
  40. Mazón-Suástegui JM, Salas-Leiva JS, Medina-Marrero R, Medina-García R, García-Bernal M. Effect of Streptomyces probiotics on the gut microbiota of Litopenaeus vannamei challenged with Vibrio parahaemolyticus. Microbiologyopen. 2020; 9(2):e967. doi: 10.1002/mbo3.967.
  41. Kumar SS, Philip R, Achuthankutty C (2006). Antiviral property of marine actinomycetes against white spot syndrome virus in penaeid shrimps, Current Science, 91(6), 807-811.
  42. Aguilera-Rivera, D., Prieto-Davó, A., Escalante, K., Chávez, C., Cuzon, G., Gaxiola, G., 2014. Probiotic effect of floc on Vibrios in the Pacific white shrimp Litopenaeus vannamei. Aquaculture 424–425, 215–219. https://doi.org/10.1016/j.aquaculture. 2014.01.008.
  43. Krummenauer, D., Poersch, L., Romano, L. A., Lara, G. R., Encarnação, P. and Wasielesky Jr. W. (2014). The Effect of Probiotics in a Litopenaeus vannamei Biofloc Culture System Infected with Vibrio parahaemolyticus, Journal of Applied Aquaculture, 26:4, 370-379, DOI: 10.1080/10454438.2014.965575.
  44. Sridevi K, Dhevendaran K. Streptomycetes from marine seaweeds: Their antimicrobial and antibiotic potential. Int J Appl Biol Pharm. 2014; 5(4); ISSN: 0976-4550, 74-79.
  45. Quiroz-Guzmán E, Vázquez-Juárez R, Luna-González A, Balcázar JL, Barajas-Sandoval DR, Martínez-Díaz SF. Administration of probiotics improves the brine shrimp production and prevents detrimental effects of pathogenic Vibrio species. Mar Biotechnol (NY). 2018; 20(4):512-519. doi: 10.1007/s10126-018-9822-8.
  46. Du S, Chen W, Yao Z, Huang X, Chen C, Guo H, Zhang D. Enterococcus faecium are associated with the modification of gut microbiota and shrimp post-larvae survival. Anim Microbiome. 2021; 3(1):88. doi: 10.1186/s42523-021-00152-x.