Appendix A. Abbreviations
AC Activated carbon
AER Anion exchange resin
APTS 3-[2-(2-aminoethylamino) ethylamino] propyl-trimethoxysilane
APTES 3-aminopropyl triethoxysilane
APTMS 3-aminopropyl trimethoxysilane
ATMP Amino tris(methylene phosphonic acid)
ATS Aluminum silicotitanates
BHPA N-Benzoyl-N-phenylhydroxylamine
BPG Bis(phosphonomethyl) glycine
CER Cation exchange resin
CN Coordination number
CNT Carbon nanotube
COK Centre for Research Chemistry and Catalysis
Cyanex 272 Bis(2,4,4-trimethylpentyl)-phosphinic acid
DETA Diethylenetriamine
DGA Diglycolamide
DMF N,N-dimethylformamide
DOODA 3,6-dioxaoctanediamidopropyl
DTPA Diethylenetriaminepentaacetic acid
DTPADA Diethylenetriaminepentaacetic dianhydride
EDTA Ethylenediaminetetraacetic acid
FDGA Furan-2,4-diamidopropyltriethoxysilane
GO Graphene oxide
GONS Graphene oxide nanosheet
HDEHP Bis(2-ethylhexyl) hydrogen phosphate
HREE Heavy rare earth element
IER Ion exchange resin
IIP Ion-imprinted polymer
KIT Korean Advance Institute of Science and Technology
LREE Light rare earth element
MCM Mobil Composition of Matter
MIP Molecular imprinted polymer
MOF Metal-organic framework
MSF Mesoporous silica foam
MWCNT Multi-walled carbon nanotube
OMC Ordered mesoporous carbon
OMS Ordered mesoporous silica
PA Phthaloyl diamide
PAA Phosphonoacetic acid
PAN 1-(2-pyridylazo)-2-naphthol
PC88A 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester
PDDA Phenylenedioxy diamide
PES Polyethersulfone
PMIDA N-(phosphonomethyl)iminodiacetic acid
PVA Polyvinyl alcohol
REE Rare earth element
SBA Santa Barbara Amorphous
SIL Supported ionic liquid
SIR Solvent impregnated resin
SLE Supported liquid extraction
SLLE Supported liquid-liquid extraction
SPE Solid-phase extraction
SWCNT Single-walled carbon nanotube
TEHDGA N,N,N′N′ tetrakis‐2‐ethylhexyldiglycolamide
TMO Transition metal oxide
TODGA N,N,N′,N′‐Tetraoctyl diglycolamide
TTHA Triethylenetetraminehexaacetic acid
ZrP Zirconium organophosphonates
References
Aardaneh, K., Saal, D., Swarts, G., & Dewindt, S. C. (2008). TBP and TBP impregnated Amberlite XAD-4 resin for radiochemical separation of 88Y from Sr and Al. Journal of Radioanalytical and Nuclear Chemistry , 275 (3), 665–669. https://doi.org/10.1007/s10967-007-7074-6
Abdel-Magied, A. F., Abdelhamid, H. N., Ashour, R. M., Zou, X., & Forsberg, K. (2019). Hierarchical porous zeolitic imidazolate frameworks nanoparticles for efficient adsorption of rare-earth elements.Microporous and Mesoporous Materials , 278 (September 2018), 175–184. https://doi.org/10.1016/j.micromeso.2018.11.022
Abu Elgoud, E. M., Ismail, Z. H., Ahmad, M. I., El-Nadi, Y. A., Abdelwahab, S. M., & Aly, H. F. (2019). Sorption of Lanthanum(III) and Neodymium(III) from Concentrated Phosphoric Acid by Strongly Acidic Cation Exchange Resin (SQS-6). Russian Journal of Applied Chemistry , 92 (11), 1581–1592. https://doi.org/10.1134/S1070427219110156
Ahmed, I., Adhikary, K. K., Lee, Y. R., Ho Row, K., Kang, K. K., & Ahn, W. S. (2019). Ionic liquid entrapped UiO-66: Efficient adsorbent for Gd3+ capture from water. Chemical Engineering Journal ,370 , 792–799. https://doi.org/10.1016/j.cej.2019.03.265
Ahmed, I., Bhattacharjee, S., Lee, C. S., Kang, K. K., Ahn, J. W., & Ahn, W. S. (2021). Aqueous Nd3+ capture using a carboxyl-functionalized porous carbon derived from ZIF-8. Journal of Colloid and Interface Science , 594 , 702–712. https://doi.org/10.1016/J.JCIS.2021.03.036
Ahmed, I., Lee, Y.-R., Yu, K., Bhattacharjee, S., & Ahn, W.-S. (2019). Gd 3+ Adsorption over Carboxylic- and Amino-Group Dual-Functionalized UiO-66 [Research-article]. Industrial & Engineering Chemistry Research , 58 (6), 2324–2332. https://doi.org/10.1021/acs.iecr.8b05220
Aja, S. U. (1998). Sorption of the rare earth element, Nd, onto kaolinite at 25 °C. Clays and Clay Minerals , 46 (1), 103–109. https://doi.org/10.1346/CCMN.1998.0460112
Al-Thyabat, S., & Zhang, P. (2015). In-line extraction of REE from Dihydrate (DH) and HemiDihydrate (HDH) wet processes.Hydrometallurgy , 153 , 30–37. https://doi.org/10.1016/j.hydromet.2015.01.010
Alexandratos, S. D., & Natesan, S. (1999). Ion-selective polymer-supported reagents: The principle of bifunctionality.European Polymer Journal , 35 (3), 431–436. https://doi.org/10.1016/S0014-3057(98)00142-6
Alexandratos, Spiro D., & Hussain, L. A. (1995). Bifunctionality as a Means of Enhancing Complexation Kinetics in Selective Ion Exchange Resins. Industrial and Engineering Chemistry Research ,34 (1), 251–254. https://doi.org/10.1021/ie00040a026
Alexandratos, Spiro D., & Hussain, L. A. (1998). Synthesis of α-, β-, and γ-ketophosphonate polymer-supported reagents: The role of intra-ligand cooperation in the complexation of metal ions.Macromolecules , 31 (10), 3235–3238. https://doi.org/10.1021/ma971587d
Alexandratos, Spiro D., & Smith, S. D. (2004a). High stability solvent impregnated resins: Metal ion complexation as a function of time.Solvent Extraction and Ion Exchange , 22 (4), 713–720. https://doi.org/10.1081/SEI-120038701
Alexandratos, Spiro D., & Smith, S. D. (2004b). Intraligand cooperation in metal-ion binding by immobilized ligands: The effect of bifunctionality. Journal of Applied Polymer Science ,91 (1), 463–468. https://doi.org/10.1002/app.13131
Alexandratos, Spiro D., & Zhu, X. (2005). Bifunctional coordinating polymers: Auxiliary groups as a means of tuning the ionic affinity of immobilized phosphate ligands. Macromolecules , 38 (14), 5981–5986. https://doi.org/10.1021/ma050057b
Alexandratos, Spiro D., & Zhu, X. (2008). Polyols as Scaffolds in the Development of Ion-Selective Polymer-Supported Reagents: The Effect of Auxiliary Groups on the Mechanism of Metal Ion Complexation.Inorganic Chemistry , 47 (7), 2831–2836. https://doi.org/10.1021/ic702263x
Alexandratos, Spiro D., & Zhu, X. (2015). The role of polarizability in determining metal ion affinities in polymer-supported reagents: monoprotic phosphates and the effect of hydrogen bonding. New Journal of Chemistry , 39 (7), 5366–5373. https://doi.org/10.1039/C5NJ00387C
Alguacil, F. J., García-Díaz, I., Escudero Baquero, E., Rodríguez Largo, O., & López, F. A. (2020). On the Adsorption of Cerium(III) Using Multiwalled Carbon Nanotubes. Metals , 10 (8), 1057. https://doi.org/10.3390/met10081057
Amarasekara, A. S., Owereh, O. S., & Aghara, S. K. (2009). Synthesis of 4-acylpyrazolone Schiff base ligand grafted silica and selectivity in adsorption of lanthanides from aqueous solutions. Journal of Rare Earths , 27 (5), 870–874. https://doi.org/10.1016/S1002-0721(08)60352-X
Aravind, A., & Mathew, B. (2018). Electrochemical sensor based on nanostructured ion imprinted polymer for the sensing and extraction of Cr(III) ions from industrial wastewater. Polymer International ,67 (12), 1595–1604. https://doi.org/10.1002/PI.5683
Arnold, R., & Hing, L. B. S. (1967). Selectivity of carboxylic ion-exchange resin for lanthanide ions. Journal of the Chemical Society A: Inorganic, Physical, Theoretical , 2 , 306. https://doi.org/10.1039/j19670000306
Artiushenko, O., Ávila, E. P., Nazarkovsky, M., & Zaitsev, V. (2020). Reusable hydroxamate immobilized silica adsorbent for dispersive solid phase extraction and separation of rare earth metal ions.Separation and Purification Technology , 231 (August 2019), 115934. https://doi.org/10.1016/j.seppur.2019.115934
Artiushenko, O., Kostenko, L., & Zaitsev, V. (2020). Influence of competitive eluting agents on REEs recovery from silica gel adsorbent with immobilized aminodiphosphonic acid. Journal of Environmental Chemical Engineering , 8 (4), 103883. https://doi.org/10.1016/j.jece.2020.103883
Asadollahzadeh, M., Torkaman, R., & Torab-Mostaedi, M. (2020). Extraction and Separation of Rare Earth Elements by Adsorption Approaches: Current Status and Future Trends. In Separation and Purification Reviews (pp. 1–28). Taylor and Francis Inc. https://doi.org/10.1080/15422119.2020.1792930
Ashour, R. M., Abdelhamid, H. N., Abdel-Magied, A. F., Abdel-Khalek, A. A., Ali, M. M., Uheida, A., Muhammed, M., Zou, X., & Dutta, J. (2017). Rare Earth Ions Adsorption onto Graphene Oxide Nanosheets. Solvent Extraction and Ion Exchange , 35 (2), 91–103. https://doi.org/10.1080/07366299.2017.1287509
Attallah, M. F., Elgazzar, A. H., Borai, E. H., & El-Tabl, A. S. (2016). Preparation and characterization of aluminum silicotitanate: ion exchange behavior for some lanthanides and iron. Journal of Chemical Technology & Biotechnology , 91 (8), 2243–2252. https://doi.org/10.1002/jctb.4810
Attia, M. A., Moussa, S. I., Sheha, R. R., Someda, H. H., & Saad, E. A. (2019). Hydroxyapatite/NiFe 2 O 4 superparamagnetic composite: Facile synthesis and adsorption of rare elements. Applied Radiation and Isotopes , 145 (December 2018), 85–94. https://doi.org/10.1016/j.apradiso.2018.12.003
Avdibegović, D., Regadío, M., & Binnemans, K. (2017). Recovery of scandium( <scp>iii</scp> ) from diluted aqueous solutions by a supported ionic liquid phase (SILP).RSC Adv. , 7 (78), 49664–49674. https://doi.org/10.1039/C7RA07957E
Awual, M. R., Kobayashi, T., Miyazaki, Y., Motokawa, R., Shiwaku, H., Suzuki, S., Okamoto, Y., & Yaita, T. (2013). Selective lanthanide sorption and mechanism using novel hybrid Lewis base (N-methyl-N-phenyl-1,10-phenanthroline-2-carboxamide) ligand modified adsorbent. Journal of Hazardous Materials ,252253 , 313–320. https://doi.org/10.1016/j.jhazmat.2013.03.020
Babu, C. M., Binnemans, K., & Roosen, J. (2018). Ethylenediaminetriacetic Acid-Functionalized Activated Carbon for the Adsorption of Rare Earths from Aqueous Solutions. Industrial and Engineering Chemistry Research , 57 (5), 1487–1497. https://doi.org/10.1021/acs.iecr.7b04274
Bao, Shenxu, Tang, Y., Zhang, Y., & Liang, L. (2016). Recovery and Separation of Metal Ions from Aqueous Solutions by Solvent-Impregnated Resins. Chemical Engineering & Technology , 39 (8), 1377–1392. https://doi.org/10.1002/ceat.201500324
Bao, Shuangyou, Wang, Y., Wei, Z., Yang, W., & Yu, Y. (2022). Highly efficient recovery of heavy rare earth elements by using an amino-functionalized magnetic graphene oxide with acid and base resistance. Journal of Hazardous Materials , 424 , 127370. https://doi.org/10.1016/j.jhazmat.2021.127370
Barrak, H., Ahmedi, R., Chevallier, P., M’nif, A., Laroche, G., & Hamzaoui, A. H. (2019). Highly efficient extraction of rare earth elements and others ions from green phosphoric acid medium using TMSEDTA@GO@Fe3O4 core-shell. Separation and Purification Technology , 222 , 145–151. https://doi.org/10.1016/j.seppur.2019.04.016
Baumann, A. E., Burns, D. A., Liu, B., & Thoi, V. S. (2019). Metal-organic framework functionalization and design strategies for advanced electrochemical energy storage devices. In Communications Chemistry (Vol. 2, Issue 1, pp. 1–14). Springer Nature. https://doi.org/10.1038/s42004-019-0184-6
Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., Chu, C. T. W., Olson, D. H., Sheppard, E. W., McCullen, S. B., Higgins, J. B., & Schlenker, J. L. (1992). A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates. Journal of the American Chemical Society ,114 (27), 10834–10843. https://doi.org/10.1021/ja00053a020
Behdani, F. N., Rafsanjani, A. T., Torab-Mostaedi, M., & Mohammadpour, S. M. A. K. (2013). Adsorption ability of oxidized multiwalled carbon nanotubes towards aqueous Ce(III) and Sm(III). Korean Journal of Chemical Engineering , 30 (2), 448–455. https://doi.org/10.1007/s11814-012-0126-9
Bertelsen, E. R., Deodhar, G., Kluherz, K. T., Davidson, M., Adams, M. L., Trewyn, B. G., & Shafer, J. C. (2019). Microcolumn lanthanide separation using bis-(2-ethylhexyl) phosphoric acid functionalized ordered mesoporous carbon materials. Journal of Chromatography A ,1595 , 248–256. https://doi.org/10.1016/j.chroma.2019.02.057
Bezzina, J. P., Ogden, M. D., Moon, E. M., & Soldenhoff, K. L. (2018). REE behavior and sorption on weak acid resins from buffered media.Journal of Industrial and Engineering Chemistry , 59 , 440–455. https://doi.org/10.1016/j.jiec.2017.11.005
Bhatnagar, A., & Sillanpää, M. (2010). Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment-A review. In Chemical Engineering Journal (Vol. 157, Issues 2–3, pp. 277–296). Elsevier. https://doi.org/10.1016/j.cej.2010.01.007
Biju, V. ., Gladis, J. M., & Rao, T. P. (2003). Ion imprinted polymer particles: synthesis, characterization and dysprosium ion uptake properties suitable for analytical applications. Analytica Chimica Acta , 478 (1), 43–51. https://doi.org/10.1016/S0003-2670(02)01416-2
Botelho Junior, A. B., Pinheiro, É. F., Espinosa, D. C. R., Tenório, J. A. S., & Baltazar, M. dos P. G. (2021). Adsorption of lanthanum and cerium on chelating ion exchange resins: kinetic and thermodynamic studies. Https://Doi.Org/10.1080/01496395.2021.1884720 ,57 (1), 60–69. https://doi.org/10.1080/01496395.2021.1884720
Boyd, G. E. (1978). Thermodynamic property changes in lanthanide(III) cation exchange reactions with poly(styrenesulfonic acid) type cation exchangers. Journal of Physical Chemistry , 82 (25), 2704–2709. https://doi.org/10.1021/j100514a015
Brown, A. T., & Balkus, K. J. (2021). Critical Rare Earth Element Recovery from Coal Ash Using Microsphere Flower Carbon. ACS Applied Materials and Interfaces , 13 (41), 48492–48499. https://doi.org/10.1021/ACSAMI.1C09298/SUPPL_FILE/AM1C09298_SI_001.PDF
Bunina, Z., Bryleva, K., & Belikov, K. (2021). Synthesis and Adsorption Properties of Gadolinium-Imprinted Divinylbenzene-Based Copolymers.ACS Omega , 6 (4), 3336–3344. https://doi.org/10.1021/ACSOMEGA.0C05812/SUPPL_FILE/AO0C05812_SI_001.PDF
Callura, J. C. (2018). Ligand-Functionalized Adsorbents for the Extraction and Recovery of Rare Earth Elements (Issue December). Carnegie Mellon University.
Callura, J. C., Perkins, K. M., Baltrus, J. P., Washburn, N. R., Dzombak, D. A., & Karamalidis, A. K. (2019). Adsorption kinetics, thermodynamics, and isotherm studies for functionalized lanthanide-chelating resins. Journal of Colloid and Interface Science , 557 , 465–477. https://doi.org/10.1016/j.jcis.2019.08.097
Callura, J. C., Perkins, K. M., Noack, C. W., Washburn, N. R., Dzombak, D. A., & Karamalidis, A. K. (2018). Selective adsorption of rare earth elements onto functionalized silica particles. Green Chemistry ,20 (7), 1515–1526. https://doi.org/10.1039/C8GC00051D
Callura, J. C., Shi, Q., Dzombak, D. A., & Karamalidis, A. K. (2021). Selective recovery of rare earth elements with ligand-functionalized polymers in fixed-bed adsorption columns. Separation and Purification Technology , 265 , 118472. https://doi.org/10.1016/J.SEPPUR.2021.118472
Canfarotta, F., Poma, A., Guerreiro, A., & Piletsky, S. (2016). Solid-phase synthesis of molecularly imprinted nanoparticles.Nature Protocols 2016 11:3 , 11 (3), 443–455. https://doi.org/10.1038/nprot.2016.030
Cardoso, C. E. D., Almeida, J. C., Lopes, C. B., Trindade, T., Vale, C., & Pereira, E. (2019). Recovery of Rare Earth Elements by Carbon-Based Nanomaterials—A Review. Nanomaterials , 9 (6), 814. https://doi.org/10.3390/nano9060814
Chen, B., He, M., Zhang, H., Jiang, Z., & Hu, B. (2017). Chromatographic Techniques for Rare Earth Elements Analysis.Physical Sciences Reviews , 2 (4). https://doi.org/10.1515/psr-2016-0057
Chen, C. L., Wang, X. K., & Nagatsu, M. (2009). Europium adsorption on multiwall carbon nanotube/iron oxide magnetic composite in the presence of polyacrylic acid. Environmental Science and Technology ,43 (7), 2362–2367. https://doi.org/10.1021/es803018a
Chen, H., Shao, D., Li, J., & Wang, X. (2014). The uptake of radionuclides from aqueous solution by poly(amidoxime) modified reduced graphene oxide. Chemical Engineering Journal , 254 , 623–634. https://doi.org/10.1016/j.cej.2014.05.091
Chen, L., Wang, X., Lu, W., Wu, X., & Li, J. (2016). Molecular imprinting: Perspectives and applications. Chemical Society Reviews , 45 (8), 2137–2211. https://doi.org/10.1039/c6cs00061d
Chen, W., Wang, L., Zhuo, M., Liu, Y., Wang, Y., & Li, Y. (2014). Facile and highly efficient removal of trace Gd(III) by adsorption of colloidal graphene oxide suspensions sealed in dialysis bag.Journal of Hazardous Materials , 279 , 546–553. https://doi.org/10.1016/j.jhazmat.2014.06.075
Chen, Y., Zhu, B., Wu, D., Wang, Q., Yang, Y., Ye, W., & Guo, J. (2012). Eu(III) adsorption using di(2-thylhexly) phosphoric acid-immobilized magnetic GMZ bentonite. Chemical Engineering Journal , 181182 , 387–396. https://doi.org/10.1016/j.cej.2011.11.100
Chen, Z., Li, Z., Chen, J., Tan, H., Wu, J., & Qiu, H. (2022). Selective Adsorption of Rare Earth Elements by Zn-BDC MOF/Graphene Oxide Nanocomposites Synthesized via In Situ Interlayer-Confined Strategy.Industrial & Engineering Chemistry Research , 61 (4), 1841–1849. https://doi.org/10.1021/ACS.IECR.1C04180/SUPPL_FILE/IE1C04180_SI_001.PDF
Chuenchom, L., Kraehnert, R., & Smarsly, B. M. (2012). Recent progress in soft-templating of porous carbon materials. Soft Matter ,8 (42), 10801–10812. https://doi.org/10.1039/c2sm07448f
CHUVELEVA, E. A., KHARITONOV, O. V, & FIRSOVA, L. A. (1995). Effect of Diethylenetriamine of Pentaacetic Acid on the Chromatographic-Separation of Rare-Earth Elements on Ku-2 Cation-Exchange Resin. Zhurnal Fizicheskoi Khimii , 69 (7), 1322–1326.
CHUVELEVA, E. A., NAZAROV, P. P., & CHMUTOV, K. V. (1974). CHROMATOGRAPHIC-SEPARATION OF CURIUM, AMERICIUM AND RARE-EARTH ELEMENTS.Zhurnal Fizicheskoi Khimii , 48 (12), 3078–3081.
Coppin, F., Berger, G., Bauer, A., Castet, S., & Loubet, M. (2002). Sorption of lanthanides on smectite and kaolinite. Chemical Geology , 182 (1), 57–68. https://doi.org/10.1016/S0009-2541(01)00283-2
Cotton, S. A., & Harrowfield, J. M. (2012). Lanthanides: Coordination Chemistry. In Encyclopedia of Inorganic and Bioinorganic Chemistry . John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119951438.eibc2062
Croissant, J. G., Fatieiev, Y., & Khashab, N. M. (2017). Degradability and Clearance of Silicon, Organosilica, Silsesquioxane, Silica Mixed Oxide, and Mesoporous Silica Nanoparticles. In Advanced Materials(Vol. 29, Issue 9, p. 1604634). Wiley-VCH Verlag. https://doi.org/10.1002/adma.201604634
Crundwell, F. K. (2017). On the Mechanism of the Dissolution of Quartz and Silica in Aqueous Solutions. ACS Omega , 2 (3), 1116–1127. https://doi.org/10.1021/acsomega.7b00019
Cui, K., Gao, B., Tai, M., & Su, B. (2019). A facile bionic strategy towards Gd (III)-imprinted membranes via interlaced stacking of one-dimensional/two-dimensional nanocomposite materials. Journal of the Taiwan Institute of Chemical Engineers , 95 , 652–659. https://doi.org/10.1016/j.jtice.2018.09.036
Dardenne, K., Schäfer, T., Lindqvist-Reis, P., Denecke, M. A., Plaschke, M., Rothe, J., & Kim, J. I. (2002). Low temperature XAFS investigation on the Lutetium binding changes during the 2-line ferrihydrite alteration process. Environmental Science and Technology ,36 (23), 5092–5099. https://doi.org/10.1021/es025513f
Davranche, M., Pourret, O., Gruau, G., & Dia, A. (2004). Impact of humate complexation on the adsorption of REE onto Fe oxyhydroxide.Journal of Colloid and Interface Science , 277 (2), 271–279. https://doi.org/10.1016/j.jcis.2004.04.007
Davranche, M., Pourret, O., Gruau, G., Dia, A., & Le Coz-Bouhnik, M. (2005). Adsorption of REE(III)-humate complexes onto MnO2: Experimental evidence for cerium anomaly and lanthanide tetrad effect suppression.Geochimica et Cosmochimica Acta , 69 (20), 4825–4835. https://doi.org/10.1016/j.gca.2005.06.005
de Decker, J., de Clercq, J., Vermeir, P., & van der Voort, P. (2016). Functionalized metal-organic-framework CMPO@MIL-101(Cr) as a stable and selective rare earth adsorbent. Journal of Materials Science ,51 (10), 5019–5026. https://doi.org/10.1007/s10853-016-9807-9
Dolak, İ., Keçili, R., Hür, D., Ersöz, A., & Say, R. (2015). Ion-Imprinted Polymers for Selective Recognition of Neodymium(III) in Environmental Samples. Industrial & Engineering Chemistry Research , 54 (19), 5328–5335. https://doi.org/10.1021/acs.iecr.5b00212
Dong, C., Shi, H., Han, Y., Yang, Y., Wang, R., & Men, J. (2021). Molecularly imprinted polymers by the surface imprinting technique.European Polymer Journal , 145 , 110231. https://doi.org/10.1016/j.eurpolymj.2020.110231
Dubey, S. S., & Grandhi, S. (2019). Sorption studies of yttrium(III) ions on surfaces of nano-thorium(IV) oxide and nano-zirconium( IV) oxide. International Journal of Environmental Science and Technology , 16 (1), 59–70. https://doi.org/10.1007/s13762-017-1589-3
Dubey, Som Shankar, & Grandhi, S. (2016). Sorption studies of yttrium (III) ions on nano maghemite. Journal of Environmental Chemical Engineering , 4 (4), 4719–4730. https://doi.org/10.1016/j.jece.2016.11.006
Dupont, D., Brullot, W., Bloemen, M., Verbiest, T., & Binnemans, K. (2014). Selective Uptake of Rare Earths from Aqueous Solutions by EDTA-Functionalized Magnetic and Nonmagnetic Nanoparticles. ACS Applied Materials & Interfaces , 6 (7), 4980–4988. https://doi.org/10.1021/am406027y
Dutta, S., Mohapatra, P. K., Dhekane, G. D., Das, A. K., & Manchanda, V. K. (2008). Solid phase extraction of europium and uranium using Tulsion CH-90 resin. Desalination , 232 (1–3), 216–224. https://doi.org/10.1016/j.desal.2007.10.038
Eftekhari, A., & Fan, Z. (2017). Ordered mesoporous carbon and its applications for electrochemical energy storage and conversion.Materials Chemistry Frontiers , 1 (6), 1001–1027. https://doi.org/10.1039/c6qm00298f
Egawa, H., Yamabe, K., & Jyo, A. (1994). Studies on selective adsorption resins. XXXIII. Behavior of macroreticular chelating resins containing phosphinic and/or phosphonic acid groups in the adsorption of trivalent lanthanides. Journal of Applied Polymer Science ,52 (8), 1153–1164. https://doi.org/10.1002/app.1994.070520815
Ehrlich, G. V., & Lisichkin, G. V. (2017). Sorption in the chemistry of rare earth elements. Russian Journal of General Chemistry ,87 (6), 1220–1245. https://doi.org/10.1134/S1070363217060196
El-Nahhal, I. M., & El-Ashgar, N. M. (2007). A review on polysiloxane-immobilized ligand systems: Synthesis, characterization and applications. Journal of Organometallic Chemistry ,692 (14), 2861–2886. https://doi.org/10.1016/j.jorganchem.2007.03.009
El Mourabit, S., Guillot, M., Toquer, G., Cambedouzou, J., Goettmann, F., & Grandjean, A. (2012). Stability of mesoporous silica under acidic conditions. RSC Advances , 2 (29), 10916–10924. https://doi.org/10.1039/c2ra21569a
Elsaidi, S. K., Sinnwell, M. A., Devaraj, A., Droubay, T. C., Nie, Z., Murugesan, V., McGrail, B. P., & Thallapally, P. K. (2018). Extraction of rare earth elements using magnetite@MOF composites. Journal of Materials Chemistry A , 6 (38), 18438–18443. https://doi.org/10.1039/C8TA04750B
ELSOFANY, E. (2008). Removal of lanthanum and gadolinium from nitrate medium using Aliquat-336 impregnated onto Amberlite XAD-4. Journal of Hazardous Materials , 153 (3), 948–954. https://doi.org/10.1016/j.jhazmat.2007.09.046
Ensing, K., & De Boer, T. (1999). Tailor-made materials for tailor-made applications: Application of molecular imprints in chemical analysis.TrAC - Trends in Analytical Chemistry , 18 (3), 138–145. https://doi.org/10.1016/S0165-9936(98)00103-4
Fan, Q. H., Shao, D. D., Hu, J., Chen, C. L., Wu, W. S., & Wang, X. K. (2009). Adsorption of humic acid and Eu (III) to multi-walled carbon nanotubes: EFFECT of pH, ionic strength and counterion effect. InRadiochimica Acta (Vol. 97, Issue 3, pp. 141–148). https://doi.org/10.1524/ract.2009.1586
Faris, J. P., & Warton, J. W. (1962). Anion Exchange Resin Separation of the Rare Earths, Yttrium, and Scandium in Nitric Acid–Methanol Mixtures. Analytical Chemistry , 34 (9), 1077–1080. https://doi.org/10.1021/ac60189a013
Farley, K. J., Dzombak, D. A., & Morel, F. M. M. (1985). A surface precipitation model for the sorption of cations on metal oxides.Journal of Colloid And Interface Science , 106 (1), 226–242. https://doi.org/10.1016/0021-9797(85)90400-X
Feng, X., Onel, O., Council-Troche, M., Noble, A., Yoon, R.-H., & Morris, J. R. (2021). A study of rare earth ion-adsorption clays: The speciation of rare earth elements on kaolinite at basic pH.Applied Clay Science , 201 , 105920. https://doi.org/10.1016/j.clay.2020.105920
Florek, J., Chalifour, F., Bilodeau, F., Larivière, D., & Kleitz, F. (2014). Nanostructured Hybrid Materials for the Selective Recovery and Enrichment of Rare Earth Elements. Advanced Functional Materials ,24 (18), 2668–2676. https://doi.org/10.1002/adfm.201303602
Florek, J., Giret, S., Juère, E., Larivière, D., & Kleitz, F. (2016). Functionalization of mesoporous materials for lanthanide and actinide extraction. Dalton Transactions , 45 (38), 14832–14854. https://doi.org/10.1039/C6DT00474A
Florek, J., Larivière, D., Kählig, H., Fiorilli, S. L., Onida, B., Fontaine, F. G., & Kleitz, F. (2020). Understanding Selectivity of Mesoporous Silica-Grafted Diglycolamide-Type Ligands in the Solid-Phase Extraction of Rare Earths. ACS Applied Materials and Interfaces ,12 (51), 57003–57016. https://doi.org/10.1021/acsami.0c16282
Florek, J., Mushtaq, A., Larivière, D., Cantin, G., Fontaine, F. G., & Kleitz, F. (2015). Selective recovery of rare earth elements using chelating ligands grafted on mesoporous surfaces. RSC Advances ,5 (126), 103782–103789. https://doi.org/10.1039/c5ra21027e
Fonseka, C., Ryu, S., Choo, Y., Mullett, M., Thiruvenkatachari, R., Naidu, G., & Vigneswaran, S. (2021). Selective Recovery of Rare Earth Elements from Mine Ore by Cr-MIL Metal–Organic Frameworks. ACS Sustainable Chemistry and Engineering , 9 (50), 16896–16904. https://doi.org/10.1021/ACSSUSCHEMENG.1C04775/SUPPL_FILE/SC1C04775_SI_001.PDF
Friend, M. T., Parker, T. G., Mastren, T., Mocko, V., Brugh, M., Birnbaum, E. R., & Fassbender, M. E. (2020). Extraction chromatography of 225Ac and lanthanides on N,N-dioctyldiglycolamic acid /1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide solvent impregnated resin. Journal of Chromatography A , 1624 , 461219. https://doi.org/10.1016/j.chroma.2020.461219
Fritz, J. S., & Garralda, B. B. (1963). Cation-exchange separation of bivalent metal ions from rare earths. Talanta , 10 (1), 91–95. https://doi.org/10.1016/0039-9140(63)80209-X
Fryxell, G. E., Chouyyok, W., & Rutledge, R. D. (2011). Design and synthesis of chelating diamide sorbents for the separation of lanthanides. Inorganic Chemistry Communications , 14 (6), 971–974. https://doi.org/10.1016/j.inoche.2011.03.045
Fu, J., Chen, L., Li, J., & Zhang, Z. (2015). Current status and challenges of ion imprinting. Journal of Materials Chemistry A ,3 (26), 13598–13627. https://doi.org/10.1039/c5ta02421h
Gabor, A., Davidescu, C. M., Negrea, A., Ciopec, M., Muntean, C., Duteanu, N., & Negrea, P. (2016). Sorption properties of Amberlite XAD 7 functionalized with sodium β-glycerophosphate. Pure and Applied Chemistry , 88 (12), 1143–1154. https://doi.org/10.1515/pac-2016-0806
Gaete, J., Molina, L., Valenzuela, F., & Basualto, C. (2021). Recovery of lanthanum, praseodymium and samarium by adsorption using magnetic nanoparticles functionalized with a phosphonic group.Hydrometallurgy , 203 , 105698. https://doi.org/10.1016/J.HYDROMET.2021.105698
Gao, Q., Xie, J. F., Shao, Y. T., Chen, C., Han, B., Xia, K. S., & Zhou, C. G. (2017). Ultrafast and high-capacity adsorption of Gd(III) onto inorganic phosphorous acid modified mesoporous SBA-15.Chemical Engineering Journal , 313 , 197–206. https://doi.org/10.1016/j.cej.2016.12.068
Garcia, R., Pinel, C., Madic, C., & Lemaire, M. (1998). Ionic imprinting effect in gadolinium/lanthanum separation. Tetrahedron Letters , 39 (47), 8651–8654. https://doi.org/10.1016/S0040-4039(98)01970-4
Garg, B. S., Sharma, R. K., Bhojak, N., & Mittal, S. (1999). Chelating resins and their applications in the analysis of trace metal ions.Microchemical Journal , 61 (2), 94–114. https://doi.org/10.1006/mchj.1998.1681
Gasser, M. S., & Aly, M. I. (2013). Separation and recovery of rare earth elements from spent nickel-metal-hydride batteries using synthetic adsorbent. International Journal of Mineral Processing ,121 , 31–38. https://doi.org/10.1016/j.minpro.2013.02.012
Gasser, M. S., El Sherif, E., & Abdel Rahman, R. O. (2017). Modification of Mg-Fe hydrotalcite using Cyanex 272 for lanthanides separation. Chemical Engineering Journal , 316 , 758–769. https://doi.org/10.1016/j.cej.2017.01.129
Ghobadi, M., Gharabaghi, M., Abdollahi, H., Boroumand, Z., & Moradian, M. (2018). MnFe2O4-graphene oxide magnetic nanoparticles as a high-performance adsorbent for rare earth elements: Synthesis, isotherms, kinetics, thermodynamics and desorption. Journal of Hazardous Materials , 351 , 308–316. https://doi.org/10.1016/j.jhazmat.2018.03.011
Ghobadi, M., Gharabaghi, M., Abdollahi, H., & Shafiee Kisomi, A. (2017). A simple and low-cost route to recycle rare earth elements (La, Ce) from aqueous solution using magnetic nanoparticles of Co x Mn 1−x Fe 2 O 4 (x = 0.2 and 0.8): synthesis, isotherms, kinetics, thermodynamics and desorption. New Journal of Chemistry , 41 (20), 11906–11914. https://doi.org/10.1039/C7NJ02125A
Giret, S., Hu, Y., Masoumifard, N., Boulanger, J. F., Estelle, J., Kleitz, F., & Larivière, D. (2018). Selective Separation and Preconcentration of Scandium with Mesoporous Silica. ACS Applied Materials and Interfaces , 10 (1), 448–457. https://doi.org/10.1021/acsami.7b13336
Gismondi, P., Kuzmin, A., Unsworth, C., Rangan, S., Khalid, S., & Saha, D. (2022). Understanding the Adsorption of Rare-Earth Elements in Oligo-Grafted Mesoporous Carbon. Langmuir , 38 (1), 203–210. https://doi.org/10.1021/ACS.LANGMUIR.1C02403/SUPPL_FILE/LA1C02403_SI_001.PDF
Gok, C., Seyhan, S., Merdivan, M., & Yurdakoc, M. (2007). Separation and preconcentration of La3+, Ce3+ and Y3+ using calix[4]resorcinarene impregnated on polymeric support.Microchimica Acta , 157 (1–2), 13–19. https://doi.org/10.1007/s00604-006-0646-2
Griffith, C. S., Reyes, M. D. L., Scales, N., Hanna, J. V., & Luca, V. (2010). Hybrid Inorganic−Organic Adsorbents Part 1: Synthesis and Characterization of Mesoporous Zirconium Titanate Frameworks Containing Coordinating Organic Functionalities. ACS Applied Materials & Interfaces , 2 (12), 3436–3446. https://doi.org/10.1021/am100891u
Gschneidner, K. A., & Eyring, L. R. (1982). Preface. In Handbook on the Physics and Chemistry of Rare Earths (Vol. 5, p. 5). Elsevier. https://doi.org/10.1016/S0168-1273(82)05001-6
GUO, J., CAI, J., & SU, Q. (2009). Ion imprinted polymer particles of neodymium: synthesis, characterization and selective recognition.Journal of Rare Earths , 27 (1), 22–27. https://doi.org/10.1016/S1002-0721(08)60183-0
Guo, Lanyu, Xu, Y., Zhuo, M., Liu, L., Xu, Q., Wang, L., Shi, C., Ye, B., Fan, X., & Chen, W. (2018). Highly efficient removal of Gd(III) using hybrid hydrosols of carbon nanotubes/graphene oxide in dialysis bags and synergistic enhancement effect. Chemical Engineering Journal , 348 , 535–545. https://doi.org/10.1016/j.cej.2018.04.212
Guo, Linru, Liu, Y., Dou, J., Huang, Q., Lei, Y., Chen, J., Wen, Y., Li, Y., Zhang, X., & Wei, Y. (2020). Highly efficient removal of Eu3+ ions using carbon nanotubes-based polymer composites synthesized from the combination of Diels-Alder and multicomponent reactions. Journal of Molecular Liquids , 308 , 112964. https://doi.org/10.1016/j.molliq.2020.112964
Gupta, N. K., & Sengupta, A. (2017). Understanding the sorption behavior of trivalent lanthanides on amide functionalized multi walled carbon nanotubes. Hydrometallurgy , 171 , 8–15. https://doi.org/10.1016/j.hydromet.2017.03.016
Hagiwara, Z. (1969). Elution of heavier rare earths with H.E.D.T.A. eluant at a high temperature. Journal of Inorganic and Nuclear Chemistry , 31 (9), 2933–2949. https://doi.org/10.1016/0022-1902(69)80213-7
Hale, W. H., & Hammer, C. A. (1972). Cation exchange elution sequence with DTPA. Ion Exch. Membranes , 1 (2), 81–85.
Harris, D. C., & Lucy, C. A. (2015). Quantitative Chemical Analysis (9th ed.). W. H. Freeman. https://books.google.com/books?id=PJhaMQAACAAJ
Helaly, O. S., Abd El-Ghany, M. S., Moustafa, M. I., Abuzaid, A. H., Abd El-Monem, N. M., & Ismail, I. M. (2012). Extraction of cerium(IV) using tributyl phosphate impregnated resin from nitric acid medium.Transactions of Nonferrous Metals Society of China (English Edition) , 22 (1), 206–214. https://doi.org/10.1016/S1003-6326(11)61162-X
Hérès, X., Blet, V., Di Natale, P., Ouaattou, A., Mazouz, H., Dhiba, D., & Cuer, F. (2018). Selective Extraction of Rare Earth Elements from Phosphoric Acid by Ion Exchange Resins. Metals , 8 (9), 682. https://doi.org/10.3390/met8090682
Hermassi, M., Granados, M., Valderrama, C., Ayora, C., & Cortina, J. L. (2021). Recovery of Rare Earth Elements from acidic mine waters by integration of a selective chelating ion-exchanger and a solvent impregnated resin. Journal of Environmental Chemical Engineering ,9 (5), 105906. https://doi.org/10.1016/J.JECE.2021.105906
Hidayah, N. N., & Abidin, S. Z. (2017). The evolution of mineral processing in extraction of rare earth elements using solid-liquid extraction over liquid-liquid extraction: A review. In Minerals Engineering (Vol. 112, pp. 103–113). Elsevier Ltd. https://doi.org/10.1016/j.mineng.2017.07.014
Hoffmann, F., Cornelius, M., Morell, J., & Fröba, M. (2006). Silica-Based Mesoporous Organic–Inorganic Hybrid Materials.Angewandte Chemie International Edition , 45 (20), 3216–3251. https://doi.org/10.1002/anie.200503075
Hovey, J. L., Dardona, M., Allen, M. J., & Dittrich, T. M. (2021). Sorption of rare-earth elements onto a ligand-associated media for pH-dependent extraction and recovery of critical materials.Separation and Purification Technology , 258 , 118061. https://doi.org/10.1016/j.seppur.2020.118061
Hu, Y., Drouin, E., Larivière, D., Kleitz, F., & Fontaine, F. G. (2017). Highly Efficient and Selective Recovery of Rare Earth Elements Using Mesoporous Silica Functionalized by Preorganized Chelating Ligands. ACS Applied Materials and Interfaces , 9 (44), 38584–38593. https://doi.org/10.1021/acsami.7b12589
Hu, Y., Florek, J., Larivière, D., Fontaine, F.-G., & Kleitz, F. (2018). Recent Advances in the Separation of Rare Earth Elements Using Mesoporous Hybrid Materials. The Chemical Record ,18 (7–8), 1261–1276. https://doi.org/10.1002/tcr.201800012
Hu, Y., Misal Castro, L. C., Drouin, E., Florek, J., Kählig, H., Larivière, D., Kleitz, F., & Fontaine, F.-G. (2019). Size-Selective Separation of Rare Earth Elements Using Functionalized Mesoporous Silica Materials. ACS Applied Materials & Interfaces , 11 (26), 23681–23691. https://doi.org/10.1021/acsami.9b04183
Hua, W., Zhang, T., Wang, M., Zhu, Y., & Wang, X. (2019). Hierarchically structural PAN/UiO-66-(COOH)2 nanofibrous membranes for effective recovery of Terbium(III) and Europium(III) ions and their photoluminescence performances. Chemical Engineering Journal ,370 , 729–741. https://doi.org/10.1016/j.cej.2019.03.255
Huang, L., Liu, L., Huang, W., Zhao, B., Shen, Z., Bao, Y., & Znad, H. (2021). Recovery of lanthanum cations by functionalized magnetic multi-walled carbon nanotube bundles. RSC Advances , 11 (8), 4751–4759. https://doi.org/10.1039/D0RA09902C
Huang, R., Shao, N., Hou, L., & Zhu, X. (2019). Fabrication of an efficient surface ion-imprinted polymer based on sandwich-like graphene oxide composite materials for fast and selective removal of lead ions.Colloids and Surfaces A: Physicochemical and Engineering Aspects ,566 , 218–228. https://doi.org/10.1016/j.colsurfa.2019.01.011
Hubicka, H., & Drobek, D. (1997). Anion-exchange method for separation of ytterbium from holmium and erbium. Hydrometallurgy ,47 (1), 127–136. https://doi.org/10.1016/S0304-386X(97)00040-6
Hubicka, H., & Drobek, D. (1998). Studies on separation of iminodiacetate complexes of lanthanum (III) from neodymium (III) and praseodymium (III) on anion-exchangers. Hydrometallurgy ,50 (1), 51–60. https://doi.org/10.1016/s0304-386x(98)00045-0
Hubicka, H., & Drobek, D. (1999). Separation of Y(III) complexes from Dy(III), Ho(III) and Er(III) complexes with iminodiacetic acid on the anion-exchangers type 1 and type 2. Hydrometallurgy ,53 (1), 89–100. https://doi.org/10.1016/S0304-386X(99)00035-3
HUBICKA, H., & HUBICKI, Z. (1986). SEPARATION OP RARE EARTH - POLYALZDTOCARBOXYLIC ACIDS COMPLEXES OK VARIOUS TYPES OF ANION-EXCHANGERS. Solvent Extraction and Ion Exchange ,4 (2), 383–399. https://doi.org/10.1080/07366298608917872
Hubicka, H., & Kołodyńska, D. (2004). Separation of rare-earth element complexes with trans-1,2-diaminocyclohexane-N,N,N′,N′-tetraacetic acid on polyacrylate anion exchangers. Hydrometallurgy ,71 (3–4), 343–350. https://doi.org/10.1016/S0304-386X(03)00086-0
Hubicka, H., & Kołodyńska, D. (2008). Application of monodispersive anion exchangers in sorption and separation of Y3+ from Nd3+ and Sm3+ complexes with dcta. Journal of Rare Earths , 26 (5), 619–625. https://doi.org/10.1016/S1002-0721(08)60149-0
Hubicki, Z., & Olszak, M. (1998). Studies of the sorption of rare earth element nitrate complexes in the C2H5OH-HNO3 system on the strongly basic anion exchanger Wofatit SBW. Adsorption Science and Technology , 16 (6), 487–492. https://doi.org/10.1177/026361749801600606
Hubicki, Z., & Olszak, M. (2002). Studies on separation of rare earth elements on various types of anion-exchangers in the C3H7OH-7 M HNO3 systems. Journal of Chromatography A , 955 (2), 257–262. https://doi.org/10.1016/S0021-9673(02)00212-1
Huo, Q., Margolese, D. I., & Stucky, G. D. (1996). Surfactant Control of Phases in the Synthesis of Mesoporous Silica-Based Materials.Chemistry of Materials , 8 (5), 1147–1160. https://doi.org/10.1021/cm960137h
Ide, M., El-Roz, M., De Canck, E., Vicente, A., Planckaert, T., Bogaerts, T., Van Driessche, I., Lynen, F., Van Speybroeck, V., Thybault-Starzyk, F., & Van Der Voort, P. (2013). Quantification of silanol sites for the most common mesoporous ordered silicas and organosilicas: Total versus accessible silanols. Physical Chemistry Chemical Physics , 15 (2), 642–650. https://doi.org/10.1039/c2cp42811c
Iftekhar, S., Ramasamy, D. L., Srivastava, V., Asif, M. B., & Sillanpää, M. (2018). Understanding the factors affecting the adsorption of Lanthanum using different adsorbents: A critical review. InChemosphere (Vol. 204, pp. 413–430). https://doi.org/10.1016/j.chemosphere.2018.04.053
Iftekhar, S., Srivastava, V., Casas, A., & Sillanpää, M. (2018). Synthesis of novel GA-g-PAM/SiO2 nanocomposite for the recovery of rare earth elements (REE) ions from aqueous solution. Journal of Cleaner Production , 170 , 251–259. https://doi.org/10.1016/j.jclepro.2017.09.166
Iftekhar, S., Srivastava, V., & Sillanpää, M. (2017a). Enrichment of lanthanides in aqueous system by cellulose based silica nanocomposite.Chemical Engineering Journal , 320 , 151–159. https://doi.org/10.1016/j.cej.2017.03.051
Iftekhar, S., Srivastava, V., & Sillanpää, M. (2017b). Synthesis and application of LDH intercalated cellulose nanocomposite for separation of rare earth elements (REEs). Chemical Engineering Journal ,309 , 130–139. https://doi.org/10.1016/j.cej.2016.10.028
Ihara, T., Jyo, A., & Yamabe, K. (2001). METAL ION SELECTIVITY OF MACRORETICULAR CHELATING CATION EXCHANGE RESINS WITH PHOSPHONIC ACID GROUPS ATTACHED TO PHENYL GROUPS OF A STYRENE-DIVINYLBENZENE COPOLYMER MATRIX. Separation Science and Technology , 36 (15), 3511–3528. https://doi.org/10.1081/SS-100107917
İnan, S., Tel, H., Sert, Çetinkaya, B., Sengül, S., Özkan, B., & Altaş, Y. (2018). Extraction and separation studies of rare earth elements using Cyanex 272 impregnated Amberlite XAD-7 resin.Hydrometallurgy , 181 (April), 156–163. https://doi.org/10.1016/j.hydromet.2018.09.005
Jackson, M. L. (1954). Ion Exchangers in Analytical Chemistry.Soil Science Society of America Journal , 18 (1), 99. https://doi.org/10.2136/sssaj1954.03615995001800010025x
James, D. B., Powell, J. E., & Spedding, F. H. (1961). Cation-exchange elution sequences-I Divalent and rare-earth cations with EDTA, hedta and citrate. Journal of Inorganic and Nuclear Chemistry ,19 (1–2), 133–141. https://doi.org/10.1016/0022-1902(61)80055-9
Jia, Q., Wang, Z. H., Li, D. Q., & Niu, C. J. (2004). Adsorption of heavy rare earth(III) with extraction resin containing bis(2,4,4-trimethylpentyl) monothiophosphinic acid. Journal of Alloys and Compounds , 374 (1–2), 434–437. https://doi.org/10.1016/j.jallcom.2003.11.056
Jiang, L., Zhang, W., Luo, C., Cheng, D., & Zhu, J. (2016). Adsorption toward Trivalent Rare Earth Element from Aqueous Solution by Zeolitic Imidazolate Frameworks. Industrial & Engineering Chemistry Research , 55 (22), 6365–6372. https://doi.org/10.1021/acs.iecr.6b00422
Johannesson, K. H., Lyons, W. B., Stetzenbach, K. J., & Byrne, R. H. (1995). The solubility control of rare earth elements in natural terrestrial waters and the significance of PO43- and CO32- in limiting dissolved rare earth concentrations: A review of recent information.Aquatic Geochemistry , 1 (2), 157–173. https://doi.org/10.1007/BF00702889
Juère, E., Florek, J., Larivière, D., Kim, K., & Kleitz, F. (2016). Support effects in rare earth element separation using diglycolamide-functionalized mesoporous silica. New Journal of Chemistry , 40 (5), 4325–4334. https://doi.org/10.1039/c5nj03147h
Jyo, A., Yamabe, K., & Egawa, H. (1997). Metal Ion Selectivity of a Macroreticular Styrene-Divinylbenzene Copolymer-Based Methylenephosphonic Acid Resin. Separation Science and Technology , 32 (6), 1099–1105. https://doi.org/10.1080/01496399708000948
Kabay, N., Cortina, J. L., Trochimczuk, A., & Streat, M. (2010). Solvent-impregnated resins (SIRs) - Methods of preparation and their applications. Reactive and Functional Polymers , 70 (8), 484–496. https://doi.org/10.1016/j.reactfunctpolym.2010.01.005
Kala, R., Biju, V. M., & Rao, T. P. (2005). Synthesis, characterization, and analytical applications of erbium(III) ion imprinted polymer particles prepared via γ-irradiation with different functional and crosslinking monomers. Analytica Chimica Acta ,549 (1–2), 51–58. https://doi.org/10.1016/j.aca.2005.06.024
Kala, R., Mary Gladis, J., & Prasada Rao, T. (2004). Preconcentrative separation of erbium from Y, Dy, Ho, Tb and Tm by using ion imprinted polymer particles via solid phase extraction. Analytica Chimica Acta , 518 (1–2), 143–150. https://doi.org/10.1016/j.aca.2004.05.029
Kaneko, T., Hikosaka, R., Nagata, F., Inagaki, M., & Kato, K. (2019). Effective adsorption of dysprosium ions on amino and carboxyl functionalized mesoporous silica sheets. Journal of Asian Ceramic Societies , 7 (2), 213–220. https://doi.org/10.1080/21870764.2019.1606139
Kaneko, T., Nagata, F., Kugimiya, S., & Kato, K. (2018). Optimization of carboxyl-functionalized mesoporous silica for the selective adsorption of dysprosium. Journal of Environmental Chemical Engineering , 6 (5), 5090–5098. https://doi.org/10.1016/j.jece.2018.09.018
Karraker, R. H. (1961). Stability constants of some rare-earth-metal chelates . 1961 , 105. https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=2968&context=rtd
Kavun, V., van der Veen, M. A., & Repo, E. (2021). Selective recovery and separation of rare earth elements by organophosphorus modified MIL-101(Cr). Microporous and Mesoporous Materials , 312 , 110747. https://doi.org/10.1016/j.micromeso.2020.110747
Kazantsev, E. I., Fisenko, V. V., & Mal’tsev, G. I. (1974). Complexing of rare earth ions with carboxylic cationite KB-2x7. Izv.Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol , 17 (9), 1304–1306. https://inis.iaea.org/search/search.aspx?orig_q=RN:6174755
Keçili, R., Dolak, İ., Ziyadanoğulları, B., Ersöz, A., & Say, R. (2018). Ion imprinted cryogel-based supermacroporous traps for selective separation of cerium(III) in real samples. Journal of Rare Earths , 36 (8), 857–862. https://doi.org/10.1016/j.jre.2018.02.008
Kegl, T., Ban, I., Lobnik, A., & Košak, A. (2019). Synthesis and characterization of novel Γ-Fe2O3-NH4OH@SiO2(APTMS) nanoparticles for dysprosium adsorption. Journal of Hazardous Materials ,378 , 120764. https://doi.org/10.1016/j.jhazmat.2019.120764
Kharitonov, O. V., Firsova, L. A., & Chuveleva, E. A. (2009a). The accumulation of the competing displacer ion in the retaining ion zone in the separation of rare-earth metals by complex formation displacement chromatography. Russian Journal of Physical Chemistry A ,83 (7), 1217–1219. https://doi.org/10.1134/S0036024409070309
Kharitonov, O. V., Firsova, L. A., & Chuveleva, E. A. (2009b). The influence of a competing eluting ion content on the efficiency of separation of rare-earth metals in displacement complex forming chromatography. Russian Journal of Physical Chemistry A ,83 (6), 1030–1031. https://doi.org/10.1134/S0036024409060284
Khawassek, Y. M., Eliwa, A. A., Haggag, E. S. A., Omar, S. A., & Abdel-Wahab, S. M. (2019). Adsorption of rare earth elements by strong acid cation exchange resin thermodynamics, characteristics and kinetics.SN Applied Sciences , 1 (1), 51. https://doi.org/10.1007/s42452-018-0051-6
Kilian, K., Pyrzyńska, K., & Pęgier, M. (2017). Comparative Study of Sc(III) Sorption onto Carbon-based Materials. Solvent Extraction and Ion Exchange , 35 (6), 450–459. https://doi.org/10.1080/07366299.2017.1354580
Kim, H., Lee, J., & Jung, H. (2019). Study on the carbamoyl phosphine oxide moiety functionalized mesoporous graphene for the removal of rare earth elements. Journal of Porous Materials , 26 (4), 931–939. https://doi.org/10.1007/s10934-018-0691-3
Kogan, L., & Ratner, R. (1971). The separation of yttrium from the lanthanides by ion exchange with diethylenetriaminepentaacetic acid as eluant. I. Separation of yttrium-erbium mixtures. Journal of Chromatography A , 62 (3), 449–457. https://doi.org/10.1016/S0021-9673(00)91397-9
Kołodyńska, D., Hubicki, Z., & Fila, D. (2019). Recovery of rare earth elements from acidic solutions using macroporous ion exchangers.Separation Science and Technology , 54 (13), 2059–2076. https://doi.org/10.1080/01496395.2019.1604753
Koochaki-Mohammadpour, S. M. A., Torab-Mostaedi, M., Talebizadeh-Rafsanjani, A., & Naderi-Behdani, F. (2014). Adsorption Isotherm, Kinetic, Thermodynamic, and Desorption Studies of Lanthanum and Dysprosium on Oxidized Multiwalled Carbon Nanotubes. Journal of Dispersion Science and Technology , 35 (2), 244–254. https://doi.org/10.1080/01932691.2013.785361
Koodynska, D., & Hubicki, Z. (2012). Investigation of Sorption and Separation of Lanthanides on the Ion Exchangers of Various Types. InIon Exchange Technologies: Vol. i (Issue tourism). InTech. https://doi.org/10.5772/50857
Korkisch, J., Feik, F., & Ahluwalia, S. S. (1967). Cation-exchange behaviour of several elements in nitric acid-organic solvent media.Talanta , 14 (9), 1069–1081. https://doi.org/10.1016/0039-9140(67)80145-0
Kosmulski, M. (1997a). Standard enthalpies of adsorption of di- and trivalent cations on alumina. Journal of Colloid and Interface Science , 192 (1), 215–227. https://doi.org/10.1006/jcis.1997.4994
Kosmulski, M. (1997b). Adsorption of Trivalent Cations on Silica.Journal of Colloid and Interface Science , 195 (2), 395–403. https://doi.org/10.1006/jcis.1997.5155
Kostenko, L., Kobylinska, N., Khainakov, S., & Granda, S. G. (2019). Magnetite nanoparticles with aminomethylenephosphonic groups: synthesis, characterization and uptake of europium(III) ions from aqueous media.Microchimica Acta , 186 (7), 474. https://doi.org/10.1007/s00604-019-3520-8
Kowal-Fouchard, A., Drot, R., Simoni, E., Marmier, N., Fromage, F., & Ehrhardt, J. J. (2004). Structural identification of europium(III) adsorption complexes on montmorillonite. New Journal of Chemistry , 28 (7), 864–869. https://doi.org/10.1039/b400306c
Kumar, B. N., Radhika, S., Kantam, M. L., & Reddy, B. R. (2011). Solid-liquid extraction of terbium from phosphoric acid solutions using solvent-impregnated resin containing TOPS 99. Journal of Chemical Technology & Biotechnology , 86 (4), 562–569. https://doi.org/10.1002/jctb.2553
Kumar, D., Schumacher, K., Du Fresne von Hohenesche, C., Grün, M., & Unger, K. K. (2001). MCM-41, MCM-48 and related mesoporous adsorbents: their synthesis and characterisation. Colloids and Surfaces A: Physicochemical and Engineering Aspects , 187188 , 109–116. https://doi.org/10.1016/S0927-7757(01)00638-0
Lee, G. S., Uchikoshi, M., Mimura, K., & Isshiki, M. (2009). Distribution coefficients of La, Ce, Pr, Nd, and Sm on Cyanex 923-, D2EHPA-, and PC88A-impregnated resins. Separation and Purification Technology , 67 (1), 79–85. https://doi.org/10.1016/j.seppur.2009.03.033
Lee, G. S., Uchikoshi, M., Mimura, K., & Isshiki, M. (2010a). Preparation and evaluation of high-purity La2O3. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science , 41 (3), 509–519. https://doi.org/10.1007/s11663-010-9348-6
Lee, G. S., Uchikoshi, M., Mimura, K., & Isshiki, M. (2010b). Separation of major impurities Ce, Pr, Nd, Sm, Al, Ca, Fe, and Zn from La using bis(2-ethylhexyl)phosphoric acid (D2EHPA)-impregnated resin in a hydrochloric acid medium. Separation and Purification Technology , 71 (2), 186–191. https://doi.org/10.1016/j.seppur.2009.11.020
Lee, Y.-R., Yu, K., Ravi, S., & Ahn, W.-S. (2018). Selective Adsorption of Rare Earth Elements over Functionalized Cr-MIL-101 [Research-article]. ACS Applied Materials & Interfaces ,10 (28), 23918–23927. https://doi.org/10.1021/acsami.8b07130
Lee, Y. R., Zhang, S., Yu, K., Choi, J., & Ahn, W. S. (2019). Poly(amidoamine) dendrimer immobilized on mesoporous silica foam (MSF) and fibrous nano-silica KCC-1 for Gd3+ adsorption in water.Chemical Engineering Journal , 378 , 122133. https://doi.org/10.1016/j.cej.2019.122133
Li, C., Zhuang, Z., Huang, F., Wu, Z., Hong, Y., & Lin, Z. (2013). Recycling rare earth elements from industrial wastewater with flowerlike nano-Mg(OH)2. ACS Applied Materials and Interfaces , 5 (19), 9719–9725. https://doi.org/10.1021/am4027967
Li, D., Zhang, B., & Xuan, F. (2015). The sorption of Eu(III) from aqueous solutions by magnetic graphene oxides: A combined experimental and modeling studies. Journal of Molecular Liquids , 211 , 203–209. https://doi.org/10.1016/j.molliq.2015.07.012
Li, J., Gong, A., Li, F., Qiu, L., Zhang, W., Gao, G., Liu, Y., & Li, J. (2018). Synthesis and characterization of magnetic mesoporous Fe3O4@mSiO2-DODGA nanoparticles for adsorption of 16 rare earth elements. RSC Advances , 8 (68), 39149–39161. https://doi.org/10.1039/c8ra07762b
Li, J., Gong, A., Qiu, L., Zhang, W., Shi, G., Li, X., Li, J., Gao, G., & Bai, Y. (2020). Selective extraction and column separation for 16 kinds of rare earth element ions by using N, N-dioctyl diglycolacid grafted silica gel particles as the stationary phase. Journal of Chromatography A , 1627 . https://doi.org/10.1016/j.chroma.2020.461393
Li, K., Gao, Q., Yadavalli, G., Shen, X., Lei, H., Han, B., Xia, K., & Zhou, C. (2015). Selective Adsorption of Gd3+ on a Magnetically Retrievable Imprinted Chitosan/Carbon Nanotube Composite with High Capacity. ACS Applied Materials and Interfaces , 7 (38), 21047–21055. https://doi.org/10.1021/acsami.5b07560
Li, X., Lu, T., Wang, Y., & Yang, Y. (2019). Study on the controllable synthesis of SH-MCM-41 mesoporous materials and their adsorption properties of the La3+, Gd3+ and Yb3+. Chinese Chemical Letters ,30 (12), 2318–2322. https://doi.org/10.1016/j.cclet.2019.05.056
Liao, C., Nie, H., Jiao, Y., Liang, Y., & Yang, S. (2010). Study on the diffusion kinetics of adsorption of heavy rare earth with Cyanex272-P507 impregnated resin. Journal of Rare Earths , 28 (SUPPL. 1), 120–124. https://doi.org/10.1016/S1002-0721(10)60290-6
Liu, J., Martin, P. F., & Peter McGrail, B. (2021). Rare-earth element extraction from geothermal brine using magnetic core-shell nanoparticles-techno-economic analysis. Geothermics , 89 , 101938. https://doi.org/10.1016/j.geothermics.2020.101938
Liu, Y., Zhu, L., Sun, X., Chen, J., & Luo, F. (2009). Silica materials doped with bifunctional ionic liquid extractant for yttrium extraction.Industrial and Engineering Chemistry Research , 48 (15), 7308–7313. https://doi.org/10.1021/ie900468c
Liu, Zhanmeng, Chen, G., Li, X., & Lu, X. (2021). Removal of rare earth elements by MnFe2O4 based mesoporous adsorbents: Synthesis, isotherms, kinetics, thermodynamics. Journal of Alloys and Compounds ,856 , 158185. https://doi.org/10.1016/J.JALLCOM.2020.158185
Liu, Zhanmeng, Gao, Z., Xu, L., & Hu, F. (2020). Efficient and rapid adsorption of rare earth elements from water by magnetic Fe3O4/MnO2 decorated reduced graphene oxide. Journal of Molecular Liquids ,313 , 113510. https://doi.org/10.1016/j.molliq.2020.113510
Liu, Zhaowang, Feng, Y., & Li, H. (2021). Application of titanium phosphate prepared from acidic titanium dioxide wastewater to remove cerium (III) in aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects , 630 , 127613. https://doi.org/10.1016/J.COLSURFA.2021.127613
Liu, Zhe, Liu, Y., & Gong, A. (2019). Preparation of diglycolamide polymer modified silica and its application as adsorbent for rare earth ions. Designed Monomers and Polymers , 22 (1), 1–7. https://doi.org/10.1080/15685551.2018.1564425
Lokshin, E. P., Ivanenko, V. I., Tareeva, O. A., & Korneikov, R. I. (2013). Sorption of rare earth elements of waste solution of leaching uranium. Russian Journal of Applied Chemistry , 86 (3), 450–452. https://doi.org/10.1134/S1070427213030269
Losev, V., Buyko, O., Metelitsa, S., Borodina, E., Kuzmin, N., & Shimanskiy, A. (2020). Novel silica based adsorbent layer-by-layer modified with polyhexamethylene guanidine and Arsenazo reagents for solid-phase extraction of lanthanides from lignites and products of their processing. Separation Science and Technology (Philadelphia) . https://doi.org/10.1080/01496395.2020.1785500
Lou, Z., Xiao, X., Huang, M., Wang, Y., Xing, Z., & Xiong, Y. (2019). Acrylic Acid-Functionalized Metal–Organic Frameworks for Sc(III) Selective Adsorption [Research-article]. ACS Applied Materials & Interfaces , 11 (12), 11772–11781. https://doi.org/10.1021/acsami.9b00476
Louis, R. E., & Duyckaerts, G. (1984). Some parameters affecting the extraction chromatographic performance of TBP impregnated macroporous XAD-4 columns for Am(III)-Eu(III) separations. Journal of Radioanalytical and Nuclear Chemistry Articles , 81 (2), 305–315. https://doi.org/10.1007/BF02135383
Louis, R. E., & Duyckaerts, G. (1985). Some parameters affecting column distribution ratios of Am(III) and Eu(III) and column resolution of TBP impregnated macroporous XAD-4 polymers. Journal of Radioanalytical and Nuclear Chemistry Articles , 90 (1), 105–112. https://doi.org/10.1007/BF02037325
Ma, T. Y., Liu, L., & Yuan, Z. Y. (2013). Direct synthesis of ordered mesoporous carbons. Chemical Society Reviews , 42 (9), 3977–4003. https://doi.org/10.1039/c2cs35301f
Mackey, J. L., Key, M. A. C., Lirai, J., & Of, A. S. (1960). A study of the rare-earth chelate stability constants of some aminopolyacetic acids exactly as received .
Mahmoud, M. E., Mohamed, A. K., Amira, M. F., & Seleim, S. M. (2019). Novel Nanostructured Metal–Organic Framework-Bonded Silica Amine and Polymer: Facile Synthesis, Kinetics, Isotherms, and Thermodynamics Evaluation for Adsorption of Yttrium(III) Ions [Research-article].Journal of Chemical & Engineering Data , 64 (12), 6060–6070. https://doi.org/10.1021/acs.jced.9b00918
Marmier, N., Dumonceau, J., & Fromage, F. (1997). Surface complexation modeling of Yb(III) sorption and desorption on hematite and alumina.Journal of Contaminant Hydrology , 26 (1–4), 159–167. https://doi.org/10.1016/S0169-7722(96)00065-4
Marmier, Nicolas, Delisée, A., & Fromage, F. (1999). Surface Complexation Modeling of Yb(III) and Cs(I) Sorption on Silica.Journal of Colloid and Interface Science , 212 (2), 228–233. https://doi.org/10.1006/jcis.1999.6086
Marmier, Nicolas, & Fromage, F. (1999). Comparing Electrostatic and Nonelectrostatic Surface Complexation Modeling of the Sorption of Lanthanum on Hematite. Journal of Colloid and Interface Science ,212 (2), 252–263. https://doi.org/10.1006/jcis.1998.6039
Martell, A. E., & Hancock, R. D. (1996). Metal Complexes in Aqueous Solutions. In Metal Complexes in Aqueous Solutions . Springer US. https://doi.org/10.1007/978-1-4899-1486-6
Martynenko, L. I., Kupriyanova, G. N., & Prutkova, N. M. (1972). Non-ion exchange sorption of monoiminodiacetates of rare-earth elements on cationite. Zhurnal Neorganicheskoj Khimii , 17 (1), 214–217. http://inis.iaea.org/Search/search.aspx?orig_q=RN:3033722
Martynenko, L. I., Mitrofanova, N. D., & Spitsyn, V. I. (1968). Mechanism of the ion-exchange separation of mixtures of rare earth elements during elution with solutions of nitrilotriacetic acid.Bulletin of the Academy of Sciences of the USSR Division of Chemical Science , 17 (9), 1854–1861. https://doi.org/10.1007/BF00904970
Marwani, H. M., Albishri, H. M., Jalal, T. A., & Soliman, E. M. (2017). Study of isotherm and kinetic models of lanthanum adsorption on activated carbon loaded with recently synthesized Schiff’s base.Arabian Journal of Chemistry , 10 , S1032–S1040. https://doi.org/10.1016/j.arabjc.2013.01.008
Marwani, H. M., & Alsafrani, A. E. (2013). New solid phase extractor based on ionic liquid functionalized silica gel surface for selective separation and determination of lanthanum. Journal of Analytical Science and Technology , 4 (1), 1–10. https://doi.org/10.1186/2093-3371-4-13
Marwani, H. M., Bakhsh, E. M., Khan, S. B., Danish, E. Y., & Asiri, A. M. (2018). Cerium oxide‑cadmium oxide nanomaterial as efficient extractant for yttrium ions. Journal of Molecular Liquids ,269 , 252–259. https://doi.org/10.1016/j.molliq.2018.08.046
Masi, A. N., & Olsina, R. A. (1993). Preconcentration and determination of Ce, La and Pr by X-ray fluorescence analysis, using Amberlite XAD resins loaded with 8-Quinolinol and 2-(2-(5 chloropyridylazo)-5-dimethylamino)-phenol. Talanta , 40 (6), 931–934. https://doi.org/10.1016/0039-9140(93)80054-U
Mathur, J. N., & Khopkar, P. K. (1985). Ion Exchange Behaviour of Chelating Resin Dowex A-1 with Actinides and Lanthanides. Solvent Extraction and Ion Exchange , 3 (5), 753–762. https://doi.org/10.1080/07366298508918538
Mehmood, A., Ghafar, H., Yaqoob, S., Gohar, U. F., & Ahmad, B. (2017). Mesoporous Silica Nanoparticles: A Review. Journal of Developing Drugs , 06 (02). https://doi.org/10.4172/2329-6631.1000174
Meng, M., Meng, X., Liu, Y., Liu, Z., Han, J., Wang, Y., Luo, M., Chen, R., Ni, L., & Yan, Y. (2014). An ion-imprinted functionalized SBA-15 adsorbent synthesized by surface imprinting technique via reversible addition-fragmentation chain transfer polymerization for selective removal of Ce(III) from aqueous solution. Journal of Hazardous Materials , 278 , 134–143. https://doi.org/10.1016/j.jhazmat.2014.06.002
Metwally, S. S., & Rizk, H. E. (2014). Preparation and Characterization of Nano-Sized Iron–Titanium Mixed Oxide for Removal of Some Lanthanides from Aqueous Solution. Separation Science and Technology ,49 (15), 2426–2436. https://doi.org/10.1080/01496395.2014.926457
Meynen, V., Cool, P., & Vansant, E. F. (2009). Verified syntheses of mesoporous materials. Microporous and Mesoporous Materials ,125 (3), 170–223. https://doi.org/10.1016/j.micromeso.2009.03.046
Miklishanskii, A. Z., Yakovlev, Y. V., Dogadkin, N. N., Leikin, Y. A., & Davankov, A. B. (1968). Investigation of the sorption of the rare-earth elements and uranium by phosphorus-containing cation-exchange resins. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science , 17 (7), 1373–1376. https://doi.org/10.1007/BF00907827
Minczewski, J, Chwastowska, J., Dybczynski, R., & Masson, M. R. (1982).Separation and preconcentration methods in inorganic trace analysis . E. Horwood ; Halsted Press.
Minczewski, Jerzy, & Dybczyński, R. (1962). Separation of rare earths on anion exchange resins II. Anion exchange behaviour of the rare earth complexes with ethylenediaminetetraacetic acid. Journal of Chromatography A , 7 (C), 98–111. https://doi.org/10.1016/s0021-9673(01)86386-x
Miraoui, A., Didi, M. A., & Villemin, D. (2016). Neodymium(III) removal by functionalized magnetic nanoparticles. Journal of Radioanalytical and Nuclear Chemistry , 307 (2), 963–971. https://doi.org/10.1007/s10967-015-4267-2
Mohamed, W. R., Metwally, S. S., Ibrahim, H. A., El-Sherief, E. A., Mekhamer, H. S., Moustafa, I. M. I., & Mabrouk, E. M. (2017). Impregnation of task-specific ionic liquid into a solid support for removal of neodymium and gadolinium ions from aqueous solution.Journal of Molecular Liquids , 236 , 9–17. https://doi.org/10.1016/j.molliq.2017.04.013
Mohammedi, H., Miloudi, H., Tayeb, A., Bertagnolli, C., & Boos, A. (2019). Study on the extraction of lanthanides by a mesoporous MCM-41 silica impregnated with Cyanex 272. Separation and Purification Technology , 209 (February 2018), 359–367. https://doi.org/10.1016/j.seppur.2018.07.035
Molina, L., Gaete, J., Alfaro, I., Ide, V., Valenzuela, F., Parada, J., & Basualto, C. (2019). Synthesis and characterization of magnetite nanoparticles functionalized with organophosphorus compounds and its application as an adsorbent for La (III), Nd (III) and Pr (III) ions from aqueous solutions. Journal of Molecular Liquids , 275 , 178–191. https://doi.org/10.1016/j.molliq.2018.11.074
Moloney, M. P., Causse, J., Loubat, C., & Grandjean, A. (2014). Sodium “Activation” of Silano-Phosphonate Modified Mesoporous TiO 2 Leading to Improved Rare-Earth Element Extraction. European Journal of Inorganic Chemistry , 2014 (13), 2268–2277. https://doi.org/10.1002/ejic.201400027
Mondal, S., Ghar, A., Satpati, A. K., Sinharoy, P., Singh, D. K., Sharma, J. N., Sreenivas, T., & Kain, V. (2019). Recovery of rare earth elements from coal fly ash using TEHDGA impregnated resin.Hydrometallurgy , 185 , 93–101. https://doi.org/10.1016/j.hydromet.2019.02.005
Mosai, A. K., Chimuka, L., Cukrowska, E. M., Kotzé, I. A., & Tutu, H. (2019). The Recovery of Rare Earth Elements (REEs) from Aqueous Solutions Using Natural Zeolite and Bentonite. Water, Air, and Soil Pollution , 230 (8). https://doi.org/10.1007/s11270-019-4236-4
Moussa, M., Ndiaye, M. M., Pinta, T., Pichon, V., Vercouter, T., & Delaunay, N. (2017). Selective solid phase extraction of lanthanides from tap and river waters with ion imprinted polymers. Analytica Chimica Acta , 963 , 44–52. https://doi.org/10.1016/j.aca.2017.02.012
Muraviev, D. (1998). Surface impregnated sulfonate ion exchangers: Preparation, properties and application. Solvent Extraction and Ion Exchange , 16 (1), 381–457. https://doi.org/10.1080/07366299808934533
Muraviev, D., Ghantous, L., & Valiente, M. (1998). Stabilization of solvent-impregnated resin capacities by different techniques.Reactive and Functional Polymers , 38 (2–3), 259–268. https://doi.org/10.1016/s1381-5148(98)00075-3
Narayan, R., Nayak, U. Y., Raichur, A. M., & Garg, S. (2018). Mesoporous silica nanoparticles: A comprehensive review on synthesis and recent advances. Pharmaceutics , 10 (3), 1–49. https://doi.org/10.3390/pharmaceutics10030118
Naser, A. A., El-deen, G. E. S., Bhran, A. A., Metwally, S. S., & El-Kamash, A. M. (2015). Elaboration of Impregnated Composite for Sorption of Europium and Neodymium Ions from Aqueous Solutions.Journal of Industrial and Engineering Chemistry , 32 , 264–272. https://doi.org/10.1016/j.jiec.2015.08.024
Nash, K. L. (1993). A review of the basic chemistry and recent developments in trivalent f-elements separations. Solvent Extraction and Ion Exchange , 11 (4), 729–768. https://doi.org/10.1080/07366299308918184
Nelson, F. (1965). Ion-exchange procedures. Journal of Chromatography A , 20 , 378–383. https://doi.org/10.1016/s0021-9673(01)97426-6
Ngomsik, A. F., Bee, A., Talbot, D., & Cote, G. (2012). Magnetic solid-liquid extraction of Eu(III), La(III), Ni(II) and Co(II) with maghemite nanoparticles. Separation and Purification Technology ,86 , 1–8. https://doi.org/10.1016/j.seppur.2011.10.013
Ni, C., Liu, Q., Ren, Z., Hu, H., Sun, B., Liu, C., Shao, P., Yang, L., Pavlostathis, S. G., & Luo, X. (2021). Selective removal and recovery of La(III) using a phosphonic-based ion imprinted polymer: Adsorption performance, regeneration, and mechanism. Journal of Environmental Chemical Engineering , 9 (6), 106701. https://doi.org/10.1016/J.JECE.2021.106701
Nik Mustapa, N. R., Malek, N. F. A., Yusoff, M. M., & Rahman, M. L. (2016). Ion imprinted polymers for selective recognition and separation of lanthanum and cerium ions from other lanthanide. Separation Science and Technology (Philadelphia) , 51 (17), 2762–2771. https://doi.org/10.1080/01496395.2016.1225091
Nishihama, S., Kohata, K., & Yoshizuka, K. (2013). Separation of lanthanum and cerium using a coated solvent-impregnated resin.Separation and Purification Technology , 118 , 511–518. https://doi.org/10.1016/j.seppur.2013.07.047
Niu, F., Xie, Z., Fu, C., Xu, H., Liu, D., Zhang, X., Yang, Y., & Shen, L. (2021). Adsorption–Desorption of La3+, Eu3+, and Y3+ by Mg(OH)2-Pretreated TP207 Resin. JOM , 73 (1), 32–38. https://doi.org/10.1007/s11837-020-04472-2
Noack, C. W., Dzombak, D. A., & Karamalidis, A. K. (2014). Rare earth element distributions and trends in natural waters with a focus on groundwater. Environmental Science and Technology , 48 (8), 4317–4326. https://doi.org/10.1021/es4053895
Noack, C. W., Perkins, K. M., Callura, J. C., Washburn, N. R., Dzombak, D. A., & Karamalidis, A. K. (2016). Effects of Ligand Chemistry and Geometry on Rare Earth Element Partitioning from Saline Solutions to Functionalized Adsorbents. ACS Sustainable Chemistry & Engineering , 4 (11), 6115–6124. https://doi.org/10.1021/acssuschemeng.6b01549
Ochsenkühn-Petropulu, M., Lyberopulu, T., & Parissakis, G. (1995). Selective separation and determination of scandium from yttrium and lanthanides in red mud by a combined ion exchange/solvent extraction method. Analytica Chimica Acta , 315 (1–2), 231–237. https://doi.org/10.1016/0003-2670(95)00309-N
Ogata, T., Narita, H., & Tanaka, M. (2014). Immobilization of diglycol amic acid on silica gel for selective recovery of rare earth elements.Chemistry Letters , 43 (9), 1414–1416. https://doi.org/10.1246/cl.140446
Ogata, T., Narita, H., & Tanaka, M. (2015a). Adsorption behavior of rare earth elements on silica gel modified with diglycol amic acid.Hydrometallurgy , 152 , 178–182. https://doi.org/10.1016/j.hydromet.2015.01.005
Ogata, T., Narita, H., & Tanaka, M. (2015b). Rapid and selective recovery of heavy rare earths by using an adsorbent with diglycol amic acid group. Hydrometallurgy , 155 , 105–109. https://doi.org/10.1016/j.hydromet.2015.04.015
Ogata, T., Narita, H., Tanaka, M., Hoshino, M., Kon, Y., & Watanabe, Y. (2016). Selective recovery of heavy rare earth elements from apatite with an adsorbent bearing immobilized tridentate amido ligands.Separation and Purification Technology , 159 , 157–160. https://doi.org/10.1016/j.seppur.2016.01.008
Ohta, A., & Kawabe, I. (2001). REE(III) adsorption onto Mn dioxide (δ-MnO2) and Fe oxyhydroxide: Ce(III) oxidation by δ-MnO2.Geochimica et Cosmochimica Acta , 65 (5), 695–703. https://doi.org/10.1016/S0016-7037(00)00578-0
Page, M. J., Quinn, J. E., & Soldenhoff, K. H. (2019). The impact of sulfate ions on the ion exchange of rare earth elements.Hydrometallurgy , 186 , 12–20. https://doi.org/10.1016/j.hydromet.2019.03.003
Page, M. J., Soldenhoff, K., & Ogden, M. D. (2017). Comparative study of the application of chelating resins for rare earth recovery.Hydrometallurgy , 169 , 275–281. https://doi.org/10.1016/j.hydromet.2017.02.006
Pallavicini, P., Dacarro, G., Diaz-Fernandez, Y. A., & Taglietti, A. (2014). Coordination chemistry of surface-grafted ligands for antibacterial materials. In Coordination Chemistry Reviews (Vol. 275, pp. 37–53). Elsevier. https://doi.org/10.1016/j.ccr.2014.04.013
Pan, J., Zou, X., Li, C., Liu, Y., Yan, Y., & Han, J. (2010). Synthesis and applications of Ce(III)-imprinted polymer based on attapulgite as the sacrificial support material for selective separation of cerium(III) ions. Microchimica Acta , 171 (1), 151–160. https://doi.org/10.1007/s00604-010-0416-z
PARK, J., HAN, C., LEE, J., KIM, S., KIM, J., & WEE, J. (2005). Synthesis of extraction resin containing 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester and its performance for separation of rare earths (Gd, Tb). Separation and Purification Technology ,43 (2), 111–116. https://doi.org/10.1016/j.seppur.2004.10.007
Parsons-Moss, T., Wang, J., Jones, S., May, E., Olive, D., Dai, Z., Zavarin, M., Kersting, A. B., Zhao, D., & Nitsche, H. (2014). Sorption interactions of plutonium and europium with ordered mesoporous carbon.Journal of Materials Chemistry A , 2 (29), 11209–11221. https://doi.org/10.1039/c4ta01740d
Patra, S., Roy, E., Madhuri, R., & Sharma, P. K. (2017). Removal and Recycling of Precious Rare Earth Element from Wastewater Samples Using Imprinted Magnetic Ordered Mesoporous Carbon [Research-article].ACS Sustainable Chemistry and Engineering , 5 (8), 6910–6923. https://doi.org/10.1021/acssuschemeng.7b01124
Pearson, R. G. (1963). Hard and Soft Acids and Bases. Journal of the American Chemical Society , 85 (22), 3533–3539. https://doi.org/10.1021/ja00905a001
Peng, X., Mo, S., Li, R., Li, J., Tian, C., Liu, W., & Wang, Y. (2020). Effective removal of the rare earth element dysprosium from wastewater with polyurethane sponge-supported graphene oxide–titanium phosphate.Environmental Chemistry Letters , 1–10. https://doi.org/10.1007/s10311-020-01073-y
Perreault, L. L., Giret, S., Gagnon, M., Florek, J., Larivière, D., & Kleitz, F. (2017). Functionalization of Mesoporous Carbon Materials for Selective Separation of Lanthanides under Acidic Conditions. ACS Applied Materials and Interfaces , 9 (13), 12003–12012. https://doi.org/10.1021/acsami.6b16650
Piasecki, W., & Sverjensky, D. A. (2008). Speciation of adsorbed yttrium and rare earth elements on oxide surfaces. Geochimica et Cosmochimica Acta , 72 (16), 3964–3979. https://doi.org/10.1016/j.gca.2008.05.049
Polido Legaria, E., Rocha, J., Tai, C. W., Kessler, V. G., & Seisenbaeva, G. A. (2017). Unusual seeding mechanism for enhanced performance in solid-phase magnetic extraction of Rare Earth Elements.Scientific Reports , 7 (January), 1–13. https://doi.org/10.1038/srep43740
Polido Legaria, E., Samouhos, M., Kessler, V. G., & Seisenbaeva, G. A. (2017). Toward Molecular Recognition of REEs: Comparative Analysis of Hybrid Nanoadsorbents with the Different Complexonate Ligands EDTA, DTPA, and TTHA. Inorganic Chemistry , 56 (22), 13938–13948. https://doi.org/10.1021/acs.inorgchem.7b02056
Qin, Y., Wang, X., Shi, M., Huang, Y., Liu, X., & Li, X. (2022). Preparation and Adsorption Properties of Lanthanide Ion Surface-Imprinted Polymer Based on Reaming MCM-41. Journal of Inorganic and Organometallic Polymers and Materials , 32 (1), 161–168. https://doi.org/10.1007/S10904-021-02108-9/FIGURES/7
Quinn, K. A., Byrne, R. H., & Schijf, J. (2006). Sorption of yttrium and rare earth elements by amorphous ferric hydroxide: Influence of solution complexation with carbonate. Geochimica et Cosmochimica Acta , 70 (16), 4151–4165. https://doi.org/10.1016/j.gca.2006.06.014
Quinn, K. A., Byrne, R. H., & Schijf, J. (2007). Sorption of Yttrium and Rare Earth Elements by Amorphous Ferric Hydroxide: Influence of Temperature. Environmental Science & Technology , 41 (2), 541–546. https://doi.org/10.1021/es0618191
Rahman, M. M., Awual, M. R., & Asiri, A. M. (2020). Preparation and evaluation of composite hybrid nanomaterials for rare-earth elements separation and recovery. Separation and Purification Technology ,253 , 117515. https://doi.org/10.1016/j.seppur.2020.117515
Ramasamy, D. L., Khan, S., Repo, E., & Sillanpää, M. (2017). Synthesis of mesoporous and microporous amine and non-amine functionalized silica gels for the application of rare earth elements (REE) recovery from the waste water-understanding the role of pH, temperature, calcination and mechanism in Light REE and Hea. Chemical Engineering Journal ,322 , 56–65. https://doi.org/10.1016/j.cej.2017.03.152
Ramasamy, D. L., Puhakka, V., Doshi, B., Iftekhar, S., & Sillanpää, M. (2019). Fabrication of carbon nanotubes reinforced silica composites with improved rare earth elements adsorption performance. Chemical Engineering Journal , 365 (January), 291–304. https://doi.org/10.1016/j.cej.2019.02.057
Ramasamy, D. L., Puhakka, V., Iftekhar, S., Wojtuś, A., Repo, E., Ben Hammouda, S., Iakovleva, E., & Sillanpää, M. (2018). N- and O- ligand doped mesoporous silica-chitosan hybrid beads for the efficient, sustainable and selective recovery of rare earth elements (REE) from acid mine drainage (AMD): Understanding the significance of physical modification and conditioning of th. Journal of Hazardous Materials , 348 (October 2017), 84–91. https://doi.org/10.1016/j.jhazmat.2018.01.030
Ramasamy, D. L., Puhakka, V., Repo, E., Ben Hammouda, S., & Sillanpää, M. (2018). Two-stage selective recovery process of scandium from the group of rare earth elements in aqueous systems using activated carbon and silica composites: Dual applications by tailoring the ligand grafting approach. Chemical Engineering Journal ,341 (February), 351–360. https://doi.org/10.1016/j.cej.2018.02.024
Ramasamy, D. L., Puhakka, V., Repo, E., Khan, S., & Sillanpää, M. (2017). Coordination and silica surface chemistry of lanthanides (III), scandium (III) and yttrium (III) sorption on 1-(2-pyridylazo)-2-napththol (PAN) and acetylacetone (acac) immobilized gels. Chemical Engineering Journal , 324 , 104–112. https://doi.org/10.1016/j.cej.2017.05.025
Ramasamy, D. L., Puhakka, V., Repo, E., & Sillanpää, M. (2018). Selective separation of scandium from iron, aluminium and gold rich wastewater using various amino and non-amino functionalized silica gels – A comparative study. Journal of Cleaner Production ,170 (January), 890–901. https://doi.org/10.1016/j.jclepro.2017.09.199
Ramasamy, D. L., Repo, E., & Sillanpää, M. (2020). Selective recovery of rare-earth elements from diluted aqueous streams using N- and O-coordination ligand–grafted organic–inorganic hybrid composites. InAdvanced Water Treatment (pp. 565–664). Elsevier. https://doi.org/10.1016/B978-0-12-819216-0.00008-4
Ramasamy, D. L., Repo, E., Srivastava, V., & Sillanpää, M. (2017). Chemically immobilized and physically adsorbed PAN/acetylacetone modified mesoporous silica for the recovery of rare earth elements from the waste water-comparative and optimization study. Water Research , 114 , 264–276. https://doi.org/10.1016/j.watres.2017.02.045
Rao, T. P., Kala, R., & Daniel, S. (2006). Metal ion-imprinted polymers-Novel materials for selective recognition of inorganics.Analytica Chimica Acta , 578 (2), 105–116. https://doi.org/10.1016/j.aca.2006.06.065
Ravi, S., Lee, Y. R., Yu, K., Ahn, J. W., & Ahn, W. S. (2018). Benzene triamido-tetraphosphonic acid immobilized on mesoporous silica for adsorption of Nd3+ ions in aqueous solution. Microporous and Mesoporous Materials , 258 , 62–71. https://doi.org/10.1016/j.micromeso.2017.09.006
Ravi, S., Zhang, S., Lee, Y. R., Kang, K. K., Kim, J. M., Ahn, J. W., & Ahn, W. S. (2018). EDTA-functionalized KCC-1 and KIT-6 mesoporous silicas for Nd3+ ion recovery from aqueous solutions. Journal of Industrial and Engineering Chemistry , 67 (June), 210–218. https://doi.org/10.1016/j.jiec.2018.06.031
Ridley, M. K., Machesky, M. L., Wesolowski, D. J., & Palmer, D. A. (2005). Surface complexation of neodymium at the rutile-water interface: A potentiometric and modeling study in NaCl media to 250°C.Geochimica et Cosmochimica Acta , 69 (1), 63–81. https://doi.org/10.1016/j.gca.2004.06.028
Roosen, J., Spooren, J., & Binnemans, K. (2014). Adsorption performance of functionalized chitosan–silica hybrid materials toward rare earths.J. Mater. Chem. A , 2 (45), 19415–19426. https://doi.org/10.1039/C4TA04518A
Roosen, J., Van Roosendael, S., Borra, C. R., Van Gerven, T., Mullens, S., & Binnemans, K. (2016). Recovery of scandium from leachates of Greek bauxite residue by adsorption on functionalized chitosan-silica hybrid materials. Green Chemistry , 18 (7), 2005–2013. https://doi.org/10.1039/c5gc02225h
Ryu, S., Fonseka, C., Naidu, G., Loganathan, P., Moon, H., Kandasamy, J., & Vigneswaran, S. (2021). Recovery of rare earth elements (Lu, Y) by adsorption using functionalized SBA-15 and MIL-101 (Cr).Chemosphere , 281 , 130869. https://doi.org/10.1016/J.CHEMOSPHERE.2021.130869
Sarmadi, N., Gharabaghi, M., Tamadoni Saray, M., Darestani, M., Garman, D., Koshy, P., S. Mofarah, S., & Sorrell, C. C. (2021). Highly Mesoporous Hybrid Transition Metal Oxide Nanowires for Enhanced Adsorption of Rare Earth Elements from Wastewater. Inorganic Chemistry , 60 (1), 175–184. https://doi.org/10.1021/acs.inorgchem.0c02762
Schaeffer, N., Grimes, S. M., & Cheeseman, C. R. (2017). Use of extraction chromatography in the recycling of critical metals from thin film leach solutions. Inorganica Chimica Acta , 457 , 53–58. https://doi.org/10.1016/j.ica.2016.11.020
Schoeb, V. R. (1965). The stability constants of rare-earths with some carboxylic acids. Retrospective Theses andDissertations. 3376 . https://lib.dr.iastate.edu/rtd/3376%0A
Schrobilgen, G. J., & Lang, C. E. (1968). Lanthanide distribution coefficients on Dowex chelating resin A-1. Journal of Inorganic and Nuclear Chemistry , 30 (11), 3127–3130. https://doi.org/10.1016/0022-1902(68)80183-6
Sert, Ş., Altaş, Y., Tel, H., Inan, S., Çetinkaya, B., Sengül, S., & Özkan, B. (2021). Investigation of sorption behaviors of La, Pr, Nd, Sm, Eu and Gd on D2EHPA-impregnated XAD7 resin in nitric acid medium.Separation Science and Technology (Philadelphia) , 56 (1), 26–35. https://doi.org/10.1080/01496395.2019.1708107
Shinozaki, T., Ogata, T., Kakinuma, R., Narita, H., Tokoro, C., & Tanaka, M. (2018). Preparation of Polymeric Adsorbents Bearing Diglycolamic Acid Ligands for Rare Earth Elements [Research-article]. Industrial & Engineering Chemistry Research , 57 (33), 11424–11430. https://doi.org/10.1021/acs.iecr.8b01797
Shu, Q., Khayambashi, A., Wang, X., & Wei, Y. (2018). Studies on adsorption of rare earth elements from nitric acid solution with macroporous silica-based bis(2-ethylhexyl)phosphoric acid impregnated polymeric adsorbent. Adsorption Science & Technology ,36 (3–4), 1049–1065. https://doi.org/10.1177/0263617417748112
Shu, Q., Khayambashi, A., Zou, Q., Wang, X., Wei, Y., He, L., & Tang, F. (2017). Studies on adsorption and separation characteristics of americium and lanthanides using a silica-based macroporous bi(2-ethylhexyl) phosphoric acid (HDEHP) adsorbent. Journal of Radioanalytical and Nuclear Chemistry , 313 (1), 29–37. https://doi.org/10.1007/s10967-017-5293-z
SHU, Z., XIONG, C., SHEN, Q., YAO, C., & GU, Z. (2007). Adsorption behavior and mechanism of D113 resin for lanthanum. Rare Metals ,26 (6), 601–606. https://doi.org/10.1016/S1001-0521(08)60013-3
Shumilova, Y. B., Gelis, V. M., Milyutin, V. V., Kharitonov, O. V., & Firsova, L. A. (2012). Separation of rare-earth and transplutonium elements by displacement chromatography on S-957 phosphonic ion exchanger. Radiochemistry , 54 (2), 164–167. https://doi.org/10.1134/S1066362212020129
Sivaraman, N., Kumar, R., Subramaniam, S., & Vasudeva Rao, P. R. (2002). Separation of lanthanides using ion-interaction chromatography with HDEHP coated columns. Journal of Radioanalytical and Nuclear Chemistry , 252 (3), 491–495. https://doi.org/10.1023/A:1015894418606
Smith, H. L., & Hoffman, D. C. (1956). Ion-exchange separations of the lanthanides and actinides by elution with ammonium alpha-hydroxy-isobutyrate. Journal of Inorganic and Nuclear Chemistry , 3 (3–4), 243–247. https://doi.org/10.1016/0022-1902(56)80025-0
Sparfel, D., & Cote, G. (2004). Synthesis and properties of new highly hydrophobic 7-substituted 8-quinolinols. Solvent Extraction and Ion Exchange , 22 (1), 1–12. https://doi.org/10.1081/SEI-120027570
Spedding, F. H., & Powell, J. E. (1954). The Separation of Rare Earths by Ion Exchange. VIII. Quantitative Theory of the Mechanism Involved in Elution by Dilute Citrate Solutions. Journal of the American Chemical Society , 76 (9), 2550–2557. https://doi.org/10.1021/ja01638a074
Spedding, F. H., Powell, J. E., & Wheelwright, E. J. (1954). The Separation of Adjacent Rare Earths with Ethylenediamine-tetraacetic Acid by Elution from an Ion-exchange Resin. Journal of the American Chemical Society , 76 (2), 612–613. https://doi.org/10.1021/ja01631a091
Spedding, F. H., Voigt, A. F., Gladrow, E. M., & Sleight, N. R. (1947). The Separation of Rare Earths by Ion Exchange.1,2I. Cerium and Yttrium.Journal of the American Chemical Society , 69 (11), 2777–2781. https://doi.org/10.1021/ja01203a058
Strelow, F. W. E. (1960). An Ion Exchange Selectivity Scale of Cations Based on Equilibrium Distribution Coefficients. Analytical Chemistry , 32 (9), 1185–1188. https://doi.org/10.1021/ac60165a042
Strelow, F. W. E., & Bothma, C. J. C. (1964). Separation of Scandium from Yttrium, Lanthanum, and the Rare Earths by Cation Exchange Chromatography. Analytical Chemistry , 36 (7), 1217–1220. https://doi.org/10.1021/ac60213a015
Strelow, F. W. E., Rethemeyer, R., & Bothma, C. J. C. (1965). Ion Exchange Selectivity Scales for Cations in Nitric Acid and Sulfuric Acid Media with a Sulfonated Polystyrene Resin. Analytical Chemistry ,37 (1), 106–111. https://doi.org/10.1021/ac60220a027
Strelow, F. W. E., & Victor, A. H. (1990). Separation of yttrium and neodymium from samarium and the heavier lanthanides by cation-exchange chromatography with hydroxyethylenediaminetriacetate in monochloroacetate buffer. Talanta , 37 (12), 1155–1161. https://doi.org/10.1016/0039-9140(90)80185-I
Sun, M., Chen, C., Chen, L., & Su, B. (2016). Hierarchically porous materials: Synthesis strategies and emerging applications.Frontiers of Chemical Science and Engineering , 10 (3), 301–347. https://doi.org/10.1007/s11705-016-1578-y
SUN, X., JI, Y., CHEN, J., & MA, J. (2009). Solvent impregnated resin prepared using task-specific ionic liquids for rare earth separation.Journal of Rare Earths , 27 (6), 932–936. https://doi.org/10.1016/S1002-0721(08)60365-8
Sun, X., Peng, B., Ji, Y., Chen, J., & Li, D. (2008). The solid-liquid extraction of yttrium from rare earths by solvent (ionic liquid) impreganated resin coupled with complexing method. Separation and Purification Technology , 63 (1), 61–68. https://doi.org/10.1016/j.seppur.2008.03.038
Sun, Y., Shao, D., Chen, C., Yang, S., & Wang, X. (2013). Highly efficient enrichment of radionuclides on graphene oxide-supported polyaniline. Environmental Science and Technology , 47 (17), 9904–9910. https://doi.org/10.1021/es401174n
Sun, Y., Wang, Q., Chen, C., Tan, X., & Wang, X. (2012). Interaction between Eu(III) and graphene oxide nanosheets investigated by batch and extended X-ray absorption fine structure spectroscopy and by modeling techniques. Environmental Science and Technology , 46 (11), 6020–6027. https://doi.org/10.1021/es300720f
Suzuki, Y., Yokoi, S., Katoh, M., Minato, M., & Takizawa, N. (1980). Stability Constants of Rare-Earth Complexes with Some Organic Ligands. In G. J. McCarthy, J. J. Rhyne, & H. B. Silber (Eds.), The Rare Earths in Modern Science and Technology (pp. 121–126). Springer US. https://doi.org/10.1007/978-1-4613-3054-7_22
Svoboda, K., Kyrš, M., & Vaňura, P. (1997). Synergism in the sorption of europium on chromatographic supports impregnated with dicarbollide acid and bidentate phosphororganic extractant. Journal of Radioanalytical and Nuclear Chemistry , 220 (1), 47–54. https://doi.org/10.1007/BF02035346
Tan, X., Fang, M., Li, J., Lu, Y., & Wang, X. (2009). Adsorption of Eu(III) onto TiO2: Effect of pH, concentration, ionic strength and soil fulvic acid. Journal of Hazardous Materials , 168 (1), 458–465. https://doi.org/10.1016/j.jhazmat.2009.02.051
Thakkar, J., Wissler, B., Dudenas, N., Yin, X., Vailhe, M., Bricker, J., & Zhang, X. (2019). Recovery of Critical Rare-Earth Elements Using ETS-10 Titanosilicate [Rapid-communication]. Industrial and Engineering Chemistry Research , 58 , 11121–11126. https://doi.org/10.1021/acs.iecr.9b02623
Tong, S., Zhao, S., Zhou, W., Li, R., & Jia, Q. (2011). Modification of multi-walled carbon nanotubes with tannic acid for the adsorption of La, Tb and Lu ions. Microchimica Acta , 174 (3), 257–264. https://doi.org/10.1007/s00604-011-0622-3
Trewyn, B. G., Slowing, I. I., Giri, S., Chen, H. T., & Lin, V. S. Y. (2007). Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol-gel process and applications in controlled release. Accounts of Chemical Research , 40 (9), 846–853. https://doi.org/10.1021/ar600032u
Trochimczuk, A. W., Kabay, N., Arda, M., & Streat, M. (2004). Stabilization of solvent impregnated resins (SIRs) by coating with water soluble polymers and chemical crosslinking. Reactive and Functional Polymers , 59 (1), 1–7. https://doi.org/10.1016/j.reactfunctpolym.2003.12.011
Trochimczuk, Andrzej W. (2000). Synthesis of functionalized phenylphosphinic acid resins through Michael reaction and their ion-exchange properties. Reactive and Functional Polymers ,44 (1), 9–19. https://doi.org/10.1016/S1381-5148(99)00072-3
Trochimczuk, Andrzej W., & Alexandratos, S. D. (1994). Synthesis of bifunctional ion‐exchange resins through the Arbusov reaction: Effect on selectivity and kinetics. Journal of Applied Polymer Science ,52 (9), 1273–1277. https://doi.org/10.1002/app.1994.070520912
Tu, Y. J., & Johnston, C. T. (2018). Rapid recovery of rare earth elements in industrial wastewater by CuFe2O4 synthesized from Cu sludge.Journal of Rare Earths , 36 (5), 513–520. https://doi.org/10.1016/j.jre.2017.11.009
Turanov, A. N., Karandashev, V. K., & Bondarenko, N. A. (2008). Extraction of rare-earth, yttrium, and scandium perchlorates by podands bearing diphenylphosphorylacetamide terminal groups. Russian Journal of Inorganic Chemistry , 53 (11), 1801–1808. https://doi.org/10.1134/S0036023608110223
Turanov, Alexander N., Karandashev, V. K., Sukhinina, N. S., Masalov, V. M., & Emelchenko, G. A. (2016). Adsorption of lanthanides and scandium ions by silica sol-gel material doped with novel bifunctional ionic liquid, trioctylmethylammonium 1-phenyl-3-methyl-4-benzoyl-5-onate.Journal of Environmental Chemical Engineering , 4 (4), 3788–3796. https://doi.org/10.1016/j.jece.2016.08.024
Turanov, Alexander N., Karandashev, V. K., Sukhinina, N. S., Masalov, V. M., Zhokhov, A. A., & Emelchenko, G. A. (2015). A novel sorbent for lanthanide adsorption based on tetraoctyldiglycolamide, modified carbon inverse opals. RSC Advances , 5 (1), 529–535. https://doi.org/10.1039/c4ra11999a
Unsworth, C. E., Kuo, C. C., Kuzmin, A., Khalid, S., & Saha, D. (2020). Adsorption of Rare Earth Elements onto DNA-Functionalized Mesoporous Carbon. ACS Applied Materials and Interfaces , 12 (38), 43180–43190. https://doi.org/10.1021/ACSAMI.0C09393/SUPPL_FILE/AM0C09393_SI_001.PDF
Vasylyeva, H., Mironyuk, I., Mykytyn, I., & Savka, K. (2021). Equilibrium studies of yttrium adsorption from aqueous solutions by titanium dioxide. Applied Radiation and Isotopes , 168 , 109473. https://doi.org/10.1016/j.apradiso.2020.109473
Veliscek-Carolan, J., Hanley, T. L., & Luca, V. (2014). Zirconium organophosphonates as high capacity, selective lanthanide sorbents.Separation and Purification Technology , 129 , 150–158. https://doi.org/10.1016/j.seppur.2014.03.028
Vigneau, O., Pinel, C., & Lemaire, M. (2001). Ionic imprinted resins based on EDTA and DTPA derivatives for lanthanides(III) separation.Analytica Chimica Acta , 435 (1), 75–82. https://doi.org/10.1016/S0003-2670(00)01279-4
Vigneau, O., Pinel, C., & Lemaire, M. (2002). Solid-Liquid Separation of Lanthanide/Lanthanide and Lanthanide/Actinide Using Ionic Imprinted Polymer Based on a DTPA Derivative. Chemistry Letters ,31 (2), 202–203. https://doi.org/10.1246/cl.2002.202
Wackerlig, J., & Schirhagl, R. (2016). Applications of Molecularly Imprinted Polymer Nanoparticles and Their Advances toward Industrial Use: A Review. Analytical Chemistry , 88 (1), 250–261. https://doi.org/10.1021/acs.analchem.5b03804
WAKUI, Y., MATSUNAGA, H., & SUZUKI, T. M. (1988). Distribution of rare earth elements between (2-ethylhexyl hydrogen 2-ethylhexylphosphonate)-impregnated resin and acid aqueous solution.Analytical Sciences , 4 (3), 325–327. https://doi.org/10.2116/analsci.4.325
Wan, Y., & Zhao, D. (2007). On the controllable soft-templating approach to mesoporous silicates. Chemical Reviews ,107 (7), 2821–2860. https://doi.org/10.1021/cr068020s
WANG, F., WANG, W., ZHU, Y., & WANG, A. (2017). Evaluation of Ce(III) and Gd(III) adsorption from aqueous solution using CTS-g-(AA-co-SS)/ISC hybrid hydrogel adsorbent. Journal of Rare Earths , 35 (7), 697–708. https://doi.org/10.1016/S1002-0721(17)60966-9
Wang, H., & Gao, P. (2007). Adsorption of D113 resin for dysprosium(III). Journal Wuhan University of Technology, Materials Science Edition , 22 (4), 653–656. https://doi.org/10.1007/s11595-006-4653-2
Wang, Q., Wilfong, W. C., Kail, B. W., Yu, Y., & Gray, M. L. (2017). Novel Polyethylenimine-Acrylamide/SiO2 Hybrid Hydrogel Sorbent for Rare-Earth-Element Recycling from Aqueous Sources. ACS Sustainable Chemistry and Engineering , 5 (11), 10947–10958. https://doi.org/10.1021/acssuschemeng.7b02851
Wang, X., Xu, D., Chen, L., Tan, X., Zhou, X., Ren, A., & Chen, C. (2006). Sorption and complexation of Eu(III) on alumina: Effects of pH, ionic strength, humic acid and chelating resin on kinetic dissociation study. Applied Radiation and Isotopes , 64 (4), 414–421. https://doi.org/10.1016/j.apradiso.2005.08.010
Wang, Y., Chen, L., Yan, Y., Chen, J., Dai, J., & Dai, X. (2020). Separation of adjacent heavy rare earth Lutetium (III) and Ytterbium (III) by task-specific ionic liquid Cyphos IL 104 embedded polymer inclusion membrane. Journal of Membrane Science , 610 , 118263. https://doi.org/10.1016/j.memsci.2020.118263
Wang, Z. ., Ma, G. ., Lu, J., Liao, W. ., & Li, D. . (2002). Separation of heavy rare earth elements with extraction resin containing 1-hexyl-4-ethyloctyl isopropylphosphonic acid. Hydrometallurgy ,66 (1–3), 95–99. https://doi.org/10.1016/S0304-386X(02)00109-3
Wang, Z., Ma, G., & Li, D. (1998). Extraction and separation of heavy rare earth(III) with extraction resin containing di(2,4,4-trimethyl pentyl) phosphinic acid (cyanex 272). Solvent Extraction and Ion Exchange , 16 (3), 813–828. https://doi.org/10.1080/07366299808934554
Wheelwright, E. J. (1969). A comparison of eluting agents for the ion-exchange purification of promethium. Journal of Inorganic and Nuclear Chemistry , 31 (10), 3287–3293. https://doi.org/10.1016/0022-1902(69)80115-6
Wheelwright, E. J., Spedding, F. H., & Schwarzenbach, G. (1953). The Stability of the Rare Earth Complexes with Ethylenediaminetetraacetic Acid. Journal of the American Chemical Society , 75 (17), 4196–4201. https://doi.org/10.1021/ja01113a020
Wódkiewicz, L., & Dybczyński, R. (1968). Anion exchange behaviour of the rare earth complexes with trans-1,2-diaminocyclohexane-N,N’-tetraacetic acid. Journal of Chromatography A , 32 (C), 394–402. https://doi.org/10.1016/s0021-9673(01)80506-9
Wood, S. A. (1993). The aqueous geochemistry of the rare-earth elements: Critical stability constants for complexes with simple carboxylic acids at 25°C and 1 bar and their application to nuclear waste management.Engineering Geology , 34 (3–4), 229–259. https://doi.org/10.1016/0013-7952(93)90092-Q
Wu, D., Sun, Y., & Wang, Q. (2013). Adsorption of lanthanum (III) from aqueous solution using 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester-grafted magnetic silica nanocomposites. Journal of Hazardous Materials , 260 , 409–419. https://doi.org/10.1016/j.jhazmat.2013.05.042
Wu, J., Li, Z., Tan, H., Du, S., Liu, T., Yuan, Y., Liu, X., & Qiu, H. (2021). Highly selective separation of rare earth elements by Zn-BTC metal-organic framework/nanoporous graphene via in situ green synthesis.Analytical Chemistry , 93 (3), 1732–1739. https://doi.org/10.1021/ACS.ANALCHEM.0C04407/SUPPL_FILE/AC0C04407_SI_001.PDF
XIAO, Y., HUANG, L., LONG, Z., FENG, Z., & WANG, L. (2016). Adsorption ability of rare earth elements on clay minerals and its practical performance. Journal of Rare Earths , 34 (5), 543–548. https://doi.org/10.1016/S1002-0721(16)60060-1
Xie, F., Zhang, T. A., Dreisinger, D., & Doyle, F. (2014). A critical review on solvent extraction of rare earths from aqueous solutions.Minerals Engineering , 56 , 10–28. https://doi.org/10.1016/j.mineng.2013.10.021
Xiong, C., Chen, X., & Yao, C. (2011). Enhanced adsorption behavior of Nd(III) onto D113-III resin from aqueous solution. Journal of Rare Earths , 29 (10), 979–985. https://doi.org/10.1016/S1002-0721(10)60582-0
Xiong, C., Yao, C., & Wang, Y. (2006). Sorption behaviour and mechanism of ytterbium(III) on imino-diacetic acid resin. Hydrometallurgy ,82 (3–4), 190–194. https://doi.org/10.1016/j.hydromet.2006.03.012
XIONG, Chun-hua, WANG, G., & YAO, C. (2011). Adsorption of ytterbium (III) from aqueous solution by SQD–85 resin. Transactions of Nonferrous Metals Society of China , 21 (12), 2764–2771. https://doi.org/10.1016/S1003-6326(11)61121-7
XIONG, Chunhua. (2008). Study on sorption of D155 resin for gadolinium.Journal of Rare Earths , 26 (2), 258–263. https://doi.org/10.1016/S1002-0721(08)60077-0
XIONG, Chunhua, LIU, X., & YAO, C. (2008). Effect of pH on sorption for RE(III) and sorption behaviors of Sm(III) by D152 resin. Journal of Rare Earths , 26 (6), 851–856. https://doi.org/10.1016/S1002-0721(09)60020-X
XIONG, Chunhua, MENG, Y., YAO, C., & SHEN, C. (2009). Adsorption of erbium(III) on D113-III resin from aqueous solutions: batch and column studies. Journal of Rare Earths , 27 (6), 923–931. https://doi.org/10.1016/S1002-0721(08)60364-6
Xu, H., & Guo, D. (2012). Synthesis and characterization of an ion-imprinted polymer for selective adsorption of copper ions in aqueous solution. Adsorption Science and Technology , 30 (4), 293–306. https://doi.org/10.1260/0263-6174.30.4.293
Xu, J., Koivula, R., Zhang, W., Wiikinkoski, E., Hietala, S., & Harjula, R. (2018). Separation of cobalt, neodymium and dysprosium using amorphous zirconium phosphate. Hydrometallurgy ,175 (November 2017), 170–178. https://doi.org/10.1016/j.hydromet.2017.11.010
Yadav, K. K., Dasgupta, K., Singh, D. K., Anitha, M., Varshney, L., & Singh, H. (2015). Solvent impregnated carbon nanotube embedded polymeric composite beads: An environment benign approach for the separation of rare earths. Separation and Purification Technology , 143 , 115–124. https://doi.org/10.1016/j.seppur.2015.01.032
Yang, B., Wu, S.-Z., Liu, X.-Y., Yan, Z.-X., Liu, Y.-X., Li, Q.-S., Yu, F.-S., & Wang, J.-L. (2020). Solid-phase extraction and separation of heavy rare earths from chloride media using P227-impregnated resins.Rare Metals , 1–12. https://doi.org/10.1007/s12598-020-01549-4
Yang, S., Zong, P., Ren, X., Wang, Q., & Wang, X. (2012). Rapid and Highly Efficient Preconcentration of Eu(III) by Core–Shell Structured Fe 3 O 4 @Humic Acid Magnetic Nanoparticles. ACS Applied Materials & Interfaces , 4 (12), 6891–6900. https://doi.org/10.1021/am3020372
Yang, Xiaodong, Wan, Y., Zheng, Y., He, F., Yu, Z., Huang, J., Wang, H., Ok, Y. S., Jiang, Y., & Gao, B. (2019). Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: A critical review. Chemical Engineering Journal , 366 (February), 608–621. https://doi.org/10.1016/j.cej.2019.02.119
Yang, Xinwei, Debeli, D. K., Shan, G., & Pan, P. (2020). Selective adsorption and high recovery of La3+ using graphene oxide/poly (N-isopropyl acrylamide-maleic acid) cryogel. Chemical Engineering Journal , 379 , 122335. https://doi.org/10.1016/j.cej.2019.122335
Yantasee, W., Fryxell, G. E., Addleman, R. S., Wiacek, R. J., Koonsiripaiboon, V., Pattamakomsan, K., Sukwarotwat, V., Xu, J., & Raymond, K. N. (2009). Selective removal of lanthanides from natural waters, acidic streams and dialysate. Journal of Hazardous Materials , 168 (2–3), 1233–1238. https://doi.org/10.1016/j.jhazmat.2009.03.004
Yao, C. (2010). Adsorption and desorption properties of D151 resin for Ce(III). Journal of Rare Earths , 28 (SUPPL. 1), 183–188. https://doi.org/10.1016/S1002-0721(10)60324-9
Yin, W., Liu, L., Zhang, H., Tang, S., & Chi, R. (2020). A facile solvent-free and one-step route to prepare amino-phosphonic acid functionalized hollow mesoporous silica nanospheres for efficient Gd(III) removal. Journal of Cleaner Production , 243 . https://doi.org/10.1016/j.jclepro.2019.118688
Yu, Q., Ning, S., Zhang, W., Wang, X., & Wei, Y. (2018). Recovery of scandium from sulfuric acid solution with a macro porous TRPO/SiO2-P adsorbent. Hydrometallurgy , 181 (May), 74–81. https://doi.org/10.1016/j.hydromet.2018.07.025
Yuan, Y., Liu, J., Zhou, B., Yao, S., Li, H., & Xu, W. (2010). Synthesis of coated solvent impregnated resin for the adsorption of indium (III). Hydrometallurgy , 101 (3–4), 148–155. https://doi.org/10.1016/j.hydromet.2009.12.010
Yusoff, M. M., Mostapa, N. R. N., Sarkar, M. S., Biswas, T. K., Rahman, M. L., Arshad, S. E., Sarjadi, M. S., & Kulkarni, A. D. (2017). Synthesis of ion imprinted polymers for selective recognition and separation of rare earth metals. Journal of Rare Earths ,35 (2), 177–186. https://doi.org/10.1016/S1002-0721(17)60897-4
Zhang, Wei, Yu, S., Zhang, S., Zhou, J., Ning, S., Wang, X., & Wei, Y. (2019). Separation of scandium from the other rare earth elements with a novel macro-porous silica-polymer based adsorbent HDEHP/SiO 2 -P.Hydrometallurgy , 185 (January), 117–124. https://doi.org/10.1016/j.hydromet.2019.01.012
Zhang, Wenzhong, Avdibegović, D., Koivula, R., Hatanpää, T., Hietala, S., Regadío, M., Binnemans, K., & Harjula, R. (2017). Titanium alkylphosphate functionalised mesoporous silica for enhanced uptake of rare-earth ions. Journal of Materials Chemistry A , 5 (45), 23805–23814. https://doi.org/10.1039/C7TA08127H
Zhang, Wenzhong, Hietala, S., Khriachtchev, L., Hatanpää, T., Doshi, B., & Koivula, R. (2018). Intralanthanide Separation on Layered Titanium(IV) Organophosphate Materials via a Selective Transmetalation Process. ACS Applied Materials & Interfaces , 10 (26), 22083–22093. https://doi.org/10.1021/acsami.8b04480
Zhang, Wenzhong, Koivula, R., Wiikinkoski, E., Xu, J., Hietala, S., Lehto, J., & Harjula, R. (2017). Efficient and Selective Recovery of Trace Scandium by Inorganic Titanium Phosphate Ion-Exchangers from Leachates of Waste Bauxite Residue. ACS Sustainable Chemistry & Engineering , 5 (4), 3103–3114. https://doi.org/10.1021/acssuschemeng.6b02870
Zhang, X., Li, C., Yan, Y., Pan, J., Xu, P., & Zhao, X. (2010). A Ce3+-imprinted functionalized potassium tetratitanate whisker sorbent prepared by surface molecularly imprinting technique for selective separation and determination of Ce3+. Microchimica Acta ,169 (3), 289–296. https://doi.org/10.1007/s00604-010-0352-y
Zhang, Z., Fenter, P., Cheng, L., Sturchio, N. C., Bedzyk, M. J., Předota, M., Bandura, A., Kubicki, J. D., Lvov, S. N., Cummings, P. T., Chialvo, A. A., Ridley, M. K., Bénézeth, P., Anovitz, L., Palmer, D. A., Machesky, M. L., & Wesolowski, D. J. (2004). Ion Adsorption at the Rutile−Water Interface: Linking Molecular and Macroscopic Properties.Langmuir , 20 (12), 4954–4969. https://doi.org/10.1021/la0353834
Zhao, L., Azhar, M. R., Li, X., Duan, X., Sun, H., Wang, S., & Fang, X. (2019). Adsorption of cerium (III) by HKUST-1 metal-organic framework from aqueous solution. Journal of Colloid and Interface Science ,542 , 421–428. https://doi.org/10.1016/j.jcis.2019.01.117
Zhao, X., Jiang, X., Peng, D., Teng, J., & Yu, J. (2021). Behavior and mechanism of graphene oxide-tris(4-aminophenyl)amine composites in adsorption of rare earth elements. Journal of Rare Earths ,39 (1), 90–97. https://doi.org/10.1016/j.jre.2020.02.006
Zhao, Z., Sun, X., Dong, Y., & Wang, Y. (2016). Synergistic Effect of Acid–Base Coupling Bifunctional Ionic Liquids in Impregnated Resin for Rare Earth Adsorption. ACS Sustainable Chemistry & Engineering ,4 (2), 616–624. https://doi.org/10.1021/acssuschemeng.5b01253
Zheng, X., Song, Z., Liu, E., Zhang, Y., & Li, Z. (2020). Preparation of Phosphoric Acid-Functionalized SBA-15 and Its High Efficient Selective Adsorption Separation of Lanthanum Ions. Journal of Chemical and Engineering Data , 65 (2), 746–756. https://doi.org/10.1021/acs.jced.9b00976
Zheng, X., Wang, C., Dai, J., Shi, W., & Yan, Y. (2015). Design of mesoporous silica hybrid materials as sorbents for the selective recovery of rare earth metals. Journal of Materials Chemistry A ,3 (19), 10334–10335. https://doi.org/10.1039/c4ta06860b
Zheng, X., Zhang, Y., Zhang, F., Li, Z., & Yan, Y. (2018). Dual-template docking oriented ionic imprinted bilayer mesoporous films with efficient recovery of neodymium and dysprosium. Journal of Hazardous Materials , 353 (March), 496–504. https://doi.org/10.1016/j.jhazmat.2018.04.022
Zheng, Z., & Xiong, C. (2011). Adsorption behavior of ytterbium (III) on gel-type weak acid resin. Journal of Rare Earths ,29 (5), 407–412. https://doi.org/10.1016/S1002-0721(10)60469-3
ZHOU, H., LI, D., TIAN, Y., & CHEN, Y. (2008). Extraction of scandium from red mud by modified activated carbon and kinetics study. Rare Metals , 27 (3), 223–227. https://doi.org/10.1016/S1001-0521(08)60119-9
Zhou, J., Liu, H., Liu, D., Yuan, P., Bu, H., Du, P., Fan, W., & Li, M. (2022). Sorption/desorption of Eu(III) on halloysite and kaolinite.Applied Clay Science , 216 , 106356. https://doi.org/10.1016/J.CLAY.2021.106356
ZHU, L., & CHEN, J. (2011). Adsorption of Ce(IV) in nitric acid medium by imidazolium anion exchange resin. Journal of Rare Earths ,29 (10), 969–973. https://doi.org/10.1016/S1002-0721(10)60580-7
Zhu, L. L., Guo, L., Zhang, Z. J., Chen, J., & Zhang, S. M. (2012). The preparation of supported ionic liquids (SILs) and their application in rare metals separation. Science China Chemistry , 55 (8), 1479–1487. https://doi.org/10.1007/s11426-012-4632-8
Zhu, X., & Alexandratos, S. D. (2014). The role of polarizability in determining metal ion affinities in polymer-supported reagents: Phosphorylated ethylene glycol. Reactive and Functional Polymers ,81 (1), 77–81. https://doi.org/10.1016/j.reactfunctpolym.2014.05.001
Zhu, X., & Alexandratos, S. D. (2015). Development of a new ion-exchange/coordinating phosphate ligand for the sorption of U(VI) and trivalent ions from phosphoric acid solutions. Chemical Engineering Science , 127 , 126–132. https://doi.org/10.1016/j.ces.2015.01.027
Zhu, Y., Wang, W., Zheng, Y., Wang, F., & Wang, A. (2016). Rapid enrichment of rare-earth metals by carboxymethyl cellulose-based open-cellular hydrogel adsorbent from HIPEs template. Carbohydrate Polymers , 140 , 51–58. https://doi.org/10.1016/j.carbpol.2015.12.003
Zulfikar, M. A., Zarlina, R., Rusnadi, Handayani, N., Alni, A., & Wahyuningrum, D. (2017). Separation of Yttrium from Aqueous Solution Using Ionic Imprinted Polymers. Russian Journal of Non-Ferrous Metals , 58 (6), 614–624. https://doi.org/10.3103/S1067821217060189