Appendix A. Abbreviations
AC Activated carbon
AER Anion exchange resin
APTS 3-[2-(2-aminoethylamino) ethylamino] propyl-trimethoxysilane
APTES 3-aminopropyl triethoxysilane
APTMS 3-aminopropyl trimethoxysilane
ATMP Amino tris(methylene phosphonic acid)
ATS Aluminum silicotitanates
BHPA N-Benzoyl-N-phenylhydroxylamine
BPG Bis(phosphonomethyl) glycine
CER Cation exchange resin
CN Coordination number
CNT Carbon nanotube
COK Centre for Research Chemistry and Catalysis
Cyanex 272 Bis(2,4,4-trimethylpentyl)-phosphinic acid
DETA Diethylenetriamine
DGA Diglycolamide
DMF N,N-dimethylformamide
DOODA 3,6-dioxaoctanediamidopropyl
DTPA Diethylenetriaminepentaacetic acid
DTPADA Diethylenetriaminepentaacetic dianhydride
EDTA Ethylenediaminetetraacetic acid
FDGA Furan-2,4-diamidopropyltriethoxysilane
GO Graphene oxide
GONS Graphene oxide nanosheet
HDEHP Bis(2-ethylhexyl) hydrogen phosphate
HREE Heavy rare earth element
IER Ion exchange resin
IIP Ion-imprinted polymer
KIT Korean Advance Institute of Science and Technology
LREE Light rare earth element
MCM Mobil Composition of Matter
MIP Molecular imprinted polymer
MOF Metal-organic framework
MSF Mesoporous silica foam
MWCNT Multi-walled carbon nanotube
OMC Ordered mesoporous carbon
OMS Ordered mesoporous silica
PA Phthaloyl diamide
PAA Phosphonoacetic acid
PAN 1-(2-pyridylazo)-2-naphthol
PC88A 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester
PDDA Phenylenedioxy diamide
PES Polyethersulfone
PMIDA N-(phosphonomethyl)iminodiacetic acid
PVA Polyvinyl alcohol
REE Rare earth element
SBA Santa Barbara Amorphous
SIL Supported ionic liquid
SIR Solvent impregnated resin
SLE Supported liquid extraction
SLLE Supported liquid-liquid extraction
SPE Solid-phase extraction
SWCNT Single-walled carbon nanotube
TEHDGA N,N,N′N′ tetrakis‐2‐ethylhexyldiglycolamide
TMO Transition metal oxide
TODGA N,N,N′,N′‐Tetraoctyl diglycolamide
TTHA Triethylenetetraminehexaacetic acid
ZrP Zirconium organophosphonates
References
Aardaneh, K., Saal, D., Swarts, G., & Dewindt, S. C. (2008). TBP and
TBP impregnated Amberlite XAD-4 resin for radiochemical separation of
88Y from Sr and Al. Journal of Radioanalytical and Nuclear
Chemistry , 275 (3), 665–669.
https://doi.org/10.1007/s10967-007-7074-6
Abdel-Magied, A. F., Abdelhamid, H. N., Ashour, R. M., Zou, X., &
Forsberg, K. (2019). Hierarchical porous zeolitic imidazolate frameworks
nanoparticles for efficient adsorption of rare-earth elements.Microporous and Mesoporous Materials , 278 (September 2018),
175–184. https://doi.org/10.1016/j.micromeso.2018.11.022
Abu Elgoud, E. M., Ismail, Z. H., Ahmad, M. I., El-Nadi, Y. A.,
Abdelwahab, S. M., & Aly, H. F. (2019). Sorption of Lanthanum(III) and
Neodymium(III) from Concentrated Phosphoric Acid by Strongly Acidic
Cation Exchange Resin (SQS-6). Russian Journal of Applied
Chemistry , 92 (11), 1581–1592.
https://doi.org/10.1134/S1070427219110156
Ahmed, I., Adhikary, K. K., Lee, Y. R., Ho Row, K., Kang, K. K., & Ahn,
W. S. (2019). Ionic liquid entrapped UiO-66: Efficient adsorbent for
Gd3+ capture from water. Chemical Engineering Journal ,370 , 792–799. https://doi.org/10.1016/j.cej.2019.03.265
Ahmed, I., Bhattacharjee, S., Lee, C. S., Kang, K. K., Ahn, J. W., &
Ahn, W. S. (2021). Aqueous Nd3+ capture using a carboxyl-functionalized
porous carbon derived from ZIF-8. Journal of Colloid and Interface
Science , 594 , 702–712.
https://doi.org/10.1016/J.JCIS.2021.03.036
Ahmed, I., Lee, Y.-R., Yu, K., Bhattacharjee, S., & Ahn, W.-S. (2019).
Gd 3+ Adsorption over Carboxylic- and Amino-Group Dual-Functionalized
UiO-66 [Research-article]. Industrial & Engineering Chemistry
Research , 58 (6), 2324–2332.
https://doi.org/10.1021/acs.iecr.8b05220
Aja, S. U. (1998). Sorption of the rare earth element, Nd, onto
kaolinite at 25 °C. Clays and Clay Minerals , 46 (1),
103–109. https://doi.org/10.1346/CCMN.1998.0460112
Al-Thyabat, S., & Zhang, P. (2015). In-line extraction of REE from
Dihydrate (DH) and HemiDihydrate (HDH) wet processes.Hydrometallurgy , 153 , 30–37.
https://doi.org/10.1016/j.hydromet.2015.01.010
Alexandratos, S. D., & Natesan, S. (1999). Ion-selective
polymer-supported reagents: The principle of bifunctionality.European Polymer Journal , 35 (3), 431–436.
https://doi.org/10.1016/S0014-3057(98)00142-6
Alexandratos, Spiro D., & Hussain, L. A. (1995). Bifunctionality as a
Means of Enhancing Complexation Kinetics in Selective Ion Exchange
Resins. Industrial and Engineering Chemistry Research ,34 (1), 251–254. https://doi.org/10.1021/ie00040a026
Alexandratos, Spiro D., & Hussain, L. A. (1998). Synthesis of α-, β-,
and γ-ketophosphonate polymer-supported reagents: The role of
intra-ligand cooperation in the complexation of metal ions.Macromolecules , 31 (10), 3235–3238.
https://doi.org/10.1021/ma971587d
Alexandratos, Spiro D., & Smith, S. D. (2004a). High stability solvent
impregnated resins: Metal ion complexation as a function of time.Solvent Extraction and Ion Exchange , 22 (4), 713–720.
https://doi.org/10.1081/SEI-120038701
Alexandratos, Spiro D., & Smith, S. D. (2004b). Intraligand cooperation
in metal-ion binding by immobilized ligands: The effect of
bifunctionality. Journal of Applied Polymer Science ,91 (1), 463–468. https://doi.org/10.1002/app.13131
Alexandratos, Spiro D., & Zhu, X. (2005). Bifunctional coordinating
polymers: Auxiliary groups as a means of tuning the ionic affinity of
immobilized phosphate ligands. Macromolecules , 38 (14),
5981–5986. https://doi.org/10.1021/ma050057b
Alexandratos, Spiro D., & Zhu, X. (2008). Polyols as Scaffolds in the
Development of Ion-Selective Polymer-Supported Reagents: The Effect of
Auxiliary Groups on the Mechanism of Metal Ion Complexation.Inorganic Chemistry , 47 (7), 2831–2836.
https://doi.org/10.1021/ic702263x
Alexandratos, Spiro D., & Zhu, X. (2015). The role of polarizability in
determining metal ion affinities in polymer-supported reagents:
monoprotic phosphates and the effect of hydrogen bonding. New
Journal of Chemistry , 39 (7), 5366–5373.
https://doi.org/10.1039/C5NJ00387C
Alguacil, F. J., García-Díaz, I., Escudero Baquero, E., Rodríguez Largo,
O., & López, F. A. (2020). On the Adsorption of Cerium(III) Using
Multiwalled Carbon Nanotubes. Metals , 10 (8), 1057.
https://doi.org/10.3390/met10081057
Amarasekara, A. S., Owereh, O. S., & Aghara, S. K. (2009). Synthesis of
4-acylpyrazolone Schiff base ligand grafted silica and selectivity in
adsorption of lanthanides from aqueous solutions. Journal of Rare
Earths , 27 (5), 870–874.
https://doi.org/10.1016/S1002-0721(08)60352-X
Aravind, A., & Mathew, B. (2018). Electrochemical sensor based on
nanostructured ion imprinted polymer for the sensing and extraction of
Cr(III) ions from industrial wastewater. Polymer International ,67 (12), 1595–1604. https://doi.org/10.1002/PI.5683
Arnold, R., & Hing, L. B. S. (1967). Selectivity of carboxylic
ion-exchange resin for lanthanide ions. Journal of the Chemical
Society A: Inorganic, Physical, Theoretical , 2 , 306.
https://doi.org/10.1039/j19670000306
Artiushenko, O., Ávila, E. P., Nazarkovsky, M., & Zaitsev, V. (2020).
Reusable hydroxamate immobilized silica adsorbent for dispersive solid
phase extraction and separation of rare earth metal ions.Separation and Purification Technology , 231 (August 2019),
115934. https://doi.org/10.1016/j.seppur.2019.115934
Artiushenko, O., Kostenko, L., & Zaitsev, V. (2020). Influence of
competitive eluting agents on REEs recovery from silica gel adsorbent
with immobilized aminodiphosphonic acid. Journal of Environmental
Chemical Engineering , 8 (4), 103883.
https://doi.org/10.1016/j.jece.2020.103883
Asadollahzadeh, M., Torkaman, R., & Torab-Mostaedi, M. (2020).
Extraction and Separation of Rare Earth Elements by Adsorption
Approaches: Current Status and Future Trends. In Separation and
Purification Reviews (pp. 1–28). Taylor and Francis Inc.
https://doi.org/10.1080/15422119.2020.1792930
Ashour, R. M., Abdelhamid, H. N., Abdel-Magied, A. F., Abdel-Khalek, A.
A., Ali, M. M., Uheida, A., Muhammed, M., Zou, X., & Dutta, J. (2017).
Rare Earth Ions Adsorption onto Graphene Oxide Nanosheets. Solvent
Extraction and Ion Exchange , 35 (2), 91–103.
https://doi.org/10.1080/07366299.2017.1287509
Attallah, M. F., Elgazzar, A. H., Borai, E. H., & El-Tabl, A. S.
(2016). Preparation and characterization of aluminum silicotitanate: ion
exchange behavior for some lanthanides and iron. Journal of
Chemical Technology & Biotechnology , 91 (8), 2243–2252.
https://doi.org/10.1002/jctb.4810
Attia, M. A., Moussa, S. I., Sheha, R. R., Someda, H. H., & Saad, E. A.
(2019). Hydroxyapatite/NiFe 2 O 4 superparamagnetic composite: Facile
synthesis and adsorption of rare elements. Applied Radiation and
Isotopes , 145 (December 2018), 85–94.
https://doi.org/10.1016/j.apradiso.2018.12.003
Avdibegović, D., Regadío, M., & Binnemans, K. (2017). Recovery of
scandium( <scp>iii</scp> )
from diluted aqueous solutions by a supported ionic liquid phase (SILP).RSC Adv. , 7 (78), 49664–49674.
https://doi.org/10.1039/C7RA07957E
Awual, M. R., Kobayashi, T., Miyazaki, Y., Motokawa, R., Shiwaku, H.,
Suzuki, S., Okamoto, Y., & Yaita, T. (2013). Selective lanthanide
sorption and mechanism using novel hybrid Lewis base
(N-methyl-N-phenyl-1,10-phenanthroline-2-carboxamide) ligand modified
adsorbent. Journal of Hazardous Materials ,252 –253 , 313–320.
https://doi.org/10.1016/j.jhazmat.2013.03.020
Babu, C. M., Binnemans, K., & Roosen, J. (2018).
Ethylenediaminetriacetic Acid-Functionalized Activated Carbon for the
Adsorption of Rare Earths from Aqueous Solutions. Industrial and
Engineering Chemistry Research , 57 (5), 1487–1497.
https://doi.org/10.1021/acs.iecr.7b04274
Bao, Shenxu, Tang, Y., Zhang, Y., & Liang, L. (2016). Recovery and
Separation of Metal Ions from Aqueous Solutions by Solvent-Impregnated
Resins. Chemical Engineering & Technology , 39 (8),
1377–1392. https://doi.org/10.1002/ceat.201500324
Bao, Shuangyou, Wang, Y., Wei, Z., Yang, W., & Yu, Y. (2022). Highly
efficient recovery of heavy rare earth elements by using an
amino-functionalized magnetic graphene oxide with acid and base
resistance. Journal of Hazardous Materials , 424 , 127370.
https://doi.org/10.1016/j.jhazmat.2021.127370
Barrak, H., Ahmedi, R., Chevallier, P., M’nif, A., Laroche, G., &
Hamzaoui, A. H. (2019). Highly efficient extraction of rare earth
elements and others ions from green phosphoric acid medium using
TMSEDTA@GO@Fe3O4 core-shell. Separation and Purification
Technology , 222 , 145–151.
https://doi.org/10.1016/j.seppur.2019.04.016
Baumann, A. E., Burns, D. A., Liu, B., & Thoi, V. S. (2019).
Metal-organic framework functionalization and design strategies for
advanced electrochemical energy storage devices. In Communications
Chemistry (Vol. 2, Issue 1, pp. 1–14). Springer Nature.
https://doi.org/10.1038/s42004-019-0184-6
Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C.
T., Schmitt, K. D., Chu, C. T. W., Olson, D. H., Sheppard, E. W.,
McCullen, S. B., Higgins, J. B., & Schlenker, J. L. (1992). A New
Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal
Templates. Journal of the American Chemical Society ,114 (27), 10834–10843. https://doi.org/10.1021/ja00053a020
Behdani, F. N., Rafsanjani, A. T., Torab-Mostaedi, M., & Mohammadpour,
S. M. A. K. (2013). Adsorption ability of oxidized multiwalled carbon
nanotubes towards aqueous Ce(III) and Sm(III). Korean Journal of
Chemical Engineering , 30 (2), 448–455.
https://doi.org/10.1007/s11814-012-0126-9
Bertelsen, E. R., Deodhar, G., Kluherz, K. T., Davidson, M., Adams, M.
L., Trewyn, B. G., & Shafer, J. C. (2019). Microcolumn lanthanide
separation using bis-(2-ethylhexyl) phosphoric acid functionalized
ordered mesoporous carbon materials. Journal of Chromatography A ,1595 , 248–256. https://doi.org/10.1016/j.chroma.2019.02.057
Bezzina, J. P., Ogden, M. D., Moon, E. M., & Soldenhoff, K. L. (2018).
REE behavior and sorption on weak acid resins from buffered media.Journal of Industrial and Engineering Chemistry , 59 ,
440–455. https://doi.org/10.1016/j.jiec.2017.11.005
Bhatnagar, A., & Sillanpää, M. (2010). Utilization of agro-industrial
and municipal waste materials as potential adsorbents for water
treatment-A review. In Chemical Engineering Journal (Vol. 157,
Issues 2–3, pp. 277–296). Elsevier.
https://doi.org/10.1016/j.cej.2010.01.007
Biju, V. ., Gladis, J. M., & Rao, T. P. (2003). Ion imprinted polymer
particles: synthesis, characterization and dysprosium ion uptake
properties suitable for analytical applications. Analytica Chimica
Acta , 478 (1), 43–51.
https://doi.org/10.1016/S0003-2670(02)01416-2
Botelho Junior, A. B., Pinheiro, É. F., Espinosa, D. C. R., Tenório, J.
A. S., & Baltazar, M. dos P. G. (2021). Adsorption of lanthanum and
cerium on chelating ion exchange resins: kinetic and thermodynamic
studies. Https://Doi.Org/10.1080/01496395.2021.1884720 ,57 (1), 60–69. https://doi.org/10.1080/01496395.2021.1884720
Boyd, G. E. (1978). Thermodynamic property changes in lanthanide(III)
cation exchange reactions with poly(styrenesulfonic acid) type cation
exchangers. Journal of Physical Chemistry , 82 (25),
2704–2709. https://doi.org/10.1021/j100514a015
Brown, A. T., & Balkus, K. J. (2021). Critical Rare Earth Element
Recovery from Coal Ash Using Microsphere Flower Carbon. ACS
Applied Materials and Interfaces , 13 (41), 48492–48499.
https://doi.org/10.1021/ACSAMI.1C09298/SUPPL_FILE/AM1C09298_SI_001.PDF
Bunina, Z., Bryleva, K., & Belikov, K. (2021). Synthesis and Adsorption
Properties of Gadolinium-Imprinted Divinylbenzene-Based Copolymers.ACS Omega , 6 (4), 3336–3344.
https://doi.org/10.1021/ACSOMEGA.0C05812/SUPPL_FILE/AO0C05812_SI_001.PDF
Callura, J. C. (2018). Ligand-Functionalized Adsorbents for the
Extraction and Recovery of Rare Earth Elements (Issue December).
Carnegie Mellon University.
Callura, J. C., Perkins, K. M., Baltrus, J. P., Washburn, N. R.,
Dzombak, D. A., & Karamalidis, A. K. (2019). Adsorption kinetics,
thermodynamics, and isotherm studies for functionalized
lanthanide-chelating resins. Journal of Colloid and Interface
Science , 557 , 465–477.
https://doi.org/10.1016/j.jcis.2019.08.097
Callura, J. C., Perkins, K. M., Noack, C. W., Washburn, N. R., Dzombak,
D. A., & Karamalidis, A. K. (2018). Selective adsorption of rare earth
elements onto functionalized silica particles. Green Chemistry ,20 (7), 1515–1526. https://doi.org/10.1039/C8GC00051D
Callura, J. C., Shi, Q., Dzombak, D. A., & Karamalidis, A. K. (2021).
Selective recovery of rare earth elements with ligand-functionalized
polymers in fixed-bed adsorption columns. Separation and
Purification Technology , 265 , 118472.
https://doi.org/10.1016/J.SEPPUR.2021.118472
Canfarotta, F., Poma, A., Guerreiro, A., & Piletsky, S. (2016).
Solid-phase synthesis of molecularly imprinted nanoparticles.Nature Protocols 2016 11:3 , 11 (3), 443–455.
https://doi.org/10.1038/nprot.2016.030
Cardoso, C. E. D., Almeida, J. C., Lopes, C. B., Trindade, T., Vale, C.,
& Pereira, E. (2019). Recovery of Rare Earth Elements by Carbon-Based
Nanomaterials—A Review. Nanomaterials , 9 (6), 814.
https://doi.org/10.3390/nano9060814
Chen, B., He, M., Zhang, H., Jiang, Z., & Hu, B. (2017).
Chromatographic Techniques for Rare Earth Elements Analysis.Physical Sciences Reviews , 2 (4).
https://doi.org/10.1515/psr-2016-0057
Chen, C. L., Wang, X. K., & Nagatsu, M. (2009). Europium adsorption on
multiwall carbon nanotube/iron oxide magnetic composite in the presence
of polyacrylic acid. Environmental Science and Technology ,43 (7), 2362–2367. https://doi.org/10.1021/es803018a
Chen, H., Shao, D., Li, J., & Wang, X. (2014). The uptake of
radionuclides from aqueous solution by poly(amidoxime) modified reduced
graphene oxide. Chemical Engineering Journal , 254 ,
623–634. https://doi.org/10.1016/j.cej.2014.05.091
Chen, L., Wang, X., Lu, W., Wu, X., & Li, J. (2016). Molecular
imprinting: Perspectives and applications. Chemical Society
Reviews , 45 (8), 2137–2211. https://doi.org/10.1039/c6cs00061d
Chen, W., Wang, L., Zhuo, M., Liu, Y., Wang, Y., & Li, Y. (2014).
Facile and highly efficient removal of trace Gd(III) by adsorption of
colloidal graphene oxide suspensions sealed in dialysis bag.Journal of Hazardous Materials , 279 , 546–553.
https://doi.org/10.1016/j.jhazmat.2014.06.075
Chen, Y., Zhu, B., Wu, D., Wang, Q., Yang, Y., Ye, W., & Guo, J.
(2012). Eu(III) adsorption using di(2-thylhexly) phosphoric
acid-immobilized magnetic GMZ bentonite. Chemical Engineering
Journal , 181 –182 , 387–396.
https://doi.org/10.1016/j.cej.2011.11.100
Chen, Z., Li, Z., Chen, J., Tan, H., Wu, J., & Qiu, H. (2022).
Selective Adsorption of Rare Earth Elements by Zn-BDC MOF/Graphene Oxide
Nanocomposites Synthesized via In Situ Interlayer-Confined Strategy.Industrial & Engineering Chemistry Research , 61 (4),
1841–1849.
https://doi.org/10.1021/ACS.IECR.1C04180/SUPPL_FILE/IE1C04180_SI_001.PDF
Chuenchom, L., Kraehnert, R., & Smarsly, B. M. (2012). Recent progress
in soft-templating of porous carbon materials. Soft Matter ,8 (42), 10801–10812. https://doi.org/10.1039/c2sm07448f
CHUVELEVA, E. A., KHARITONOV, O. V, & FIRSOVA, L. A. (1995). Effect of
Diethylenetriamine of Pentaacetic Acid on the Chromatographic-Separation
of Rare-Earth Elements on Ku-2 Cation-Exchange Resin. Zhurnal
Fizicheskoi Khimii , 69 (7), 1322–1326.
CHUVELEVA, E. A., NAZAROV, P. P., & CHMUTOV, K. V. (1974).
CHROMATOGRAPHIC-SEPARATION OF CURIUM, AMERICIUM AND RARE-EARTH ELEMENTS.Zhurnal Fizicheskoi Khimii , 48 (12), 3078–3081.
Coppin, F., Berger, G., Bauer, A., Castet, S., & Loubet, M. (2002).
Sorption of lanthanides on smectite and kaolinite. Chemical
Geology , 182 (1), 57–68.
https://doi.org/10.1016/S0009-2541(01)00283-2
Cotton, S. A., & Harrowfield, J. M. (2012). Lanthanides: Coordination
Chemistry. In Encyclopedia of Inorganic and Bioinorganic
Chemistry . John Wiley & Sons, Ltd.
https://doi.org/10.1002/9781119951438.eibc2062
Croissant, J. G., Fatieiev, Y., & Khashab, N. M. (2017). Degradability
and Clearance of Silicon, Organosilica, Silsesquioxane, Silica Mixed
Oxide, and Mesoporous Silica Nanoparticles. In Advanced Materials(Vol. 29, Issue 9, p. 1604634). Wiley-VCH Verlag.
https://doi.org/10.1002/adma.201604634
Crundwell, F. K. (2017). On the Mechanism of the Dissolution of Quartz
and Silica in Aqueous Solutions. ACS Omega , 2 (3),
1116–1127. https://doi.org/10.1021/acsomega.7b00019
Cui, K., Gao, B., Tai, M., & Su, B. (2019). A facile bionic strategy
towards Gd (III)-imprinted membranes via interlaced stacking of
one-dimensional/two-dimensional nanocomposite materials. Journal
of the Taiwan Institute of Chemical Engineers , 95 , 652–659.
https://doi.org/10.1016/j.jtice.2018.09.036
Dardenne, K., Schäfer, T., Lindqvist-Reis, P., Denecke, M. A., Plaschke,
M., Rothe, J., & Kim, J. I. (2002). Low temperature XAFS investigation
on the Lutetium binding changes during the 2-line ferrihydrite
alteration process. Environmental Science and Technology ,36 (23), 5092–5099. https://doi.org/10.1021/es025513f
Davranche, M., Pourret, O., Gruau, G., & Dia, A. (2004). Impact of
humate complexation on the adsorption of REE onto Fe oxyhydroxide.Journal of Colloid and Interface Science , 277 (2),
271–279. https://doi.org/10.1016/j.jcis.2004.04.007
Davranche, M., Pourret, O., Gruau, G., Dia, A., & Le Coz-Bouhnik, M.
(2005). Adsorption of REE(III)-humate complexes onto MnO2: Experimental
evidence for cerium anomaly and lanthanide tetrad effect suppression.Geochimica et Cosmochimica Acta , 69 (20), 4825–4835.
https://doi.org/10.1016/j.gca.2005.06.005
de Decker, J., de Clercq, J., Vermeir, P., & van der Voort, P. (2016).
Functionalized metal-organic-framework CMPO@MIL-101(Cr) as a stable and
selective rare earth adsorbent. Journal of Materials Science ,51 (10), 5019–5026. https://doi.org/10.1007/s10853-016-9807-9
Dolak, İ., Keçili, R., Hür, D., Ersöz, A., & Say, R. (2015).
Ion-Imprinted Polymers for Selective Recognition of Neodymium(III) in
Environmental Samples. Industrial & Engineering Chemistry
Research , 54 (19), 5328–5335.
https://doi.org/10.1021/acs.iecr.5b00212
Dong, C., Shi, H., Han, Y., Yang, Y., Wang, R., & Men, J. (2021).
Molecularly imprinted polymers by the surface imprinting technique.European Polymer Journal , 145 , 110231.
https://doi.org/10.1016/j.eurpolymj.2020.110231
Dubey, S. S., & Grandhi, S. (2019). Sorption studies of yttrium(III)
ions on surfaces of nano-thorium(IV) oxide and nano-zirconium( IV)
oxide. International Journal of Environmental Science and
Technology , 16 (1), 59–70.
https://doi.org/10.1007/s13762-017-1589-3
Dubey, Som Shankar, & Grandhi, S. (2016). Sorption studies of yttrium
(III) ions on nano maghemite. Journal of Environmental Chemical
Engineering , 4 (4), 4719–4730.
https://doi.org/10.1016/j.jece.2016.11.006
Dupont, D., Brullot, W., Bloemen, M., Verbiest, T., & Binnemans, K.
(2014). Selective Uptake of Rare Earths from Aqueous Solutions by
EDTA-Functionalized Magnetic and Nonmagnetic Nanoparticles. ACS
Applied Materials & Interfaces , 6 (7), 4980–4988.
https://doi.org/10.1021/am406027y
Dutta, S., Mohapatra, P. K., Dhekane, G. D., Das, A. K., & Manchanda,
V. K. (2008). Solid phase extraction of europium and uranium using
Tulsion CH-90 resin. Desalination , 232 (1–3), 216–224.
https://doi.org/10.1016/j.desal.2007.10.038
Eftekhari, A., & Fan, Z. (2017). Ordered mesoporous carbon and its
applications for electrochemical energy storage and conversion.Materials Chemistry Frontiers , 1 (6), 1001–1027.
https://doi.org/10.1039/c6qm00298f
Egawa, H., Yamabe, K., & Jyo, A. (1994). Studies on selective
adsorption resins. XXXIII. Behavior of macroreticular chelating resins
containing phosphinic and/or phosphonic acid groups in the adsorption of
trivalent lanthanides. Journal of Applied Polymer Science ,52 (8), 1153–1164. https://doi.org/10.1002/app.1994.070520815
Ehrlich, G. V., & Lisichkin, G. V. (2017). Sorption in the chemistry of
rare earth elements. Russian Journal of General Chemistry ,87 (6), 1220–1245. https://doi.org/10.1134/S1070363217060196
El-Nahhal, I. M., & El-Ashgar, N. M. (2007). A review on
polysiloxane-immobilized ligand systems: Synthesis, characterization and
applications. Journal of Organometallic Chemistry ,692 (14), 2861–2886.
https://doi.org/10.1016/j.jorganchem.2007.03.009
El Mourabit, S., Guillot, M., Toquer, G., Cambedouzou, J., Goettmann,
F., & Grandjean, A. (2012). Stability of mesoporous silica under acidic
conditions. RSC Advances , 2 (29), 10916–10924.
https://doi.org/10.1039/c2ra21569a
Elsaidi, S. K., Sinnwell, M. A., Devaraj, A., Droubay, T. C., Nie, Z.,
Murugesan, V., McGrail, B. P., & Thallapally, P. K. (2018). Extraction
of rare earth elements using magnetite@MOF composites. Journal of
Materials Chemistry A , 6 (38), 18438–18443.
https://doi.org/10.1039/C8TA04750B
ELSOFANY, E. (2008). Removal of lanthanum and gadolinium from nitrate
medium using Aliquat-336 impregnated onto Amberlite XAD-4. Journal
of Hazardous Materials , 153 (3), 948–954.
https://doi.org/10.1016/j.jhazmat.2007.09.046
Ensing, K., & De Boer, T. (1999). Tailor-made materials for tailor-made
applications: Application of molecular imprints in chemical analysis.TrAC - Trends in Analytical Chemistry , 18 (3), 138–145.
https://doi.org/10.1016/S0165-9936(98)00103-4
Fan, Q. H., Shao, D. D., Hu, J., Chen, C. L., Wu, W. S., & Wang, X. K.
(2009). Adsorption of humic acid and Eu (III) to multi-walled carbon
nanotubes: EFFECT of pH, ionic strength and counterion effect. InRadiochimica Acta (Vol. 97, Issue 3, pp. 141–148).
https://doi.org/10.1524/ract.2009.1586
Faris, J. P., & Warton, J. W. (1962). Anion Exchange Resin Separation
of the Rare Earths, Yttrium, and Scandium in Nitric Acid–Methanol
Mixtures. Analytical Chemistry , 34 (9), 1077–1080.
https://doi.org/10.1021/ac60189a013
Farley, K. J., Dzombak, D. A., & Morel, F. M. M. (1985). A surface
precipitation model for the sorption of cations on metal oxides.Journal of Colloid And Interface Science , 106 (1),
226–242. https://doi.org/10.1016/0021-9797(85)90400-X
Feng, X., Onel, O., Council-Troche, M., Noble, A., Yoon, R.-H., &
Morris, J. R. (2021). A study of rare earth ion-adsorption clays: The
speciation of rare earth elements on kaolinite at basic pH.Applied Clay Science , 201 , 105920.
https://doi.org/10.1016/j.clay.2020.105920
Florek, J., Chalifour, F., Bilodeau, F., Larivière, D., & Kleitz, F.
(2014). Nanostructured Hybrid Materials for the Selective Recovery and
Enrichment of Rare Earth Elements. Advanced Functional Materials ,24 (18), 2668–2676. https://doi.org/10.1002/adfm.201303602
Florek, J., Giret, S., Juère, E., Larivière, D., & Kleitz, F. (2016).
Functionalization of mesoporous materials for lanthanide and actinide
extraction. Dalton Transactions , 45 (38), 14832–14854.
https://doi.org/10.1039/C6DT00474A
Florek, J., Larivière, D., Kählig, H., Fiorilli, S. L., Onida, B.,
Fontaine, F. G., & Kleitz, F. (2020). Understanding Selectivity of
Mesoporous Silica-Grafted Diglycolamide-Type Ligands in the Solid-Phase
Extraction of Rare Earths. ACS Applied Materials and Interfaces ,12 (51), 57003–57016. https://doi.org/10.1021/acsami.0c16282
Florek, J., Mushtaq, A., Larivière, D., Cantin, G., Fontaine, F. G., &
Kleitz, F. (2015). Selective recovery of rare earth elements using
chelating ligands grafted on mesoporous surfaces. RSC Advances ,5 (126), 103782–103789. https://doi.org/10.1039/c5ra21027e
Fonseka, C., Ryu, S., Choo, Y., Mullett, M., Thiruvenkatachari, R.,
Naidu, G., & Vigneswaran, S. (2021). Selective Recovery of Rare Earth
Elements from Mine Ore by Cr-MIL Metal–Organic Frameworks. ACS
Sustainable Chemistry and Engineering , 9 (50), 16896–16904.
https://doi.org/10.1021/ACSSUSCHEMENG.1C04775/SUPPL_FILE/SC1C04775_SI_001.PDF
Friend, M. T., Parker, T. G., Mastren, T., Mocko, V., Brugh, M.,
Birnbaum, E. R., & Fassbender, M. E. (2020). Extraction chromatography
of 225Ac and lanthanides on N,N-dioctyldiglycolamic acid
/1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide solvent
impregnated resin. Journal of Chromatography A , 1624 ,
461219. https://doi.org/10.1016/j.chroma.2020.461219
Fritz, J. S., & Garralda, B. B. (1963). Cation-exchange separation of
bivalent metal ions from rare earths. Talanta , 10 (1),
91–95. https://doi.org/10.1016/0039-9140(63)80209-X
Fryxell, G. E., Chouyyok, W., & Rutledge, R. D. (2011). Design and
synthesis of chelating diamide sorbents for the separation of
lanthanides. Inorganic Chemistry Communications , 14 (6),
971–974. https://doi.org/10.1016/j.inoche.2011.03.045
Fu, J., Chen, L., Li, J., & Zhang, Z. (2015). Current status and
challenges of ion imprinting. Journal of Materials Chemistry A ,3 (26), 13598–13627. https://doi.org/10.1039/c5ta02421h
Gabor, A., Davidescu, C. M., Negrea, A., Ciopec, M., Muntean, C.,
Duteanu, N., & Negrea, P. (2016). Sorption properties of Amberlite XAD
7 functionalized with sodium β-glycerophosphate. Pure and Applied
Chemistry , 88 (12), 1143–1154.
https://doi.org/10.1515/pac-2016-0806
Gaete, J., Molina, L., Valenzuela, F., & Basualto, C. (2021). Recovery
of lanthanum, praseodymium and samarium by adsorption using magnetic
nanoparticles functionalized with a phosphonic group.Hydrometallurgy , 203 , 105698.
https://doi.org/10.1016/J.HYDROMET.2021.105698
Gao, Q., Xie, J. F., Shao, Y. T., Chen, C., Han, B., Xia, K. S., &
Zhou, C. G. (2017). Ultrafast and high-capacity adsorption of Gd(III)
onto inorganic phosphorous acid modified mesoporous SBA-15.Chemical Engineering Journal , 313 , 197–206.
https://doi.org/10.1016/j.cej.2016.12.068
Garcia, R., Pinel, C., Madic, C., & Lemaire, M. (1998). Ionic
imprinting effect in gadolinium/lanthanum separation. Tetrahedron
Letters , 39 (47), 8651–8654.
https://doi.org/10.1016/S0040-4039(98)01970-4
Garg, B. S., Sharma, R. K., Bhojak, N., & Mittal, S. (1999). Chelating
resins and their applications in the analysis of trace metal ions.Microchemical Journal , 61 (2), 94–114.
https://doi.org/10.1006/mchj.1998.1681
Gasser, M. S., & Aly, M. I. (2013). Separation and recovery of rare
earth elements from spent nickel-metal-hydride batteries using synthetic
adsorbent. International Journal of Mineral Processing ,121 , 31–38. https://doi.org/10.1016/j.minpro.2013.02.012
Gasser, M. S., El Sherif, E., & Abdel Rahman, R. O. (2017).
Modification of Mg-Fe hydrotalcite using Cyanex 272 for lanthanides
separation. Chemical Engineering Journal , 316 , 758–769.
https://doi.org/10.1016/j.cej.2017.01.129
Ghobadi, M., Gharabaghi, M., Abdollahi, H., Boroumand, Z., & Moradian,
M. (2018). MnFe2O4-graphene oxide magnetic nanoparticles as a
high-performance adsorbent for rare earth elements: Synthesis,
isotherms, kinetics, thermodynamics and desorption. Journal of
Hazardous Materials , 351 , 308–316.
https://doi.org/10.1016/j.jhazmat.2018.03.011
Ghobadi, M., Gharabaghi, M., Abdollahi, H., & Shafiee Kisomi, A.
(2017). A simple and low-cost route to recycle rare earth elements (La,
Ce) from aqueous solution using magnetic nanoparticles of Co x Mn 1−x Fe
2 O 4 (x = 0.2 and 0.8): synthesis, isotherms, kinetics, thermodynamics
and desorption. New Journal of Chemistry , 41 (20),
11906–11914. https://doi.org/10.1039/C7NJ02125A
Giret, S., Hu, Y., Masoumifard, N., Boulanger, J. F., Estelle, J.,
Kleitz, F., & Larivière, D. (2018). Selective Separation and
Preconcentration of Scandium with Mesoporous Silica. ACS Applied
Materials and Interfaces , 10 (1), 448–457.
https://doi.org/10.1021/acsami.7b13336
Gismondi, P., Kuzmin, A., Unsworth, C., Rangan, S., Khalid, S., & Saha,
D. (2022). Understanding the Adsorption of Rare-Earth Elements in
Oligo-Grafted Mesoporous Carbon. Langmuir , 38 (1),
203–210.
https://doi.org/10.1021/ACS.LANGMUIR.1C02403/SUPPL_FILE/LA1C02403_SI_001.PDF
Gok, C., Seyhan, S., Merdivan, M., & Yurdakoc, M. (2007). Separation
and preconcentration of La3+, Ce3+ and Y3+ using
calix[4]resorcinarene impregnated on polymeric support.Microchimica Acta , 157 (1–2), 13–19.
https://doi.org/10.1007/s00604-006-0646-2
Griffith, C. S., Reyes, M. D. L., Scales, N., Hanna, J. V., & Luca, V.
(2010). Hybrid Inorganic−Organic Adsorbents Part 1: Synthesis and
Characterization of Mesoporous Zirconium Titanate Frameworks Containing
Coordinating Organic Functionalities. ACS Applied Materials &
Interfaces , 2 (12), 3436–3446. https://doi.org/10.1021/am100891u
Gschneidner, K. A., & Eyring, L. R. (1982). Preface. In Handbook
on the Physics and Chemistry of Rare Earths (Vol. 5, p. 5). Elsevier.
https://doi.org/10.1016/S0168-1273(82)05001-6
GUO, J., CAI, J., & SU, Q. (2009). Ion imprinted polymer particles of
neodymium: synthesis, characterization and selective recognition.Journal of Rare Earths , 27 (1), 22–27.
https://doi.org/10.1016/S1002-0721(08)60183-0
Guo, Lanyu, Xu, Y., Zhuo, M., Liu, L., Xu, Q., Wang, L., Shi, C., Ye,
B., Fan, X., & Chen, W. (2018). Highly efficient removal of Gd(III)
using hybrid hydrosols of carbon nanotubes/graphene oxide in dialysis
bags and synergistic enhancement effect. Chemical Engineering
Journal , 348 , 535–545.
https://doi.org/10.1016/j.cej.2018.04.212
Guo, Linru, Liu, Y., Dou, J., Huang, Q., Lei, Y., Chen, J., Wen, Y., Li,
Y., Zhang, X., & Wei, Y. (2020). Highly efficient removal of Eu3+ ions
using carbon nanotubes-based polymer composites synthesized from the
combination of Diels-Alder and multicomponent reactions. Journal
of Molecular Liquids , 308 , 112964.
https://doi.org/10.1016/j.molliq.2020.112964
Gupta, N. K., & Sengupta, A. (2017). Understanding the sorption
behavior of trivalent lanthanides on amide functionalized multi walled
carbon nanotubes. Hydrometallurgy , 171 , 8–15.
https://doi.org/10.1016/j.hydromet.2017.03.016
Hagiwara, Z. (1969). Elution of heavier rare earths with H.E.D.T.A.
eluant at a high temperature. Journal of Inorganic and Nuclear
Chemistry , 31 (9), 2933–2949.
https://doi.org/10.1016/0022-1902(69)80213-7
Hale, W. H., & Hammer, C. A. (1972). Cation exchange elution sequence
with DTPA. Ion Exch. Membranes , 1 (2), 81–85.
Harris, D. C., & Lucy, C. A. (2015). Quantitative Chemical
Analysis (9th ed.). W. H. Freeman.
https://books.google.com/books?id=PJhaMQAACAAJ
Helaly, O. S., Abd El-Ghany, M. S., Moustafa, M. I., Abuzaid, A. H., Abd
El-Monem, N. M., & Ismail, I. M. (2012). Extraction of cerium(IV) using
tributyl phosphate impregnated resin from nitric acid medium.Transactions of Nonferrous Metals Society of China (English
Edition) , 22 (1), 206–214.
https://doi.org/10.1016/S1003-6326(11)61162-X
Hérès, X., Blet, V., Di Natale, P., Ouaattou, A., Mazouz, H., Dhiba, D.,
& Cuer, F. (2018). Selective Extraction of Rare Earth Elements from
Phosphoric Acid by Ion Exchange Resins. Metals , 8 (9), 682.
https://doi.org/10.3390/met8090682
Hermassi, M., Granados, M., Valderrama, C., Ayora, C., & Cortina, J. L.
(2021). Recovery of Rare Earth Elements from acidic mine waters by
integration of a selective chelating ion-exchanger and a solvent
impregnated resin. Journal of Environmental Chemical Engineering ,9 (5), 105906. https://doi.org/10.1016/J.JECE.2021.105906
Hidayah, N. N., & Abidin, S. Z. (2017). The evolution of mineral
processing in extraction of rare earth elements using solid-liquid
extraction over liquid-liquid extraction: A review. In Minerals
Engineering (Vol. 112, pp. 103–113). Elsevier Ltd.
https://doi.org/10.1016/j.mineng.2017.07.014
Hoffmann, F., Cornelius, M., Morell, J., & Fröba, M. (2006).
Silica-Based Mesoporous Organic–Inorganic Hybrid Materials.Angewandte Chemie International Edition , 45 (20),
3216–3251. https://doi.org/10.1002/anie.200503075
Hovey, J. L., Dardona, M., Allen, M. J., & Dittrich, T. M. (2021).
Sorption of rare-earth elements onto a ligand-associated media for
pH-dependent extraction and recovery of critical materials.Separation and Purification Technology , 258 , 118061.
https://doi.org/10.1016/j.seppur.2020.118061
Hu, Y., Drouin, E., Larivière, D., Kleitz, F., & Fontaine, F. G.
(2017). Highly Efficient and Selective Recovery of Rare Earth Elements
Using Mesoporous Silica Functionalized by Preorganized Chelating
Ligands. ACS Applied Materials and Interfaces , 9 (44),
38584–38593. https://doi.org/10.1021/acsami.7b12589
Hu, Y., Florek, J., Larivière, D., Fontaine, F.-G., & Kleitz, F.
(2018). Recent Advances in the Separation of Rare Earth Elements Using
Mesoporous Hybrid Materials. The Chemical Record ,18 (7–8), 1261–1276. https://doi.org/10.1002/tcr.201800012
Hu, Y., Misal Castro, L. C., Drouin, E., Florek, J., Kählig, H.,
Larivière, D., Kleitz, F., & Fontaine, F.-G. (2019). Size-Selective
Separation of Rare Earth Elements Using Functionalized Mesoporous Silica
Materials. ACS Applied Materials & Interfaces , 11 (26),
23681–23691. https://doi.org/10.1021/acsami.9b04183
Hua, W., Zhang, T., Wang, M., Zhu, Y., & Wang, X. (2019).
Hierarchically structural PAN/UiO-66-(COOH)2 nanofibrous membranes for
effective recovery of Terbium(III) and Europium(III) ions and their
photoluminescence performances. Chemical Engineering Journal ,370 , 729–741. https://doi.org/10.1016/j.cej.2019.03.255
Huang, L., Liu, L., Huang, W., Zhao, B., Shen, Z., Bao, Y., & Znad, H.
(2021). Recovery of lanthanum cations by functionalized magnetic
multi-walled carbon nanotube bundles. RSC Advances , 11 (8),
4751–4759. https://doi.org/10.1039/D0RA09902C
Huang, R., Shao, N., Hou, L., & Zhu, X. (2019). Fabrication of an
efficient surface ion-imprinted polymer based on sandwich-like graphene
oxide composite materials for fast and selective removal of lead ions.Colloids and Surfaces A: Physicochemical and Engineering Aspects ,566 , 218–228. https://doi.org/10.1016/j.colsurfa.2019.01.011
Hubicka, H., & Drobek, D. (1997). Anion-exchange method for separation
of ytterbium from holmium and erbium. Hydrometallurgy ,47 (1), 127–136. https://doi.org/10.1016/S0304-386X(97)00040-6
Hubicka, H., & Drobek, D. (1998). Studies on separation of
iminodiacetate complexes of lanthanum (III) from neodymium (III) and
praseodymium (III) on anion-exchangers. Hydrometallurgy ,50 (1), 51–60. https://doi.org/10.1016/s0304-386x(98)00045-0
Hubicka, H., & Drobek, D. (1999). Separation of Y(III) complexes from
Dy(III), Ho(III) and Er(III) complexes with iminodiacetic acid on the
anion-exchangers type 1 and type 2. Hydrometallurgy ,53 (1), 89–100. https://doi.org/10.1016/S0304-386X(99)00035-3
HUBICKA, H., & HUBICKI, Z. (1986). SEPARATION OP RARE EARTH -
POLYALZDTOCARBOXYLIC ACIDS COMPLEXES OK VARIOUS TYPES OF
ANION-EXCHANGERS. Solvent Extraction and Ion Exchange ,4 (2), 383–399. https://doi.org/10.1080/07366298608917872
Hubicka, H., & Kołodyńska, D. (2004). Separation of rare-earth element
complexes with trans-1,2-diaminocyclohexane-N,N,N′,N′-tetraacetic acid
on polyacrylate anion exchangers. Hydrometallurgy ,71 (3–4), 343–350. https://doi.org/10.1016/S0304-386X(03)00086-0
Hubicka, H., & Kołodyńska, D. (2008). Application of monodispersive
anion exchangers in sorption and separation of Y3+ from Nd3+ and Sm3+
complexes with dcta. Journal of Rare Earths , 26 (5),
619–625. https://doi.org/10.1016/S1002-0721(08)60149-0
Hubicki, Z., & Olszak, M. (1998). Studies of the sorption of rare earth
element nitrate complexes in the C2H5OH-HNO3 system on the strongly
basic anion exchanger Wofatit SBW. Adsorption Science and
Technology , 16 (6), 487–492.
https://doi.org/10.1177/026361749801600606
Hubicki, Z., & Olszak, M. (2002). Studies on separation of rare earth
elements on various types of anion-exchangers in the C3H7OH-7 M HNO3
systems. Journal of Chromatography A , 955 (2), 257–262.
https://doi.org/10.1016/S0021-9673(02)00212-1
Huo, Q., Margolese, D. I., & Stucky, G. D. (1996). Surfactant Control
of Phases in the Synthesis of Mesoporous Silica-Based Materials.Chemistry of Materials , 8 (5), 1147–1160.
https://doi.org/10.1021/cm960137h
Ide, M., El-Roz, M., De Canck, E., Vicente, A., Planckaert, T.,
Bogaerts, T., Van Driessche, I., Lynen, F., Van Speybroeck, V.,
Thybault-Starzyk, F., & Van Der Voort, P. (2013). Quantification of
silanol sites for the most common mesoporous ordered silicas and
organosilicas: Total versus accessible silanols. Physical
Chemistry Chemical Physics , 15 (2), 642–650.
https://doi.org/10.1039/c2cp42811c
Iftekhar, S., Ramasamy, D. L., Srivastava, V., Asif, M. B., &
Sillanpää, M. (2018). Understanding the factors affecting the adsorption
of Lanthanum using different adsorbents: A critical review. InChemosphere (Vol. 204, pp. 413–430).
https://doi.org/10.1016/j.chemosphere.2018.04.053
Iftekhar, S., Srivastava, V., Casas, A., & Sillanpää, M. (2018).
Synthesis of novel GA-g-PAM/SiO2 nanocomposite for the recovery of rare
earth elements (REE) ions from aqueous solution. Journal of
Cleaner Production , 170 , 251–259.
https://doi.org/10.1016/j.jclepro.2017.09.166
Iftekhar, S., Srivastava, V., & Sillanpää, M. (2017a). Enrichment of
lanthanides in aqueous system by cellulose based silica nanocomposite.Chemical Engineering Journal , 320 , 151–159.
https://doi.org/10.1016/j.cej.2017.03.051
Iftekhar, S., Srivastava, V., & Sillanpää, M. (2017b). Synthesis and
application of LDH intercalated cellulose nanocomposite for separation
of rare earth elements (REEs). Chemical Engineering Journal ,309 , 130–139. https://doi.org/10.1016/j.cej.2016.10.028
Ihara, T., Jyo, A., & Yamabe, K. (2001). METAL ION SELECTIVITY OF
MACRORETICULAR CHELATING CATION EXCHANGE RESINS WITH PHOSPHONIC ACID
GROUPS ATTACHED TO PHENYL GROUPS OF A STYRENE-DIVINYLBENZENE COPOLYMER
MATRIX. Separation Science and Technology , 36 (15),
3511–3528. https://doi.org/10.1081/SS-100107917
İnan, S., Tel, H., Sert, Çetinkaya, B., Sengül, S., Özkan, B., & Altaş,
Y. (2018). Extraction and separation studies of rare earth elements
using Cyanex 272 impregnated Amberlite XAD-7 resin.Hydrometallurgy , 181 (April), 156–163.
https://doi.org/10.1016/j.hydromet.2018.09.005
Jackson, M. L. (1954). Ion Exchangers in Analytical Chemistry.Soil Science Society of America Journal , 18 (1), 99.
https://doi.org/10.2136/sssaj1954.03615995001800010025x
James, D. B., Powell, J. E., & Spedding, F. H. (1961). Cation-exchange
elution sequences-I Divalent and rare-earth cations with EDTA, hedta and
citrate. Journal of Inorganic and Nuclear Chemistry ,19 (1–2), 133–141. https://doi.org/10.1016/0022-1902(61)80055-9
Jia, Q., Wang, Z. H., Li, D. Q., & Niu, C. J. (2004). Adsorption of
heavy rare earth(III) with extraction resin containing
bis(2,4,4-trimethylpentyl) monothiophosphinic acid. Journal of
Alloys and Compounds , 374 (1–2), 434–437.
https://doi.org/10.1016/j.jallcom.2003.11.056
Jiang, L., Zhang, W., Luo, C., Cheng, D., & Zhu, J. (2016). Adsorption
toward Trivalent Rare Earth Element from Aqueous Solution by Zeolitic
Imidazolate Frameworks. Industrial & Engineering Chemistry
Research , 55 (22), 6365–6372.
https://doi.org/10.1021/acs.iecr.6b00422
Johannesson, K. H., Lyons, W. B., Stetzenbach, K. J., & Byrne, R. H.
(1995). The solubility control of rare earth elements in natural
terrestrial waters and the significance of PO43- and CO32- in limiting
dissolved rare earth concentrations: A review of recent information.Aquatic Geochemistry , 1 (2), 157–173.
https://doi.org/10.1007/BF00702889
Juère, E., Florek, J., Larivière, D., Kim, K., & Kleitz, F. (2016).
Support effects in rare earth element separation using
diglycolamide-functionalized mesoporous silica. New Journal of
Chemistry , 40 (5), 4325–4334. https://doi.org/10.1039/c5nj03147h
Jyo, A., Yamabe, K., & Egawa, H. (1997). Metal Ion Selectivity of a
Macroreticular Styrene-Divinylbenzene Copolymer-Based
Methylenephosphonic Acid Resin. Separation Science and
Technology , 32 (6), 1099–1105.
https://doi.org/10.1080/01496399708000948
Kabay, N., Cortina, J. L., Trochimczuk, A., & Streat, M. (2010).
Solvent-impregnated resins (SIRs) - Methods of preparation and their
applications. Reactive and Functional Polymers , 70 (8),
484–496. https://doi.org/10.1016/j.reactfunctpolym.2010.01.005
Kala, R., Biju, V. M., & Rao, T. P. (2005). Synthesis,
characterization, and analytical applications of erbium(III) ion
imprinted polymer particles prepared via γ-irradiation with different
functional and crosslinking monomers. Analytica Chimica Acta ,549 (1–2), 51–58. https://doi.org/10.1016/j.aca.2005.06.024
Kala, R., Mary Gladis, J., & Prasada Rao, T. (2004). Preconcentrative
separation of erbium from Y, Dy, Ho, Tb and Tm by using ion imprinted
polymer particles via solid phase extraction. Analytica Chimica
Acta , 518 (1–2), 143–150.
https://doi.org/10.1016/j.aca.2004.05.029
Kaneko, T., Hikosaka, R., Nagata, F., Inagaki, M., & Kato, K. (2019).
Effective adsorption of dysprosium ions on amino and carboxyl
functionalized mesoporous silica sheets. Journal of Asian Ceramic
Societies , 7 (2), 213–220.
https://doi.org/10.1080/21870764.2019.1606139
Kaneko, T., Nagata, F., Kugimiya, S., & Kato, K. (2018). Optimization
of carboxyl-functionalized mesoporous silica for the selective
adsorption of dysprosium. Journal of Environmental Chemical
Engineering , 6 (5), 5090–5098.
https://doi.org/10.1016/j.jece.2018.09.018
Karraker, R. H. (1961). Stability constants of some
rare-earth-metal chelates . 1961 , 105.
https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=2968&context=rtd
Kavun, V., van der Veen, M. A., & Repo, E. (2021). Selective recovery
and separation of rare earth elements by organophosphorus modified
MIL-101(Cr). Microporous and Mesoporous Materials , 312 ,
110747. https://doi.org/10.1016/j.micromeso.2020.110747
Kazantsev, E. I., Fisenko, V. V., & Mal’tsev, G. I. (1974). Complexing
of rare earth ions with carboxylic cationite KB-2x7. Izv.Vyssh.
Uchebn. Zaved., Khim. Khim. Tekhnol , 17 (9), 1304–1306.
https://inis.iaea.org/search/search.aspx?orig_q=RN:6174755
Keçili, R., Dolak, İ., Ziyadanoğulları, B., Ersöz, A., & Say, R.
(2018). Ion imprinted cryogel-based supermacroporous traps for selective
separation of cerium(III) in real samples. Journal of Rare
Earths , 36 (8), 857–862.
https://doi.org/10.1016/j.jre.2018.02.008
Kegl, T., Ban, I., Lobnik, A., & Košak, A. (2019). Synthesis and
characterization of novel Γ-Fe2O3-NH4OH@SiO2(APTMS) nanoparticles for
dysprosium adsorption. Journal of Hazardous Materials ,378 , 120764. https://doi.org/10.1016/j.jhazmat.2019.120764
Kharitonov, O. V., Firsova, L. A., & Chuveleva, E. A. (2009a). The
accumulation of the competing displacer ion in the retaining ion zone in
the separation of rare-earth metals by complex formation displacement
chromatography. Russian Journal of Physical Chemistry A ,83 (7), 1217–1219. https://doi.org/10.1134/S0036024409070309
Kharitonov, O. V., Firsova, L. A., & Chuveleva, E. A. (2009b). The
influence of a competing eluting ion content on the efficiency of
separation of rare-earth metals in displacement complex forming
chromatography. Russian Journal of Physical Chemistry A ,83 (6), 1030–1031. https://doi.org/10.1134/S0036024409060284
Khawassek, Y. M., Eliwa, A. A., Haggag, E. S. A., Omar, S. A., &
Abdel-Wahab, S. M. (2019). Adsorption of rare earth elements by strong
acid cation exchange resin thermodynamics, characteristics and kinetics.SN Applied Sciences , 1 (1), 51.
https://doi.org/10.1007/s42452-018-0051-6
Kilian, K., Pyrzyńska, K., & Pęgier, M. (2017). Comparative Study of
Sc(III) Sorption onto Carbon-based Materials. Solvent Extraction
and Ion Exchange , 35 (6), 450–459.
https://doi.org/10.1080/07366299.2017.1354580
Kim, H., Lee, J., & Jung, H. (2019). Study on the carbamoyl phosphine
oxide moiety functionalized mesoporous graphene for the removal of rare
earth elements. Journal of Porous Materials , 26 (4),
931–939. https://doi.org/10.1007/s10934-018-0691-3
Kogan, L., & Ratner, R. (1971). The separation of yttrium from the
lanthanides by ion exchange with diethylenetriaminepentaacetic acid as
eluant. I. Separation of yttrium-erbium mixtures. Journal of
Chromatography A , 62 (3), 449–457.
https://doi.org/10.1016/S0021-9673(00)91397-9
Kołodyńska, D., Hubicki, Z., & Fila, D. (2019). Recovery of rare earth
elements from acidic solutions using macroporous ion exchangers.Separation Science and Technology , 54 (13), 2059–2076.
https://doi.org/10.1080/01496395.2019.1604753
Koochaki-Mohammadpour, S. M. A., Torab-Mostaedi, M.,
Talebizadeh-Rafsanjani, A., & Naderi-Behdani, F. (2014). Adsorption
Isotherm, Kinetic, Thermodynamic, and Desorption Studies of Lanthanum
and Dysprosium on Oxidized Multiwalled Carbon Nanotubes. Journal
of Dispersion Science and Technology , 35 (2), 244–254.
https://doi.org/10.1080/01932691.2013.785361
Koodynska, D., & Hubicki, Z. (2012). Investigation of Sorption and
Separation of Lanthanides on the Ion Exchangers of Various Types. InIon Exchange Technologies: Vol. i (Issue tourism). InTech.
https://doi.org/10.5772/50857
Korkisch, J., Feik, F., & Ahluwalia, S. S. (1967). Cation-exchange
behaviour of several elements in nitric acid-organic solvent media.Talanta , 14 (9), 1069–1081.
https://doi.org/10.1016/0039-9140(67)80145-0
Kosmulski, M. (1997a). Standard enthalpies of adsorption of di- and
trivalent cations on alumina. Journal of Colloid and Interface
Science , 192 (1), 215–227.
https://doi.org/10.1006/jcis.1997.4994
Kosmulski, M. (1997b). Adsorption of Trivalent Cations on Silica.Journal of Colloid and Interface Science , 195 (2),
395–403. https://doi.org/10.1006/jcis.1997.5155
Kostenko, L., Kobylinska, N., Khainakov, S., & Granda, S. G. (2019).
Magnetite nanoparticles with aminomethylenephosphonic groups: synthesis,
characterization and uptake of europium(III) ions from aqueous media.Microchimica Acta , 186 (7), 474.
https://doi.org/10.1007/s00604-019-3520-8
Kowal-Fouchard, A., Drot, R., Simoni, E., Marmier, N., Fromage, F., &
Ehrhardt, J. J. (2004). Structural identification of europium(III)
adsorption complexes on montmorillonite. New Journal of
Chemistry , 28 (7), 864–869. https://doi.org/10.1039/b400306c
Kumar, B. N., Radhika, S., Kantam, M. L., & Reddy, B. R. (2011).
Solid-liquid extraction of terbium from phosphoric acid solutions using
solvent-impregnated resin containing TOPS 99. Journal of Chemical
Technology & Biotechnology , 86 (4), 562–569.
https://doi.org/10.1002/jctb.2553
Kumar, D., Schumacher, K., Du Fresne von Hohenesche, C., Grün, M., &
Unger, K. K. (2001). MCM-41, MCM-48 and related mesoporous adsorbents:
their synthesis and characterisation. Colloids and Surfaces A:
Physicochemical and Engineering Aspects , 187 –188 ,
109–116. https://doi.org/10.1016/S0927-7757(01)00638-0
Lee, G. S., Uchikoshi, M., Mimura, K., & Isshiki, M. (2009).
Distribution coefficients of La, Ce, Pr, Nd, and Sm on Cyanex 923-,
D2EHPA-, and PC88A-impregnated resins. Separation and Purification
Technology , 67 (1), 79–85.
https://doi.org/10.1016/j.seppur.2009.03.033
Lee, G. S., Uchikoshi, M., Mimura, K., & Isshiki, M. (2010a).
Preparation and evaluation of high-purity La2O3. Metallurgical and
Materials Transactions B: Process Metallurgy and Materials Processing
Science , 41 (3), 509–519.
https://doi.org/10.1007/s11663-010-9348-6
Lee, G. S., Uchikoshi, M., Mimura, K., & Isshiki, M. (2010b).
Separation of major impurities Ce, Pr, Nd, Sm, Al, Ca, Fe, and Zn from
La using bis(2-ethylhexyl)phosphoric acid (D2EHPA)-impregnated resin in
a hydrochloric acid medium. Separation and Purification
Technology , 71 (2), 186–191.
https://doi.org/10.1016/j.seppur.2009.11.020
Lee, Y.-R., Yu, K., Ravi, S., & Ahn, W.-S. (2018). Selective Adsorption
of Rare Earth Elements over Functionalized Cr-MIL-101
[Research-article]. ACS Applied Materials & Interfaces ,10 (28), 23918–23927. https://doi.org/10.1021/acsami.8b07130
Lee, Y. R., Zhang, S., Yu, K., Choi, J., & Ahn, W. S. (2019).
Poly(amidoamine) dendrimer immobilized on mesoporous silica foam (MSF)
and fibrous nano-silica KCC-1 for Gd3+ adsorption in water.Chemical Engineering Journal , 378 , 122133.
https://doi.org/10.1016/j.cej.2019.122133
Li, C., Zhuang, Z., Huang, F., Wu, Z., Hong, Y., & Lin, Z. (2013).
Recycling rare earth elements from industrial wastewater with flowerlike
nano-Mg(OH)2. ACS Applied Materials and Interfaces , 5 (19),
9719–9725. https://doi.org/10.1021/am4027967
Li, D., Zhang, B., & Xuan, F. (2015). The sorption of Eu(III) from
aqueous solutions by magnetic graphene oxides: A combined experimental
and modeling studies. Journal of Molecular Liquids , 211 ,
203–209. https://doi.org/10.1016/j.molliq.2015.07.012
Li, J., Gong, A., Li, F., Qiu, L., Zhang, W., Gao, G., Liu, Y., & Li,
J. (2018). Synthesis and characterization of magnetic mesoporous
Fe3O4@mSiO2-DODGA nanoparticles for adsorption of 16 rare earth
elements. RSC Advances , 8 (68), 39149–39161.
https://doi.org/10.1039/c8ra07762b
Li, J., Gong, A., Qiu, L., Zhang, W., Shi, G., Li, X., Li, J., Gao, G.,
& Bai, Y. (2020). Selective extraction and column separation for 16
kinds of rare earth element ions by using N, N-dioctyl diglycolacid
grafted silica gel particles as the stationary phase. Journal of
Chromatography A , 1627 .
https://doi.org/10.1016/j.chroma.2020.461393
Li, K., Gao, Q., Yadavalli, G., Shen, X., Lei, H., Han, B., Xia, K., &
Zhou, C. (2015). Selective Adsorption of Gd3+ on a Magnetically
Retrievable Imprinted Chitosan/Carbon Nanotube Composite with High
Capacity. ACS Applied Materials and Interfaces , 7 (38),
21047–21055. https://doi.org/10.1021/acsami.5b07560
Li, X., Lu, T., Wang, Y., & Yang, Y. (2019). Study on the controllable
synthesis of SH-MCM-41 mesoporous materials and their adsorption
properties of the La3+, Gd3+ and Yb3+. Chinese Chemical Letters ,30 (12), 2318–2322. https://doi.org/10.1016/j.cclet.2019.05.056
Liao, C., Nie, H., Jiao, Y., Liang, Y., & Yang, S. (2010). Study on the
diffusion kinetics of adsorption of heavy rare earth with Cyanex272-P507
impregnated resin. Journal of Rare Earths , 28 (SUPPL. 1),
120–124. https://doi.org/10.1016/S1002-0721(10)60290-6
Liu, J., Martin, P. F., & Peter McGrail, B. (2021). Rare-earth element
extraction from geothermal brine using magnetic core-shell
nanoparticles-techno-economic analysis. Geothermics , 89 ,
101938. https://doi.org/10.1016/j.geothermics.2020.101938
Liu, Y., Zhu, L., Sun, X., Chen, J., & Luo, F. (2009). Silica materials
doped with bifunctional ionic liquid extractant for yttrium extraction.Industrial and Engineering Chemistry Research , 48 (15),
7308–7313. https://doi.org/10.1021/ie900468c
Liu, Zhanmeng, Chen, G., Li, X., & Lu, X. (2021). Removal of rare earth
elements by MnFe2O4 based mesoporous adsorbents: Synthesis, isotherms,
kinetics, thermodynamics. Journal of Alloys and Compounds ,856 , 158185. https://doi.org/10.1016/J.JALLCOM.2020.158185
Liu, Zhanmeng, Gao, Z., Xu, L., & Hu, F. (2020). Efficient and rapid
adsorption of rare earth elements from water by magnetic Fe3O4/MnO2
decorated reduced graphene oxide. Journal of Molecular Liquids ,313 , 113510. https://doi.org/10.1016/j.molliq.2020.113510
Liu, Zhaowang, Feng, Y., & Li, H. (2021). Application of titanium
phosphate prepared from acidic titanium dioxide wastewater to remove
cerium (III) in aqueous solution. Colloids and Surfaces A:
Physicochemical and Engineering Aspects , 630 , 127613.
https://doi.org/10.1016/J.COLSURFA.2021.127613
Liu, Zhe, Liu, Y., & Gong, A. (2019). Preparation of diglycolamide
polymer modified silica and its application as adsorbent for rare earth
ions. Designed Monomers and Polymers , 22 (1), 1–7.
https://doi.org/10.1080/15685551.2018.1564425
Lokshin, E. P., Ivanenko, V. I., Tareeva, O. A., & Korneikov, R. I.
(2013). Sorption of rare earth elements of waste solution of leaching
uranium. Russian Journal of Applied Chemistry , 86 (3),
450–452. https://doi.org/10.1134/S1070427213030269
Losev, V., Buyko, O., Metelitsa, S., Borodina, E., Kuzmin, N., &
Shimanskiy, A. (2020). Novel silica based adsorbent layer-by-layer
modified with polyhexamethylene guanidine and Arsenazo reagents for
solid-phase extraction of lanthanides from lignites and products of
their processing. Separation Science and Technology
(Philadelphia) . https://doi.org/10.1080/01496395.2020.1785500
Lou, Z., Xiao, X., Huang, M., Wang, Y., Xing, Z., & Xiong, Y. (2019).
Acrylic Acid-Functionalized Metal–Organic Frameworks for Sc(III)
Selective Adsorption [Research-article]. ACS Applied Materials
& Interfaces , 11 (12), 11772–11781.
https://doi.org/10.1021/acsami.9b00476
Louis, R. E., & Duyckaerts, G. (1984). Some parameters affecting the
extraction chromatographic performance of TBP impregnated macroporous
XAD-4 columns for Am(III)-Eu(III) separations. Journal of
Radioanalytical and Nuclear Chemistry Articles , 81 (2), 305–315.
https://doi.org/10.1007/BF02135383
Louis, R. E., & Duyckaerts, G. (1985). Some parameters affecting column
distribution ratios of Am(III) and Eu(III) and column resolution of TBP
impregnated macroporous XAD-4 polymers. Journal of Radioanalytical
and Nuclear Chemistry Articles , 90 (1), 105–112.
https://doi.org/10.1007/BF02037325
Ma, T. Y., Liu, L., & Yuan, Z. Y. (2013). Direct synthesis of ordered
mesoporous carbons. Chemical Society Reviews , 42 (9),
3977–4003. https://doi.org/10.1039/c2cs35301f
Mackey, J. L., Key, M. A. C., Lirai, J., & Of, A. S. (1960). A
study of the rare-earth chelate stability constants of some
aminopolyacetic acids exactly as received .
Mahmoud, M. E., Mohamed, A. K., Amira, M. F., & Seleim, S. M. (2019).
Novel Nanostructured Metal–Organic Framework-Bonded Silica Amine and
Polymer: Facile Synthesis, Kinetics, Isotherms, and Thermodynamics
Evaluation for Adsorption of Yttrium(III) Ions [Research-article].Journal of Chemical & Engineering Data , 64 (12),
6060–6070. https://doi.org/10.1021/acs.jced.9b00918
Marmier, N., Dumonceau, J., & Fromage, F. (1997). Surface complexation
modeling of Yb(III) sorption and desorption on hematite and alumina.Journal of Contaminant Hydrology , 26 (1–4), 159–167.
https://doi.org/10.1016/S0169-7722(96)00065-4
Marmier, Nicolas, Delisée, A., & Fromage, F. (1999). Surface
Complexation Modeling of Yb(III) and Cs(I) Sorption on Silica.Journal of Colloid and Interface Science , 212 (2),
228–233. https://doi.org/10.1006/jcis.1999.6086
Marmier, Nicolas, & Fromage, F. (1999). Comparing Electrostatic and
Nonelectrostatic Surface Complexation Modeling of the Sorption of
Lanthanum on Hematite. Journal of Colloid and Interface Science ,212 (2), 252–263. https://doi.org/10.1006/jcis.1998.6039
Martell, A. E., & Hancock, R. D. (1996). Metal Complexes in Aqueous
Solutions. In Metal Complexes in Aqueous Solutions . Springer US.
https://doi.org/10.1007/978-1-4899-1486-6
Martynenko, L. I., Kupriyanova, G. N., & Prutkova, N. M. (1972).
Non-ion exchange sorption of monoiminodiacetates of rare-earth elements
on cationite. Zhurnal Neorganicheskoj Khimii , 17 (1),
214–217. http://inis.iaea.org/Search/search.aspx?orig_q=RN:3033722
Martynenko, L. I., Mitrofanova, N. D., & Spitsyn, V. I. (1968).
Mechanism of the ion-exchange separation of mixtures of rare earth
elements during elution with solutions of nitrilotriacetic acid.Bulletin of the Academy of Sciences of the USSR Division of
Chemical Science , 17 (9), 1854–1861.
https://doi.org/10.1007/BF00904970
Marwani, H. M., Albishri, H. M., Jalal, T. A., & Soliman, E. M. (2017).
Study of isotherm and kinetic models of lanthanum adsorption on
activated carbon loaded with recently synthesized Schiff’s base.Arabian Journal of Chemistry , 10 , S1032–S1040.
https://doi.org/10.1016/j.arabjc.2013.01.008
Marwani, H. M., & Alsafrani, A. E. (2013). New solid phase extractor
based on ionic liquid functionalized silica gel surface for selective
separation and determination of lanthanum. Journal of Analytical
Science and Technology , 4 (1), 1–10.
https://doi.org/10.1186/2093-3371-4-13
Marwani, H. M., Bakhsh, E. M., Khan, S. B., Danish, E. Y., & Asiri, A.
M. (2018). Cerium oxide‑cadmium oxide nanomaterial as efficient
extractant for yttrium ions. Journal of Molecular Liquids ,269 , 252–259. https://doi.org/10.1016/j.molliq.2018.08.046
Masi, A. N., & Olsina, R. A. (1993). Preconcentration and determination
of Ce, La and Pr by X-ray fluorescence analysis, using Amberlite XAD
resins loaded with 8-Quinolinol and 2-(2-(5
chloropyridylazo)-5-dimethylamino)-phenol. Talanta , 40 (6),
931–934. https://doi.org/10.1016/0039-9140(93)80054-U
Mathur, J. N., & Khopkar, P. K. (1985). Ion Exchange Behaviour of
Chelating Resin Dowex A-1 with Actinides and Lanthanides. Solvent
Extraction and Ion Exchange , 3 (5), 753–762.
https://doi.org/10.1080/07366298508918538
Mehmood, A., Ghafar, H., Yaqoob, S., Gohar, U. F., & Ahmad, B. (2017).
Mesoporous Silica Nanoparticles: A Review. Journal of Developing
Drugs , 06 (02). https://doi.org/10.4172/2329-6631.1000174
Meng, M., Meng, X., Liu, Y., Liu, Z., Han, J., Wang, Y., Luo, M., Chen,
R., Ni, L., & Yan, Y. (2014). An ion-imprinted functionalized SBA-15
adsorbent synthesized by surface imprinting technique via reversible
addition-fragmentation chain transfer polymerization for selective
removal of Ce(III) from aqueous solution. Journal of Hazardous
Materials , 278 , 134–143.
https://doi.org/10.1016/j.jhazmat.2014.06.002
Metwally, S. S., & Rizk, H. E. (2014). Preparation and Characterization
of Nano-Sized Iron–Titanium Mixed Oxide for Removal of Some Lanthanides
from Aqueous Solution. Separation Science and Technology ,49 (15), 2426–2436. https://doi.org/10.1080/01496395.2014.926457
Meynen, V., Cool, P., & Vansant, E. F. (2009). Verified syntheses of
mesoporous materials. Microporous and Mesoporous Materials ,125 (3), 170–223. https://doi.org/10.1016/j.micromeso.2009.03.046
Miklishanskii, A. Z., Yakovlev, Y. V., Dogadkin, N. N., Leikin, Y. A.,
& Davankov, A. B. (1968). Investigation of the sorption of the
rare-earth elements and uranium by phosphorus-containing cation-exchange
resins. Bulletin of the Academy of Sciences of the USSR Division
of Chemical Science , 17 (7), 1373–1376.
https://doi.org/10.1007/BF00907827
Minczewski, J, Chwastowska, J., Dybczynski, R., & Masson, M. R. (1982).Separation and preconcentration methods in inorganic trace
analysis . E. Horwood ; Halsted Press.
Minczewski, Jerzy, & Dybczyński, R. (1962). Separation of rare earths
on anion exchange resins II. Anion exchange behaviour of the rare earth
complexes with ethylenediaminetetraacetic acid. Journal of
Chromatography A , 7 (C), 98–111.
https://doi.org/10.1016/s0021-9673(01)86386-x
Miraoui, A., Didi, M. A., & Villemin, D. (2016). Neodymium(III) removal
by functionalized magnetic nanoparticles. Journal of
Radioanalytical and Nuclear Chemistry , 307 (2), 963–971.
https://doi.org/10.1007/s10967-015-4267-2
Mohamed, W. R., Metwally, S. S., Ibrahim, H. A., El-Sherief, E. A.,
Mekhamer, H. S., Moustafa, I. M. I., & Mabrouk, E. M. (2017).
Impregnation of task-specific ionic liquid into a solid support for
removal of neodymium and gadolinium ions from aqueous solution.Journal of Molecular Liquids , 236 , 9–17.
https://doi.org/10.1016/j.molliq.2017.04.013
Mohammedi, H., Miloudi, H., Tayeb, A., Bertagnolli, C., & Boos, A.
(2019). Study on the extraction of lanthanides by a mesoporous MCM-41
silica impregnated with Cyanex 272. Separation and Purification
Technology , 209 (February 2018), 359–367.
https://doi.org/10.1016/j.seppur.2018.07.035
Molina, L., Gaete, J., Alfaro, I., Ide, V., Valenzuela, F., Parada, J.,
& Basualto, C. (2019). Synthesis and characterization of magnetite
nanoparticles functionalized with organophosphorus compounds and its
application as an adsorbent for La (III), Nd (III) and Pr (III) ions
from aqueous solutions. Journal of Molecular Liquids , 275 ,
178–191. https://doi.org/10.1016/j.molliq.2018.11.074
Moloney, M. P., Causse, J., Loubat, C., & Grandjean, A. (2014). Sodium
“Activation” of Silano-Phosphonate Modified Mesoporous TiO 2 Leading
to Improved Rare-Earth Element Extraction. European Journal of
Inorganic Chemistry , 2014 (13), 2268–2277.
https://doi.org/10.1002/ejic.201400027
Mondal, S., Ghar, A., Satpati, A. K., Sinharoy, P., Singh, D. K.,
Sharma, J. N., Sreenivas, T., & Kain, V. (2019). Recovery of rare earth
elements from coal fly ash using TEHDGA impregnated resin.Hydrometallurgy , 185 , 93–101.
https://doi.org/10.1016/j.hydromet.2019.02.005
Mosai, A. K., Chimuka, L., Cukrowska, E. M., Kotzé, I. A., & Tutu, H.
(2019). The Recovery of Rare Earth Elements (REEs) from Aqueous
Solutions Using Natural Zeolite and Bentonite. Water, Air, and
Soil Pollution , 230 (8).
https://doi.org/10.1007/s11270-019-4236-4
Moussa, M., Ndiaye, M. M., Pinta, T., Pichon, V., Vercouter, T., &
Delaunay, N. (2017). Selective solid phase extraction of lanthanides
from tap and river waters with ion imprinted polymers. Analytica
Chimica Acta , 963 , 44–52.
https://doi.org/10.1016/j.aca.2017.02.012
Muraviev, D. (1998). Surface impregnated sulfonate ion exchangers:
Preparation, properties and application. Solvent Extraction and
Ion Exchange , 16 (1), 381–457.
https://doi.org/10.1080/07366299808934533
Muraviev, D., Ghantous, L., & Valiente, M. (1998). Stabilization of
solvent-impregnated resin capacities by different techniques.Reactive and Functional Polymers , 38 (2–3), 259–268.
https://doi.org/10.1016/s1381-5148(98)00075-3
Narayan, R., Nayak, U. Y., Raichur, A. M., & Garg, S. (2018).
Mesoporous silica nanoparticles: A comprehensive review on synthesis and
recent advances. Pharmaceutics , 10 (3), 1–49.
https://doi.org/10.3390/pharmaceutics10030118
Naser, A. A., El-deen, G. E. S., Bhran, A. A., Metwally, S. S., &
El-Kamash, A. M. (2015). Elaboration of Impregnated Composite for
Sorption of Europium and Neodymium Ions from Aqueous Solutions.Journal of Industrial and Engineering Chemistry , 32 ,
264–272. https://doi.org/10.1016/j.jiec.2015.08.024
Nash, K. L. (1993). A review of the basic chemistry and recent
developments in trivalent f-elements separations. Solvent
Extraction and Ion Exchange , 11 (4), 729–768.
https://doi.org/10.1080/07366299308918184
Nelson, F. (1965). Ion-exchange procedures. Journal of
Chromatography A , 20 , 378–383.
https://doi.org/10.1016/s0021-9673(01)97426-6
Ngomsik, A. F., Bee, A., Talbot, D., & Cote, G. (2012). Magnetic
solid-liquid extraction of Eu(III), La(III), Ni(II) and Co(II) with
maghemite nanoparticles. Separation and Purification Technology ,86 , 1–8. https://doi.org/10.1016/j.seppur.2011.10.013
Ni, C., Liu, Q., Ren, Z., Hu, H., Sun, B., Liu, C., Shao, P., Yang, L.,
Pavlostathis, S. G., & Luo, X. (2021). Selective removal and recovery
of La(III) using a phosphonic-based ion imprinted polymer: Adsorption
performance, regeneration, and mechanism. Journal of Environmental
Chemical Engineering , 9 (6), 106701.
https://doi.org/10.1016/J.JECE.2021.106701
Nik Mustapa, N. R., Malek, N. F. A., Yusoff, M. M., & Rahman, M. L.
(2016). Ion imprinted polymers for selective recognition and separation
of lanthanum and cerium ions from other lanthanide. Separation
Science and Technology (Philadelphia) , 51 (17), 2762–2771.
https://doi.org/10.1080/01496395.2016.1225091
Nishihama, S., Kohata, K., & Yoshizuka, K. (2013). Separation of
lanthanum and cerium using a coated solvent-impregnated resin.Separation and Purification Technology , 118 , 511–518.
https://doi.org/10.1016/j.seppur.2013.07.047
Niu, F., Xie, Z., Fu, C., Xu, H., Liu, D., Zhang, X., Yang, Y., & Shen,
L. (2021). Adsorption–Desorption of La3+, Eu3+, and Y3+ by
Mg(OH)2-Pretreated TP207 Resin. JOM , 73 (1), 32–38.
https://doi.org/10.1007/s11837-020-04472-2
Noack, C. W., Dzombak, D. A., & Karamalidis, A. K. (2014). Rare earth
element distributions and trends in natural waters with a focus on
groundwater. Environmental Science and Technology , 48 (8),
4317–4326. https://doi.org/10.1021/es4053895
Noack, C. W., Perkins, K. M., Callura, J. C., Washburn, N. R., Dzombak,
D. A., & Karamalidis, A. K. (2016). Effects of Ligand Chemistry and
Geometry on Rare Earth Element Partitioning from Saline Solutions to
Functionalized Adsorbents. ACS Sustainable Chemistry &
Engineering , 4 (11), 6115–6124.
https://doi.org/10.1021/acssuschemeng.6b01549
Ochsenkühn-Petropulu, M., Lyberopulu, T., & Parissakis, G. (1995).
Selective separation and determination of scandium from yttrium and
lanthanides in red mud by a combined ion exchange/solvent extraction
method. Analytica Chimica Acta , 315 (1–2), 231–237.
https://doi.org/10.1016/0003-2670(95)00309-N
Ogata, T., Narita, H., & Tanaka, M. (2014). Immobilization of diglycol
amic acid on silica gel for selective recovery of rare earth elements.Chemistry Letters , 43 (9), 1414–1416.
https://doi.org/10.1246/cl.140446
Ogata, T., Narita, H., & Tanaka, M. (2015a). Adsorption behavior of
rare earth elements on silica gel modified with diglycol amic acid.Hydrometallurgy , 152 , 178–182.
https://doi.org/10.1016/j.hydromet.2015.01.005
Ogata, T., Narita, H., & Tanaka, M. (2015b). Rapid and selective
recovery of heavy rare earths by using an adsorbent with diglycol amic
acid group. Hydrometallurgy , 155 , 105–109.
https://doi.org/10.1016/j.hydromet.2015.04.015
Ogata, T., Narita, H., Tanaka, M., Hoshino, M., Kon, Y., & Watanabe, Y.
(2016). Selective recovery of heavy rare earth elements from apatite
with an adsorbent bearing immobilized tridentate amido ligands.Separation and Purification Technology , 159 , 157–160.
https://doi.org/10.1016/j.seppur.2016.01.008
Ohta, A., & Kawabe, I. (2001). REE(III) adsorption onto Mn dioxide
(δ-MnO2) and Fe oxyhydroxide: Ce(III) oxidation by δ-MnO2.Geochimica et Cosmochimica Acta , 65 (5), 695–703.
https://doi.org/10.1016/S0016-7037(00)00578-0
Page, M. J., Quinn, J. E., & Soldenhoff, K. H. (2019). The impact of
sulfate ions on the ion exchange of rare earth elements.Hydrometallurgy , 186 , 12–20.
https://doi.org/10.1016/j.hydromet.2019.03.003
Page, M. J., Soldenhoff, K., & Ogden, M. D. (2017). Comparative study
of the application of chelating resins for rare earth recovery.Hydrometallurgy , 169 , 275–281.
https://doi.org/10.1016/j.hydromet.2017.02.006
Pallavicini, P., Dacarro, G., Diaz-Fernandez, Y. A., & Taglietti, A.
(2014). Coordination chemistry of surface-grafted ligands for
antibacterial materials. In Coordination Chemistry Reviews (Vol.
275, pp. 37–53). Elsevier. https://doi.org/10.1016/j.ccr.2014.04.013
Pan, J., Zou, X., Li, C., Liu, Y., Yan, Y., & Han, J. (2010). Synthesis
and applications of Ce(III)-imprinted polymer based on attapulgite as
the sacrificial support material for selective separation of cerium(III)
ions. Microchimica Acta , 171 (1), 151–160.
https://doi.org/10.1007/s00604-010-0416-z
PARK, J., HAN, C., LEE, J., KIM, S., KIM, J., & WEE, J. (2005).
Synthesis of extraction resin containing 2-ethylhexyl phosphonic acid
mono-2-ethylhexyl ester and its performance for separation of rare
earths (Gd, Tb). Separation and Purification Technology ,43 (2), 111–116. https://doi.org/10.1016/j.seppur.2004.10.007
Parsons-Moss, T., Wang, J., Jones, S., May, E., Olive, D., Dai, Z.,
Zavarin, M., Kersting, A. B., Zhao, D., & Nitsche, H. (2014). Sorption
interactions of plutonium and europium with ordered mesoporous carbon.Journal of Materials Chemistry A , 2 (29), 11209–11221.
https://doi.org/10.1039/c4ta01740d
Patra, S., Roy, E., Madhuri, R., & Sharma, P. K. (2017). Removal and
Recycling of Precious Rare Earth Element from Wastewater Samples Using
Imprinted Magnetic Ordered Mesoporous Carbon [Research-article].ACS Sustainable Chemistry and Engineering , 5 (8),
6910–6923. https://doi.org/10.1021/acssuschemeng.7b01124
Pearson, R. G. (1963). Hard and Soft Acids and Bases. Journal of
the American Chemical Society , 85 (22), 3533–3539.
https://doi.org/10.1021/ja00905a001
Peng, X., Mo, S., Li, R., Li, J., Tian, C., Liu, W., & Wang, Y. (2020).
Effective removal of the rare earth element dysprosium from wastewater
with polyurethane sponge-supported graphene oxide–titanium phosphate.Environmental Chemistry Letters , 1–10.
https://doi.org/10.1007/s10311-020-01073-y
Perreault, L. L., Giret, S., Gagnon, M., Florek, J., Larivière, D., &
Kleitz, F. (2017). Functionalization of Mesoporous Carbon Materials for
Selective Separation of Lanthanides under Acidic Conditions. ACS
Applied Materials and Interfaces , 9 (13), 12003–12012.
https://doi.org/10.1021/acsami.6b16650
Piasecki, W., & Sverjensky, D. A. (2008). Speciation of adsorbed
yttrium and rare earth elements on oxide surfaces. Geochimica et
Cosmochimica Acta , 72 (16), 3964–3979.
https://doi.org/10.1016/j.gca.2008.05.049
Polido Legaria, E., Rocha, J., Tai, C. W., Kessler, V. G., &
Seisenbaeva, G. A. (2017). Unusual seeding mechanism for enhanced
performance in solid-phase magnetic extraction of Rare Earth Elements.Scientific Reports , 7 (January), 1–13.
https://doi.org/10.1038/srep43740
Polido Legaria, E., Samouhos, M., Kessler, V. G., & Seisenbaeva, G. A.
(2017). Toward Molecular Recognition of REEs: Comparative Analysis of
Hybrid Nanoadsorbents with the Different Complexonate Ligands EDTA,
DTPA, and TTHA. Inorganic Chemistry , 56 (22), 13938–13948.
https://doi.org/10.1021/acs.inorgchem.7b02056
Qin, Y., Wang, X., Shi, M., Huang, Y., Liu, X., & Li, X. (2022).
Preparation and Adsorption Properties of Lanthanide Ion
Surface-Imprinted Polymer Based on Reaming MCM-41. Journal of
Inorganic and Organometallic Polymers and Materials , 32 (1),
161–168. https://doi.org/10.1007/S10904-021-02108-9/FIGURES/7
Quinn, K. A., Byrne, R. H., & Schijf, J. (2006). Sorption of yttrium
and rare earth elements by amorphous ferric hydroxide: Influence of
solution complexation with carbonate. Geochimica et Cosmochimica
Acta , 70 (16), 4151–4165.
https://doi.org/10.1016/j.gca.2006.06.014
Quinn, K. A., Byrne, R. H., & Schijf, J. (2007). Sorption of Yttrium
and Rare Earth Elements by Amorphous Ferric Hydroxide: Influence of
Temperature. Environmental Science & Technology , 41 (2),
541–546. https://doi.org/10.1021/es0618191
Rahman, M. M., Awual, M. R., & Asiri, A. M. (2020). Preparation and
evaluation of composite hybrid nanomaterials for rare-earth elements
separation and recovery. Separation and Purification Technology ,253 , 117515. https://doi.org/10.1016/j.seppur.2020.117515
Ramasamy, D. L., Khan, S., Repo, E., & Sillanpää, M. (2017). Synthesis
of mesoporous and microporous amine and non-amine functionalized silica
gels for the application of rare earth elements (REE) recovery from the
waste water-understanding the role of pH, temperature, calcination and
mechanism in Light REE and Hea. Chemical Engineering Journal ,322 , 56–65. https://doi.org/10.1016/j.cej.2017.03.152
Ramasamy, D. L., Puhakka, V., Doshi, B., Iftekhar, S., & Sillanpää, M.
(2019). Fabrication of carbon nanotubes reinforced silica composites
with improved rare earth elements adsorption performance. Chemical
Engineering Journal , 365 (January), 291–304.
https://doi.org/10.1016/j.cej.2019.02.057
Ramasamy, D. L., Puhakka, V., Iftekhar, S., Wojtuś, A., Repo, E., Ben
Hammouda, S., Iakovleva, E., & Sillanpää, M. (2018). N- and O- ligand
doped mesoporous silica-chitosan hybrid beads for the efficient,
sustainable and selective recovery of rare earth elements (REE) from
acid mine drainage (AMD): Understanding the significance of physical
modification and conditioning of th. Journal of Hazardous
Materials , 348 (October 2017), 84–91.
https://doi.org/10.1016/j.jhazmat.2018.01.030
Ramasamy, D. L., Puhakka, V., Repo, E., Ben Hammouda, S., & Sillanpää,
M. (2018). Two-stage selective recovery process of scandium from the
group of rare earth elements in aqueous systems using activated carbon
and silica composites: Dual applications by tailoring the ligand
grafting approach. Chemical Engineering Journal ,341 (February), 351–360.
https://doi.org/10.1016/j.cej.2018.02.024
Ramasamy, D. L., Puhakka, V., Repo, E., Khan, S., & Sillanpää, M.
(2017). Coordination and silica surface chemistry of lanthanides (III),
scandium (III) and yttrium (III) sorption on
1-(2-pyridylazo)-2-napththol (PAN) and acetylacetone (acac) immobilized
gels. Chemical Engineering Journal , 324 , 104–112.
https://doi.org/10.1016/j.cej.2017.05.025
Ramasamy, D. L., Puhakka, V., Repo, E., & Sillanpää, M. (2018).
Selective separation of scandium from iron, aluminium and gold rich
wastewater using various amino and non-amino functionalized silica gels
– A comparative study. Journal of Cleaner Production ,170 (January), 890–901.
https://doi.org/10.1016/j.jclepro.2017.09.199
Ramasamy, D. L., Repo, E., & Sillanpää, M. (2020). Selective recovery
of rare-earth elements from diluted aqueous streams using N- and
O-coordination ligand–grafted organic–inorganic hybrid composites. InAdvanced Water Treatment (pp. 565–664). Elsevier.
https://doi.org/10.1016/B978-0-12-819216-0.00008-4
Ramasamy, D. L., Repo, E., Srivastava, V., & Sillanpää, M. (2017).
Chemically immobilized and physically adsorbed PAN/acetylacetone
modified mesoporous silica for the recovery of rare earth elements from
the waste water-comparative and optimization study. Water
Research , 114 , 264–276.
https://doi.org/10.1016/j.watres.2017.02.045
Rao, T. P., Kala, R., & Daniel, S. (2006). Metal ion-imprinted
polymers-Novel materials for selective recognition of inorganics.Analytica Chimica Acta , 578 (2), 105–116.
https://doi.org/10.1016/j.aca.2006.06.065
Ravi, S., Lee, Y. R., Yu, K., Ahn, J. W., & Ahn, W. S. (2018). Benzene
triamido-tetraphosphonic acid immobilized on mesoporous silica for
adsorption of Nd3+ ions in aqueous solution. Microporous and
Mesoporous Materials , 258 , 62–71.
https://doi.org/10.1016/j.micromeso.2017.09.006
Ravi, S., Zhang, S., Lee, Y. R., Kang, K. K., Kim, J. M., Ahn, J. W., &
Ahn, W. S. (2018). EDTA-functionalized KCC-1 and KIT-6 mesoporous
silicas for Nd3+ ion recovery from aqueous solutions. Journal of
Industrial and Engineering Chemistry , 67 (June), 210–218.
https://doi.org/10.1016/j.jiec.2018.06.031
Ridley, M. K., Machesky, M. L., Wesolowski, D. J., & Palmer, D. A.
(2005). Surface complexation of neodymium at the rutile-water interface:
A potentiometric and modeling study in NaCl media to 250°C.Geochimica et Cosmochimica Acta , 69 (1), 63–81.
https://doi.org/10.1016/j.gca.2004.06.028
Roosen, J., Spooren, J., & Binnemans, K. (2014). Adsorption performance
of functionalized chitosan–silica hybrid materials toward rare earths.J. Mater. Chem. A , 2 (45), 19415–19426.
https://doi.org/10.1039/C4TA04518A
Roosen, J., Van Roosendael, S., Borra, C. R., Van Gerven, T., Mullens,
S., & Binnemans, K. (2016). Recovery of scandium from leachates of
Greek bauxite residue by adsorption on functionalized chitosan-silica
hybrid materials. Green Chemistry , 18 (7), 2005–2013.
https://doi.org/10.1039/c5gc02225h
Ryu, S., Fonseka, C., Naidu, G., Loganathan, P., Moon, H., Kandasamy,
J., & Vigneswaran, S. (2021). Recovery of rare earth elements (Lu, Y)
by adsorption using functionalized SBA-15 and MIL-101 (Cr).Chemosphere , 281 , 130869.
https://doi.org/10.1016/J.CHEMOSPHERE.2021.130869
Sarmadi, N., Gharabaghi, M., Tamadoni Saray, M., Darestani, M., Garman,
D., Koshy, P., S. Mofarah, S., & Sorrell, C. C. (2021). Highly
Mesoporous Hybrid Transition Metal Oxide Nanowires for Enhanced
Adsorption of Rare Earth Elements from Wastewater. Inorganic
Chemistry , 60 (1), 175–184.
https://doi.org/10.1021/acs.inorgchem.0c02762
Schaeffer, N., Grimes, S. M., & Cheeseman, C. R. (2017). Use of
extraction chromatography in the recycling of critical metals from thin
film leach solutions. Inorganica Chimica Acta , 457 ,
53–58. https://doi.org/10.1016/j.ica.2016.11.020
Schoeb, V. R. (1965). The stability constants of rare-earths with
some carboxylic acids. Retrospective Theses andDissertations. 3376 .
https://lib.dr.iastate.edu/rtd/3376%0A
Schrobilgen, G. J., & Lang, C. E. (1968). Lanthanide distribution
coefficients on Dowex chelating resin A-1. Journal of Inorganic
and Nuclear Chemistry , 30 (11), 3127–3130.
https://doi.org/10.1016/0022-1902(68)80183-6
Sert, Ş., Altaş, Y., Tel, H., Inan, S., Çetinkaya, B., Sengül, S., &
Özkan, B. (2021). Investigation of sorption behaviors of La, Pr, Nd, Sm,
Eu and Gd on D2EHPA-impregnated XAD7 resin in nitric acid medium.Separation Science and Technology (Philadelphia) , 56 (1),
26–35. https://doi.org/10.1080/01496395.2019.1708107
Shinozaki, T., Ogata, T., Kakinuma, R., Narita, H., Tokoro, C., &
Tanaka, M. (2018). Preparation of Polymeric Adsorbents Bearing
Diglycolamic Acid Ligands for Rare Earth Elements
[Research-article]. Industrial & Engineering Chemistry
Research , 57 (33), 11424–11430.
https://doi.org/10.1021/acs.iecr.8b01797
Shu, Q., Khayambashi, A., Wang, X., & Wei, Y. (2018). Studies on
adsorption of rare earth elements from nitric acid solution with
macroporous silica-based bis(2-ethylhexyl)phosphoric acid impregnated
polymeric adsorbent. Adsorption Science & Technology ,36 (3–4), 1049–1065. https://doi.org/10.1177/0263617417748112
Shu, Q., Khayambashi, A., Zou, Q., Wang, X., Wei, Y., He, L., & Tang,
F. (2017). Studies on adsorption and separation characteristics of
americium and lanthanides using a silica-based macroporous
bi(2-ethylhexyl) phosphoric acid (HDEHP) adsorbent. Journal of
Radioanalytical and Nuclear Chemistry , 313 (1), 29–37.
https://doi.org/10.1007/s10967-017-5293-z
SHU, Z., XIONG, C., SHEN, Q., YAO, C., & GU, Z. (2007). Adsorption
behavior and mechanism of D113 resin for lanthanum. Rare Metals ,26 (6), 601–606. https://doi.org/10.1016/S1001-0521(08)60013-3
Shumilova, Y. B., Gelis, V. M., Milyutin, V. V., Kharitonov, O. V., &
Firsova, L. A. (2012). Separation of rare-earth and transplutonium
elements by displacement chromatography on S-957 phosphonic ion
exchanger. Radiochemistry , 54 (2), 164–167.
https://doi.org/10.1134/S1066362212020129
Sivaraman, N., Kumar, R., Subramaniam, S., & Vasudeva Rao, P. R.
(2002). Separation of lanthanides using ion-interaction chromatography
with HDEHP coated columns. Journal of Radioanalytical and Nuclear
Chemistry , 252 (3), 491–495.
https://doi.org/10.1023/A:1015894418606
Smith, H. L., & Hoffman, D. C. (1956). Ion-exchange separations of the
lanthanides and actinides by elution with ammonium
alpha-hydroxy-isobutyrate. Journal of Inorganic and Nuclear
Chemistry , 3 (3–4), 243–247.
https://doi.org/10.1016/0022-1902(56)80025-0
Sparfel, D., & Cote, G. (2004). Synthesis and properties of new highly
hydrophobic 7-substituted 8-quinolinols. Solvent Extraction and
Ion Exchange , 22 (1), 1–12.
https://doi.org/10.1081/SEI-120027570
Spedding, F. H., & Powell, J. E. (1954). The Separation of Rare Earths
by Ion Exchange. VIII. Quantitative Theory of the Mechanism Involved in
Elution by Dilute Citrate Solutions. Journal of the American
Chemical Society , 76 (9), 2550–2557.
https://doi.org/10.1021/ja01638a074
Spedding, F. H., Powell, J. E., & Wheelwright, E. J. (1954). The
Separation of Adjacent Rare Earths with Ethylenediamine-tetraacetic Acid
by Elution from an Ion-exchange Resin. Journal of the American
Chemical Society , 76 (2), 612–613.
https://doi.org/10.1021/ja01631a091
Spedding, F. H., Voigt, A. F., Gladrow, E. M., & Sleight, N. R. (1947).
The Separation of Rare Earths by Ion Exchange.1,2I. Cerium and Yttrium.Journal of the American Chemical Society , 69 (11),
2777–2781. https://doi.org/10.1021/ja01203a058
Strelow, F. W. E. (1960). An Ion Exchange Selectivity Scale of Cations
Based on Equilibrium Distribution Coefficients. Analytical
Chemistry , 32 (9), 1185–1188.
https://doi.org/10.1021/ac60165a042
Strelow, F. W. E., & Bothma, C. J. C. (1964). Separation of Scandium
from Yttrium, Lanthanum, and the Rare Earths by Cation Exchange
Chromatography. Analytical Chemistry , 36 (7), 1217–1220.
https://doi.org/10.1021/ac60213a015
Strelow, F. W. E., Rethemeyer, R., & Bothma, C. J. C. (1965). Ion
Exchange Selectivity Scales for Cations in Nitric Acid and Sulfuric Acid
Media with a Sulfonated Polystyrene Resin. Analytical Chemistry ,37 (1), 106–111. https://doi.org/10.1021/ac60220a027
Strelow, F. W. E., & Victor, A. H. (1990). Separation of yttrium and
neodymium from samarium and the heavier lanthanides by cation-exchange
chromatography with hydroxyethylenediaminetriacetate in
monochloroacetate buffer. Talanta , 37 (12), 1155–1161.
https://doi.org/10.1016/0039-9140(90)80185-I
Sun, M., Chen, C., Chen, L., & Su, B. (2016). Hierarchically porous
materials: Synthesis strategies and emerging applications.Frontiers of Chemical Science and Engineering , 10 (3),
301–347. https://doi.org/10.1007/s11705-016-1578-y
SUN, X., JI, Y., CHEN, J., & MA, J. (2009). Solvent impregnated resin
prepared using task-specific ionic liquids for rare earth separation.Journal of Rare Earths , 27 (6), 932–936.
https://doi.org/10.1016/S1002-0721(08)60365-8
Sun, X., Peng, B., Ji, Y., Chen, J., & Li, D. (2008). The solid-liquid
extraction of yttrium from rare earths by solvent (ionic liquid)
impreganated resin coupled with complexing method. Separation and
Purification Technology , 63 (1), 61–68.
https://doi.org/10.1016/j.seppur.2008.03.038
Sun, Y., Shao, D., Chen, C., Yang, S., & Wang, X. (2013). Highly
efficient enrichment of radionuclides on graphene oxide-supported
polyaniline. Environmental Science and Technology , 47 (17),
9904–9910. https://doi.org/10.1021/es401174n
Sun, Y., Wang, Q., Chen, C., Tan, X., & Wang, X. (2012). Interaction
between Eu(III) and graphene oxide nanosheets investigated by batch and
extended X-ray absorption fine structure spectroscopy and by modeling
techniques. Environmental Science and Technology , 46 (11),
6020–6027. https://doi.org/10.1021/es300720f
Suzuki, Y., Yokoi, S., Katoh, M., Minato, M., & Takizawa, N. (1980).
Stability Constants of Rare-Earth Complexes with Some Organic Ligands.
In G. J. McCarthy, J. J. Rhyne, & H. B. Silber (Eds.), The Rare
Earths in Modern Science and Technology (pp. 121–126). Springer US.
https://doi.org/10.1007/978-1-4613-3054-7_22
Svoboda, K., Kyrš, M., & Vaňura, P. (1997). Synergism in the sorption
of europium on chromatographic supports impregnated with dicarbollide
acid and bidentate phosphororganic extractant. Journal of
Radioanalytical and Nuclear Chemistry , 220 (1), 47–54.
https://doi.org/10.1007/BF02035346
Tan, X., Fang, M., Li, J., Lu, Y., & Wang, X. (2009). Adsorption of
Eu(III) onto TiO2: Effect of pH, concentration, ionic strength and soil
fulvic acid. Journal of Hazardous Materials , 168 (1),
458–465. https://doi.org/10.1016/j.jhazmat.2009.02.051
Thakkar, J., Wissler, B., Dudenas, N., Yin, X., Vailhe, M., Bricker, J.,
& Zhang, X. (2019). Recovery of Critical Rare-Earth Elements Using
ETS-10 Titanosilicate [Rapid-communication]. Industrial and
Engineering Chemistry Research , 58 , 11121–11126.
https://doi.org/10.1021/acs.iecr.9b02623
Tong, S., Zhao, S., Zhou, W., Li, R., & Jia, Q. (2011). Modification of
multi-walled carbon nanotubes with tannic acid for the adsorption of La,
Tb and Lu ions. Microchimica Acta , 174 (3), 257–264.
https://doi.org/10.1007/s00604-011-0622-3
Trewyn, B. G., Slowing, I. I., Giri, S., Chen, H. T., & Lin, V. S. Y.
(2007). Synthesis and functionalization of a mesoporous silica
nanoparticle based on the sol-gel process and applications in controlled
release. Accounts of Chemical Research , 40 (9), 846–853.
https://doi.org/10.1021/ar600032u
Trochimczuk, A. W., Kabay, N., Arda, M., & Streat, M. (2004).
Stabilization of solvent impregnated resins (SIRs) by coating with water
soluble polymers and chemical crosslinking. Reactive and
Functional Polymers , 59 (1), 1–7.
https://doi.org/10.1016/j.reactfunctpolym.2003.12.011
Trochimczuk, Andrzej W. (2000). Synthesis of functionalized
phenylphosphinic acid resins through Michael reaction and their
ion-exchange properties. Reactive and Functional Polymers ,44 (1), 9–19. https://doi.org/10.1016/S1381-5148(99)00072-3
Trochimczuk, Andrzej W., & Alexandratos, S. D. (1994). Synthesis of
bifunctional ion‐exchange resins through the Arbusov reaction: Effect on
selectivity and kinetics. Journal of Applied Polymer Science ,52 (9), 1273–1277. https://doi.org/10.1002/app.1994.070520912
Tu, Y. J., & Johnston, C. T. (2018). Rapid recovery of rare earth
elements in industrial wastewater by CuFe2O4 synthesized from Cu sludge.Journal of Rare Earths , 36 (5), 513–520.
https://doi.org/10.1016/j.jre.2017.11.009
Turanov, A. N., Karandashev, V. K., & Bondarenko, N. A. (2008).
Extraction of rare-earth, yttrium, and scandium perchlorates by podands
bearing diphenylphosphorylacetamide terminal groups. Russian
Journal of Inorganic Chemistry , 53 (11), 1801–1808.
https://doi.org/10.1134/S0036023608110223
Turanov, Alexander N., Karandashev, V. K., Sukhinina, N. S., Masalov, V.
M., & Emelchenko, G. A. (2016). Adsorption of lanthanides and scandium
ions by silica sol-gel material doped with novel bifunctional ionic
liquid, trioctylmethylammonium 1-phenyl-3-methyl-4-benzoyl-5-onate.Journal of Environmental Chemical Engineering , 4 (4),
3788–3796. https://doi.org/10.1016/j.jece.2016.08.024
Turanov, Alexander N., Karandashev, V. K., Sukhinina, N. S., Masalov, V.
M., Zhokhov, A. A., & Emelchenko, G. A. (2015). A novel sorbent for
lanthanide adsorption based on tetraoctyldiglycolamide, modified carbon
inverse opals. RSC Advances , 5 (1), 529–535.
https://doi.org/10.1039/c4ra11999a
Unsworth, C. E., Kuo, C. C., Kuzmin, A., Khalid, S., & Saha, D. (2020).
Adsorption of Rare Earth Elements onto DNA-Functionalized Mesoporous
Carbon. ACS Applied Materials and Interfaces , 12 (38),
43180–43190.
https://doi.org/10.1021/ACSAMI.0C09393/SUPPL_FILE/AM0C09393_SI_001.PDF
Vasylyeva, H., Mironyuk, I., Mykytyn, I., & Savka, K. (2021).
Equilibrium studies of yttrium adsorption from aqueous solutions by
titanium dioxide. Applied Radiation and Isotopes , 168 ,
109473. https://doi.org/10.1016/j.apradiso.2020.109473
Veliscek-Carolan, J., Hanley, T. L., & Luca, V. (2014). Zirconium
organophosphonates as high capacity, selective lanthanide sorbents.Separation and Purification Technology , 129 , 150–158.
https://doi.org/10.1016/j.seppur.2014.03.028
Vigneau, O., Pinel, C., & Lemaire, M. (2001). Ionic imprinted resins
based on EDTA and DTPA derivatives for lanthanides(III) separation.Analytica Chimica Acta , 435 (1), 75–82.
https://doi.org/10.1016/S0003-2670(00)01279-4
Vigneau, O., Pinel, C., & Lemaire, M. (2002). Solid-Liquid Separation
of Lanthanide/Lanthanide and Lanthanide/Actinide Using Ionic Imprinted
Polymer Based on a DTPA Derivative. Chemistry Letters ,31 (2), 202–203. https://doi.org/10.1246/cl.2002.202
Wackerlig, J., & Schirhagl, R. (2016). Applications of Molecularly
Imprinted Polymer Nanoparticles and Their Advances toward Industrial
Use: A Review. Analytical Chemistry , 88 (1), 250–261.
https://doi.org/10.1021/acs.analchem.5b03804
WAKUI, Y., MATSUNAGA, H., & SUZUKI, T. M. (1988). Distribution of rare
earth elements between (2-ethylhexyl hydrogen
2-ethylhexylphosphonate)-impregnated resin and acid aqueous solution.Analytical Sciences , 4 (3), 325–327.
https://doi.org/10.2116/analsci.4.325
Wan, Y., & Zhao, D. (2007). On the controllable soft-templating
approach to mesoporous silicates. Chemical Reviews ,107 (7), 2821–2860. https://doi.org/10.1021/cr068020s
WANG, F., WANG, W., ZHU, Y., & WANG, A. (2017). Evaluation of Ce(III)
and Gd(III) adsorption from aqueous solution using CTS-g-(AA-co-SS)/ISC
hybrid hydrogel adsorbent. Journal of Rare Earths , 35 (7),
697–708. https://doi.org/10.1016/S1002-0721(17)60966-9
Wang, H., & Gao, P. (2007). Adsorption of D113 resin for
dysprosium(III). Journal Wuhan University of Technology, Materials
Science Edition , 22 (4), 653–656.
https://doi.org/10.1007/s11595-006-4653-2
Wang, Q., Wilfong, W. C., Kail, B. W., Yu, Y., & Gray, M. L. (2017).
Novel Polyethylenimine-Acrylamide/SiO2 Hybrid Hydrogel Sorbent for
Rare-Earth-Element Recycling from Aqueous Sources. ACS Sustainable
Chemistry and Engineering , 5 (11), 10947–10958.
https://doi.org/10.1021/acssuschemeng.7b02851
Wang, X., Xu, D., Chen, L., Tan, X., Zhou, X., Ren, A., & Chen, C.
(2006). Sorption and complexation of Eu(III) on alumina: Effects of pH,
ionic strength, humic acid and chelating resin on kinetic dissociation
study. Applied Radiation and Isotopes , 64 (4), 414–421.
https://doi.org/10.1016/j.apradiso.2005.08.010
Wang, Y., Chen, L., Yan, Y., Chen, J., Dai, J., & Dai, X. (2020).
Separation of adjacent heavy rare earth Lutetium (III) and Ytterbium
(III) by task-specific ionic liquid Cyphos IL 104 embedded polymer
inclusion membrane. Journal of Membrane Science , 610 ,
118263. https://doi.org/10.1016/j.memsci.2020.118263
Wang, Z. ., Ma, G. ., Lu, J., Liao, W. ., & Li, D. . (2002). Separation
of heavy rare earth elements with extraction resin containing
1-hexyl-4-ethyloctyl isopropylphosphonic acid. Hydrometallurgy ,66 (1–3), 95–99. https://doi.org/10.1016/S0304-386X(02)00109-3
Wang, Z., Ma, G., & Li, D. (1998). Extraction and separation of heavy
rare earth(III) with extraction resin containing di(2,4,4-trimethyl
pentyl) phosphinic acid (cyanex 272). Solvent Extraction and Ion
Exchange , 16 (3), 813–828.
https://doi.org/10.1080/07366299808934554
Wheelwright, E. J. (1969). A comparison of eluting agents for the
ion-exchange purification of promethium. Journal of Inorganic and
Nuclear Chemistry , 31 (10), 3287–3293.
https://doi.org/10.1016/0022-1902(69)80115-6
Wheelwright, E. J., Spedding, F. H., & Schwarzenbach, G. (1953). The
Stability of the Rare Earth Complexes with Ethylenediaminetetraacetic
Acid. Journal of the American Chemical Society , 75 (17),
4196–4201. https://doi.org/10.1021/ja01113a020
Wódkiewicz, L., & Dybczyński, R. (1968). Anion exchange behaviour of
the rare earth complexes with
trans-1,2-diaminocyclohexane-N,N’-tetraacetic acid. Journal of
Chromatography A , 32 (C), 394–402.
https://doi.org/10.1016/s0021-9673(01)80506-9
Wood, S. A. (1993). The aqueous geochemistry of the rare-earth elements:
Critical stability constants for complexes with simple carboxylic acids
at 25°C and 1 bar and their application to nuclear waste management.Engineering Geology , 34 (3–4), 229–259.
https://doi.org/10.1016/0013-7952(93)90092-Q
Wu, D., Sun, Y., & Wang, Q. (2013). Adsorption of lanthanum (III) from
aqueous solution using 2-ethylhexyl phosphonic acid mono-2-ethylhexyl
ester-grafted magnetic silica nanocomposites. Journal of Hazardous
Materials , 260 , 409–419.
https://doi.org/10.1016/j.jhazmat.2013.05.042
Wu, J., Li, Z., Tan, H., Du, S., Liu, T., Yuan, Y., Liu, X., & Qiu, H.
(2021). Highly selective separation of rare earth elements by Zn-BTC
metal-organic framework/nanoporous graphene via in situ green synthesis.Analytical Chemistry , 93 (3), 1732–1739.
https://doi.org/10.1021/ACS.ANALCHEM.0C04407/SUPPL_FILE/AC0C04407_SI_001.PDF
XIAO, Y., HUANG, L., LONG, Z., FENG, Z., & WANG, L. (2016). Adsorption
ability of rare earth elements on clay minerals and its practical
performance. Journal of Rare Earths , 34 (5), 543–548.
https://doi.org/10.1016/S1002-0721(16)60060-1
Xie, F., Zhang, T. A., Dreisinger, D., & Doyle, F. (2014). A critical
review on solvent extraction of rare earths from aqueous solutions.Minerals Engineering , 56 , 10–28.
https://doi.org/10.1016/j.mineng.2013.10.021
Xiong, C., Chen, X., & Yao, C. (2011). Enhanced adsorption behavior of
Nd(III) onto D113-III resin from aqueous solution. Journal of Rare
Earths , 29 (10), 979–985.
https://doi.org/10.1016/S1002-0721(10)60582-0
Xiong, C., Yao, C., & Wang, Y. (2006). Sorption behaviour and mechanism
of ytterbium(III) on imino-diacetic acid resin. Hydrometallurgy ,82 (3–4), 190–194.
https://doi.org/10.1016/j.hydromet.2006.03.012
XIONG, Chun-hua, WANG, G., & YAO, C. (2011). Adsorption of ytterbium
(III) from aqueous solution by SQD–85 resin. Transactions of
Nonferrous Metals Society of China , 21 (12), 2764–2771.
https://doi.org/10.1016/S1003-6326(11)61121-7
XIONG, Chunhua. (2008). Study on sorption of D155 resin for gadolinium.Journal of Rare Earths , 26 (2), 258–263.
https://doi.org/10.1016/S1002-0721(08)60077-0
XIONG, Chunhua, LIU, X., & YAO, C. (2008). Effect of pH on sorption for
RE(III) and sorption behaviors of Sm(III) by D152 resin. Journal
of Rare Earths , 26 (6), 851–856.
https://doi.org/10.1016/S1002-0721(09)60020-X
XIONG, Chunhua, MENG, Y., YAO, C., & SHEN, C. (2009). Adsorption of
erbium(III) on D113-III resin from aqueous solutions: batch and column
studies. Journal of Rare Earths , 27 (6), 923–931.
https://doi.org/10.1016/S1002-0721(08)60364-6
Xu, H., & Guo, D. (2012). Synthesis and characterization of an
ion-imprinted polymer for selective adsorption of copper ions in aqueous
solution. Adsorption Science and Technology , 30 (4),
293–306. https://doi.org/10.1260/0263-6174.30.4.293
Xu, J., Koivula, R., Zhang, W., Wiikinkoski, E., Hietala, S., &
Harjula, R. (2018). Separation of cobalt, neodymium and dysprosium using
amorphous zirconium phosphate. Hydrometallurgy ,175 (November 2017), 170–178.
https://doi.org/10.1016/j.hydromet.2017.11.010
Yadav, K. K., Dasgupta, K., Singh, D. K., Anitha, M., Varshney, L., &
Singh, H. (2015). Solvent impregnated carbon nanotube embedded polymeric
composite beads: An environment benign approach for the separation of
rare earths. Separation and Purification Technology , 143 ,
115–124. https://doi.org/10.1016/j.seppur.2015.01.032
Yang, B., Wu, S.-Z., Liu, X.-Y., Yan, Z.-X., Liu, Y.-X., Li, Q.-S., Yu,
F.-S., & Wang, J.-L. (2020). Solid-phase extraction and separation of
heavy rare earths from chloride media using P227-impregnated resins.Rare Metals , 1–12. https://doi.org/10.1007/s12598-020-01549-4
Yang, S., Zong, P., Ren, X., Wang, Q., & Wang, X. (2012). Rapid and
Highly Efficient Preconcentration of Eu(III) by Core–Shell Structured
Fe 3 O 4 @Humic Acid Magnetic Nanoparticles. ACS Applied Materials
& Interfaces , 4 (12), 6891–6900.
https://doi.org/10.1021/am3020372
Yang, Xiaodong, Wan, Y., Zheng, Y., He, F., Yu, Z., Huang, J., Wang, H.,
Ok, Y. S., Jiang, Y., & Gao, B. (2019). Surface functional groups of
carbon-based adsorbents and their roles in the removal of heavy metals
from aqueous solutions: A critical review. Chemical Engineering
Journal , 366 (February), 608–621.
https://doi.org/10.1016/j.cej.2019.02.119
Yang, Xinwei, Debeli, D. K., Shan, G., & Pan, P. (2020). Selective
adsorption and high recovery of La3+ using graphene oxide/poly
(N-isopropyl acrylamide-maleic acid) cryogel. Chemical Engineering
Journal , 379 , 122335. https://doi.org/10.1016/j.cej.2019.122335
Yantasee, W., Fryxell, G. E., Addleman, R. S., Wiacek, R. J.,
Koonsiripaiboon, V., Pattamakomsan, K., Sukwarotwat, V., Xu, J., &
Raymond, K. N. (2009). Selective removal of lanthanides from natural
waters, acidic streams and dialysate. Journal of Hazardous
Materials , 168 (2–3), 1233–1238.
https://doi.org/10.1016/j.jhazmat.2009.03.004
Yao, C. (2010). Adsorption and desorption properties of D151 resin for
Ce(III). Journal of Rare Earths , 28 (SUPPL. 1), 183–188.
https://doi.org/10.1016/S1002-0721(10)60324-9
Yin, W., Liu, L., Zhang, H., Tang, S., & Chi, R. (2020). A facile
solvent-free and one-step route to prepare amino-phosphonic acid
functionalized hollow mesoporous silica nanospheres for efficient
Gd(III) removal. Journal of Cleaner Production , 243 .
https://doi.org/10.1016/j.jclepro.2019.118688
Yu, Q., Ning, S., Zhang, W., Wang, X., & Wei, Y. (2018). Recovery of
scandium from sulfuric acid solution with a macro porous TRPO/SiO2-P
adsorbent. Hydrometallurgy , 181 (May), 74–81.
https://doi.org/10.1016/j.hydromet.2018.07.025
Yuan, Y., Liu, J., Zhou, B., Yao, S., Li, H., & Xu, W. (2010).
Synthesis of coated solvent impregnated resin for the adsorption of
indium (III). Hydrometallurgy , 101 (3–4), 148–155.
https://doi.org/10.1016/j.hydromet.2009.12.010
Yusoff, M. M., Mostapa, N. R. N., Sarkar, M. S., Biswas, T. K., Rahman,
M. L., Arshad, S. E., Sarjadi, M. S., & Kulkarni, A. D. (2017).
Synthesis of ion imprinted polymers for selective recognition and
separation of rare earth metals. Journal of Rare Earths ,35 (2), 177–186. https://doi.org/10.1016/S1002-0721(17)60897-4
Zhang, Wei, Yu, S., Zhang, S., Zhou, J., Ning, S., Wang, X., & Wei, Y.
(2019). Separation of scandium from the other rare earth elements with a
novel macro-porous silica-polymer based adsorbent HDEHP/SiO 2 -P.Hydrometallurgy , 185 (January), 117–124.
https://doi.org/10.1016/j.hydromet.2019.01.012
Zhang, Wenzhong, Avdibegović, D., Koivula, R., Hatanpää, T., Hietala,
S., Regadío, M., Binnemans, K., & Harjula, R. (2017). Titanium
alkylphosphate functionalised mesoporous silica for enhanced uptake of
rare-earth ions. Journal of Materials Chemistry A , 5 (45),
23805–23814. https://doi.org/10.1039/C7TA08127H
Zhang, Wenzhong, Hietala, S., Khriachtchev, L., Hatanpää, T., Doshi, B.,
& Koivula, R. (2018). Intralanthanide Separation on Layered
Titanium(IV) Organophosphate Materials via a Selective Transmetalation
Process. ACS Applied Materials & Interfaces , 10 (26),
22083–22093. https://doi.org/10.1021/acsami.8b04480
Zhang, Wenzhong, Koivula, R., Wiikinkoski, E., Xu, J., Hietala, S.,
Lehto, J., & Harjula, R. (2017). Efficient and Selective Recovery of
Trace Scandium by Inorganic Titanium Phosphate Ion-Exchangers from
Leachates of Waste Bauxite Residue. ACS Sustainable Chemistry &
Engineering , 5 (4), 3103–3114.
https://doi.org/10.1021/acssuschemeng.6b02870
Zhang, X., Li, C., Yan, Y., Pan, J., Xu, P., & Zhao, X. (2010). A
Ce3+-imprinted functionalized potassium tetratitanate whisker sorbent
prepared by surface molecularly imprinting technique for selective
separation and determination of Ce3+. Microchimica Acta ,169 (3), 289–296. https://doi.org/10.1007/s00604-010-0352-y
Zhang, Z., Fenter, P., Cheng, L., Sturchio, N. C., Bedzyk, M. J.,
Předota, M., Bandura, A., Kubicki, J. D., Lvov, S. N., Cummings, P. T.,
Chialvo, A. A., Ridley, M. K., Bénézeth, P., Anovitz, L., Palmer, D. A.,
Machesky, M. L., & Wesolowski, D. J. (2004). Ion Adsorption at the
Rutile−Water Interface: Linking Molecular and Macroscopic Properties.Langmuir , 20 (12), 4954–4969.
https://doi.org/10.1021/la0353834
Zhao, L., Azhar, M. R., Li, X., Duan, X., Sun, H., Wang, S., & Fang, X.
(2019). Adsorption of cerium (III) by HKUST-1 metal-organic framework
from aqueous solution. Journal of Colloid and Interface Science ,542 , 421–428. https://doi.org/10.1016/j.jcis.2019.01.117
Zhao, X., Jiang, X., Peng, D., Teng, J., & Yu, J. (2021). Behavior and
mechanism of graphene oxide-tris(4-aminophenyl)amine composites in
adsorption of rare earth elements. Journal of Rare Earths ,39 (1), 90–97. https://doi.org/10.1016/j.jre.2020.02.006
Zhao, Z., Sun, X., Dong, Y., & Wang, Y. (2016). Synergistic Effect of
Acid–Base Coupling Bifunctional Ionic Liquids in Impregnated Resin for
Rare Earth Adsorption. ACS Sustainable Chemistry & Engineering ,4 (2), 616–624. https://doi.org/10.1021/acssuschemeng.5b01253
Zheng, X., Song, Z., Liu, E., Zhang, Y., & Li, Z. (2020). Preparation
of Phosphoric Acid-Functionalized SBA-15 and Its High Efficient
Selective Adsorption Separation of Lanthanum Ions. Journal of
Chemical and Engineering Data , 65 (2), 746–756.
https://doi.org/10.1021/acs.jced.9b00976
Zheng, X., Wang, C., Dai, J., Shi, W., & Yan, Y. (2015). Design of
mesoporous silica hybrid materials as sorbents for the selective
recovery of rare earth metals. Journal of Materials Chemistry A ,3 (19), 10334–10335. https://doi.org/10.1039/c4ta06860b
Zheng, X., Zhang, Y., Zhang, F., Li, Z., & Yan, Y. (2018).
Dual-template docking oriented ionic imprinted bilayer mesoporous films
with efficient recovery of neodymium and dysprosium. Journal of
Hazardous Materials , 353 (March), 496–504.
https://doi.org/10.1016/j.jhazmat.2018.04.022
Zheng, Z., & Xiong, C. (2011). Adsorption behavior of ytterbium (III)
on gel-type weak acid resin. Journal of Rare Earths ,29 (5), 407–412. https://doi.org/10.1016/S1002-0721(10)60469-3
ZHOU, H., LI, D., TIAN, Y., & CHEN, Y. (2008). Extraction of scandium
from red mud by modified activated carbon and kinetics study. Rare
Metals , 27 (3), 223–227.
https://doi.org/10.1016/S1001-0521(08)60119-9
Zhou, J., Liu, H., Liu, D., Yuan, P., Bu, H., Du, P., Fan, W., & Li, M.
(2022). Sorption/desorption of Eu(III) on halloysite and kaolinite.Applied Clay Science , 216 , 106356.
https://doi.org/10.1016/J.CLAY.2021.106356
ZHU, L., & CHEN, J. (2011). Adsorption of Ce(IV) in nitric acid medium
by imidazolium anion exchange resin. Journal of Rare Earths ,29 (10), 969–973. https://doi.org/10.1016/S1002-0721(10)60580-7
Zhu, L. L., Guo, L., Zhang, Z. J., Chen, J., & Zhang, S. M. (2012). The
preparation of supported ionic liquids (SILs) and their application in
rare metals separation. Science China Chemistry , 55 (8),
1479–1487. https://doi.org/10.1007/s11426-012-4632-8
Zhu, X., & Alexandratos, S. D. (2014). The role of polarizability in
determining metal ion affinities in polymer-supported reagents:
Phosphorylated ethylene glycol. Reactive and Functional Polymers ,81 (1), 77–81.
https://doi.org/10.1016/j.reactfunctpolym.2014.05.001
Zhu, X., & Alexandratos, S. D. (2015). Development of a new
ion-exchange/coordinating phosphate ligand for the sorption of U(VI) and
trivalent ions from phosphoric acid solutions. Chemical
Engineering Science , 127 , 126–132.
https://doi.org/10.1016/j.ces.2015.01.027
Zhu, Y., Wang, W., Zheng, Y., Wang, F., & Wang, A. (2016). Rapid
enrichment of rare-earth metals by carboxymethyl cellulose-based
open-cellular hydrogel adsorbent from HIPEs template. Carbohydrate
Polymers , 140 , 51–58.
https://doi.org/10.1016/j.carbpol.2015.12.003
Zulfikar, M. A., Zarlina, R., Rusnadi, Handayani, N., Alni, A., &
Wahyuningrum, D. (2017). Separation of Yttrium from Aqueous Solution
Using Ionic Imprinted Polymers. Russian Journal of Non-Ferrous
Metals , 58 (6), 614–624.
https://doi.org/10.3103/S1067821217060189