References
[1] N. Rodriguez-Medina, H. Barrios-Camacho, J. Duran-Bedolla, U.
Garza-Ramos, Klebsiella variicola : an emerging pathogen in
humans, Emerg Microbes Infect, 8 (2019) 973-988.
[2] R.F. Potter, W. Lainhart, J. Twentyman, M.A. Wallace, B. Wang,
C.A. Burnham, et al., Population Structure, Antibiotic Resistance, and
Uropathogenicity of Klebsiella variicola , mBio, 9 (2018).
[3] H. Barrios-Camacho, A. Aguilar-Vera, M. Beltran-Rojel, E.
Aguilar-Vera, J. Duran-Bedolla, N. Rodriguez-Medina, et al., Molecular
epidemiology of Klebsiella variicola obtained from different
sources, Sci Rep, 9 (2019) 10610.
[4] E. Martinez-Romero, J. Silva-Sanchez, H. Barrios, N.
Rodriguez-Medina, J. Martinez-Barnetche, J. Tellez-Sosa, et al., Draft
Genome Sequences of Klebsiella variicola Plant Isolates, Genome
Announc, 3 (2015).
[5] K. Imai, N. Ishibashi, M. Kodana, N. Tarumoto, J. Sakai, T.
Kawamura, et al., Clinical characteristics in blood stream infections
caused by Klebsiella pneumoniae , Klebsiella variicola , andKlebsiella quasipneumoniae : a comparative study, Japan,
2014-2017, BMC Infect Dis, 19 (2019) 946.
[6] M. Rosenblueth, L. Martinez, J. Silva, E. Martinez-Romero,Klebsiella variicola , a novel species with clinical and
plant-associated isolates, Syst Appl Microbiol, 27 (2004) 27-35.
[7] E. Piepenbrock, P.G. Higgins, J. Wille, K. Xanthopoulou, J.
Zweigner, P. Jahn, et al., Klebsiella variicola causing
nosocomial transmission among neonates - an emerging pathogen?, J Med
Microbiol, 69 (2020) 396-401.
[8] M. Maatallah, M. Vading, M.H. Kabir, A. Bakhrouf, M. Kalin, P.
Naucler, et al., Klebsiella variicola is a frequent cause of
bloodstream infection in the stockholm area, and associated with higher
mortality compared to K. pneumoniae , PLoS One, 9 (2014) e113539.
[9] S. Brisse, V. Passet, P.A.D. Grimont, Description ofKlebsiella quasipneumoniae sp. nov., isolated from human
infections, with two subspecies, Klebsiella quasipneumoniaesubsp. quasipneumoniae subsp. nov. and Klebsiella
quasipneumoniae subsp. similipneumoniae subsp. nov., and
demonstration that Klebsiella singaporensis is a junior
heterotypic synonym of Klebsiella variicola , Int J Syst Evol
Microbiol, 64 (2014) 3146-3152.
[10] M.P. Podder, L. Rogers, P.K. Daley, G.P. Keefe, H.G. Whitney,
K. Tahlan, Klebsiella species associated with bovine mastitis in
Newfoundland, PLoS One, 9 (2014) e106518.
[11] Y. Lu, Y. Feng, A. McNally, Z. Zong, Occurrence of
colistin-resistant hypervirulent Klebsiella variicola , J
Antimicrob Chemother, 73 (2018) 3001-3004.
[12] K.L. Hopkins, J. Findlay, M. Doumith, B. Mather, D. Meunier, S.
D’Arcy, et al., IMI-2 carbapenemase in a clinical Klebsiella
variicola isolated in the UK, J Antimicrob Chemother, 72 (2017)
2129-2131.
[13] K. Zurfluh, L. Poirel, P. Nordmann, J. Klumpp, R. Stephan,
First detection of Klebsiella variicola producing OXA-181
carbapenemase in fresh vegetable imported from Asia to Switzerland,
Antimicrob Resist Infect Control, 4 (2015) 38.
[14] J. Osei Sekyere, M.A. Reta, Global evolutionary epidemiology
and resistome dynamics of Citrobacter species, Enterobacter
hormaechei , Klebsiella variicola , and Proteeae clones,
Environ Microbiol, 23 (2021) 7412-7431.
[15] K.E. Holt, H. Wertheim, R.N. Zadoks, S. Baker, C.A. Whitehouse,
D. Dance, et al., Genomic analysis of diversity, population structure,
virulence, and antimicrobial resistance in Klebsiella pneumoniae ,
an urgent threat to public health, Proc Natl Acad Sci U S A, 112 (2015)
E3574-3581.
[16] S.W. Long, S.E. Linson, M. Ojeda Saavedra, C. Cantu, J.J.
Davis, T. Brettin, et al., Whole-Genome Sequencing of Human ClinicalKlebsiella pneumoniae Isolates Reveals Misidentification and
Misunderstandings of Klebsiella pneumoniae , Klebsiella
variicola , and Klebsiella quasipneumoniae , mSphere, 2 (2017).
[17] K.L. Wyres, K.E. Holt, Klebsiella pneumoniae Population
Genomics and Antimicrobial-Resistant Clones, Trends Microbiol, 24 (2016)
944-956.
[18] J.E. Garneau, M.E. Dupuis, M. Villion, D.A. Romero, R.
Barrangou, P. Boyaval, et al., The CRISPR/Cas bacterial immune system
cleaves bacteriophage and plasmid DNA, Nature, 468 (2010) 67-71.
[19] R. Barrangou, C. Fremaux, H. Deveau, M. Richards, P. Boyaval,
S. Moineau, et al., CRISPR provides acquired resistance against viruses
in prokaryotes, Science, 315 (2007) 1709-1712.
[20] F. Hille, H. Richter, S.P. Wong, M. Bratovic, S. Ressel, E.
Charpentier, The Biology of CRISPR-Cas: Backward and Forward, Cell, 172
(2018) 1239-1259.
[21] K.S. Makarova, Y.I. Wolf, O.S. Alkhnbashi, F. Costa, S.A. Shah,
S.J. Saunders, et al., An updated evolutionary classification of
CRISPR-Cas systems, Nat Rev Microbiol, 13 (2015) 722-736.
[22] P. Mohanraju, K.S. Makarova, B. Zetsche, F. Zhang, E.V. Koonin,
J. van der Oost, Diverse evolutionary roots and mechanistic variations
of the CRISPR-Cas systems, Science, 353 (2016) aad5147.
[23] E.R. Westra, A. Buckling, P.C. Fineran, CRISPR-Cas systems:
beyond adaptive immunity, Nat Rev Microbiol, 12 (2014) 317-326.
[24] B. Wiedenheft, S.H. Sternberg, J.A. Doudna, RNA-guided genetic
silencing systems in bacteria and archaea, Nature, 482 (2012) 331-338.
[25] A.F. Andersson, J.F. Banfield, Virus population dynamics and
acquired virus resistance in natural microbial communities, Science, 320
(2008) 1047-1050.
[26] L. Ou, J. Long, Y. Teng, H. Yang, Y. Xi, G. Duan, et al.,
Diversity of the type I-U CRISPR-Cas system in Bifidobacterium ,
Arch Microbiol, 203 (2021) 3235-3243.
[27] J. Long, Y. Xu, L. Ou, H. Yang, Y. Xi, S. Chen, et al.,
Polymorphism of Type I-F CRISPR/Cas system in Escherichia coli of
phylogenetic group B2 and its application in genotyping, Infect Genet
Evol, 74 (2019) 103916.
[28] M. Kamruzzaman, J.R. Iredell, CRISPR-Cas System in Antibiotic
Resistance Plasmids in Klebsiella pneumoniae , Front Microbiol, 10
(2019) 2934.
[29] J. Long, J. Zhang, Y. Xi, J. Zhao, Y. Jin, H. Yang, et al.,
Genomic Insights into CRISPR-Harboring Plasmids in the KlebsiellaGenus: Distribution, Backbone Structures, Antibiotic Resistance, and
Virulence Determinant Profiles, Antimicrob Agents Chemother, 67 (2023)
e0118922.
[30] J. Russel, R. Pinilla-Redondo, D. Mayo-Munoz, S.A. Shah, S.J.
Sorensen, CRISPRCasTyper: Automated Identification, Annotation, and
Classification of CRISPR-Cas Loci, CRISPR J, 3 (2020) 462-469.
[31] J. Shen, L. Lv, X. Wang, Z. Xiu, G. Chen, Comparative analysis
of CRISPR-Cas systems in Klebsiella genomes, J Basic Microbiol,
57 (2017) 325-336.
[32] Y. Matsumura, [Multilocus sequence typing (MLST) analysis],
Rinsho Byori, 61 (2013) 1116-1122.
[33] R.C. Edgar, MUSCLE: multiple sequence alignment with high
accuracy and high throughput, Nucleic Acids Res, 32 (2004) 1792-1797.
[34] I. Grissa, G. Vergnaud, C. Pourcel, The CRISPRdb database and
tools to display CRISPRs and to generate dictionaries of spacers and
repeats, BMC Bioinformatics, 8 (2007) 172.
[35] E. Mondo, R. Rinnovati, A. Spadari, F. Giacometti, A. Serraino,
F. Savini, et al., First isolation of Klebsiella variicola from a
horse pleural effusion, BMC Vet Res, 17 (2021) 75.
[36] G. Yadav, R. Singh, In silico analysis reveals the co-existence
of CRISPR-Cas type I-F1 and type I-F2 systems and its association with
restricted phage invasion in Acinetobacter baumannii , Front
Microbiol, 13 (2022) 909886.
[37] O. Musharova, S. Medvedeva, E. Klimuk, N.M. Guzman, D. Titova,
V. Zgoda, et al., Prespacers formed during primed adaptation associate
with the Cas1-Cas2 adaptation complex and the Cas3 interference
nuclease-helicase, Proc Natl Acad Sci U S A, 118 (2021).
[38] S. Silas, P. Lucas-Elio, S.A. Jackson, A. Aroca-Crevillen, L.L.
Hansen, P.C. Fineran, et al., Type III CRISPR-Cas systems can provide
redundancy to counteract viral escape from type I systems, Elife, 6
(2017).
[39] L. Deng, R.A. Garrett, S.A. Shah, X. Peng, Q. She, A novel
interference mechanism by a type IIIB CRISPR-Cmr module inSulfolobus , Mol Microbiol, 87 (2013) 1088-1099.
[40] J. Wang, J. Li, H. Zhao, G. Sheng, M. Wang, M. Yin, et al.,
Structural and Mechanistic Basis of PAM-Dependent Spacer Acquisition in
CRISPR-Cas Systems, Cell, 163 (2015) 840-853.
[41] Y. Huo, K.H. Nam, F. Ding, H. Lee, L. Wu, Y. Xiao, et al.,
Structures of CRISPR Cas3 offer mechanistic insights into
Cascade-activated DNA unwinding and degradation, Nat Struct Mol Biol, 21
(2014) 771-777.
[42] M.C. Maiden, Multilocus sequence typing of bacteria, Annu Rev
Microbiol, 60 (2006) 561-588.
[43] H.Y. Li, C.Y. Kao, W.H. Lin, P.X. Zheng, J.J. Yan, M.C. Wang,
et al., Characterization of CRISPR-Cas Systems in ClinicalKlebsiella pneumoniae Isolates Uncovers Its Potential Association
With Antibiotic Susceptibility, Front Microbiol, 9 (2018) 1595.
[44] Y. Zhou, Y. Tang, P. Fu, D. Tian, L. Yu, Y. Huang, et al., The
type I-E CRISPR-Cas system influences the acquisition of bla(KPC)-IncF
plasmid in Klebsiella pneumonia , Emerg Microbes Infect, 9 (2020)
1011-1022.
[45] F.J. Mojica, C. Diez-Villasenor, E. Soria, G. Juez, Biological
significance of a family of regularly spaced repeats in the genomes of
Archaea, Bacteria and mitochondria, Mol Microbiol, 36 (2000) 244-246.
[46] V. Kunin, R. Sorek, P. Hugenholtz, Evolutionary conservation of
sequence and secondary structures in CRISPR repeats, Genome Biol, 8
(2007) R61.
[47] N. Wakefield, R. Rajan, E.J. Sontheimer, Primary processing of
CRISPR RNA by the endonuclease Cas6 in Staphylococcus
epidermidis , FEBS Lett, 589 (2015) 3197-3204.
[48] C. Pourcel, G. Salvignol, G. Vergnaud, CRISPR elements inYersinia pestis acquire new repeats by preferential uptake of
bacteriophage DNA, and provide additional tools for evolutionary
studies, Microbiology (Reading), 151 (2005) 653-663.
[49] A. Bolotin, B. Quinquis, A. Sorokin, S.D. Ehrlich, Clustered
regularly interspaced short palindrome repeats (CRISPRs) have spacers of
extrachromosomal origin, Microbiology (Reading), 151 (2005) 2551-2561.
[50] M. Zhang, C. Bi, M. Wang, H. Fu, Z. Mu, Y. Zhu, et al.,
Analysis of the structures of confirmed and questionable CRISPR loci in
325 Staphylococcus genomes, J Basic Microbiol, 59 (2019) 901-913.
[51] J. Long, Y. Xu, L. Ou, H. Yang, Y. Xi, S. Chen, et al.,
Diversity of CRISPR/Cas system in Clostridium perfringens , Mol
Genet Genomics, 294 (2019) 1263-1275.
[52] Y. Tang, P. Fu, Y. Zhou, Y. Xie, J. Jin, B. Wang, et al.,
Absence of the type I-E CRISPR-Cas system in Klebsiella
pneumoniae clonal complex 258 is associated with dissemination of IncF
epidemic resistance plasmids in this clonal complex, J Antimicrob
Chemother, 75 (2020) 890-895.
[53] E.V. Koonin, K.S. Makarova, Mobile Genetic Elements and
Evolution of CRISPR-Cas Systems: All the Way There and Back, Genome Biol
Evol, 9 (2017) 2812-2825.
[54] J.E. Peters, K.S. Makarova, S. Shmakov, E.V. Koonin,
Recruitment of CRISPR-Cas systems by Tn7-like transposons, Proc Natl
Acad Sci U S A, 114 (2017) E7358-E7366.
[55] S.M. Deane, D.E. Rawlings, Plasmid evolution and interaction
between the plasmid addiction stability systems of two related
broad-host-range IncQ-like plasmids, J Bacteriol, 186 (2004) 2123-2133.
[56] E.V. Koonin, Y.I. Wolf, Evolution of the CRISPR-Cas adaptive
immunity systems in prokaryotes: models and observations on virus-host
coevolution, Mol Biosyst, 11 (2015) 20-27.
[57] C. Rodrigues, V. Passet, A. Rakotondrasoa, S. Brisse,
Identification of Klebsiella pneumoniae , Klebsiella
quasipneumoniae , Klebsiella variicola and Related Phylogroups by
MALDI-TOF Mass Spectrometry, Front Microbiol, 9 (2018) 3000.
[58] M. Touchon, E.P. Rocha, The small, slow and specialized CRISPR
and anti-CRISPR of Escherichia and Salmonella , PLoS One, 5
(2010) e11126.
[59] R.L. Harris, P.M. Silverman, Tra proteins characteristic of
F-like type IV secretion systems constitute an interaction group by
yeast two-hybrid analysis, J Bacteriol, 186 (2004) 5480-5485.
[60] R.L. Harris, V. Hombs, P.M. Silverman, Evidence that F-plasmid
proteins TraV, TraK and TraB assemble into an envelope-spanning
structure in Escherichia coli, Mol Microbiol, 42 (2001) 757-766.
[61] J.A. Heinemann, G.F. Sprague, Jr., Bacterial conjugative
plasmids mobilize DNA transfer between bacteria and yeast, Nature, 340
(1989) 205-209.
[62] M. Llosa, F.X. Gomis-Ruth, M. Coll, F. de la Cruz Fd, Bacterial
conjugation: a two-step mechanism for DNA transport, Mol Microbiol, 45
(2002) 1-8.