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Abstract25

Atmospheric trace gas measurements can be used to independently assess national green-26

house gas inventories through inverse modelling. Here, atmospheric nitrous oxide (N2O)27

measurements made in the United Kingdom (U.K.) and Republic of Ireland are used to28

derive monthly N2O emissions for 2013-2022 using two different inverse methods. We29

find mean U.K. emissions of 90.5 ± 23.0 (1σ) and 111.7 ± 32.1 (1σ) Gg N2O yr−1 for30

2013-2022, and corresponding trends of −0.68 ± 0.48 (1σ) Gg N2O yr−2 and −2.10 ±31

0.72 (1σ) Gg N2O yr−2, respectively for the two inverse methods. The U.K. National32

Atmospheric Emissions Inventory (NAEI) reported mean N2O emissions of 73.9 Gg N2O33

yr−1 across this period, which is 14−33% smaller than the emissions derived from at-34

mospheric data. We infer a pronounced seasonal cycle in N2O emissions, with a peak35

occurring in the spring and a second smaller peak in the late summer for certain years.36

The springtime peak has a long seasonal decline that contrasts with the sharp rise and37

fall of N2O emissions estimated from the bottom-up U.K. Emissions Model (UKEM).38

Bayesian inference is used to minimize the seasonal cycle mismatch between the aver-39

age top-down (atmospheric data-based) and bottom-up (process model and inventory-40

based) seasonal emissions at a sub-sector level. Increasing agricultural manure manage-41

ment and decreasing synthetic fertilizer N2O emissions reduces some of the discrepancy42

between the average top-down and bottom-up seasonal cycles. Other possibilities could43

also explain these discrepancies, such as missing emissions from NH3 deposition, but these44

require further investigation.45

1 Introduction46

Atmospheric nitrous oxide (N2O) is an important, long-lived greenhouse gas (GHG)47

that also contributes to the depletion of stratospheric ozone. Whilst global emissions of48

N2O are well-constrained at around 17 Tg N2O yr−1 (Stell et al., 2022; Tian et al., 2020;49

Thompson et al., 2019; Wells et al., 2018) there are significant regional-scale differences50

between top-down (based on atmospheric data) and bottom-up (based on process mod-51

els and/or inventories) N2O emissions estimates (e.g. Wells et al., 2018; Jeong et al., 2018;52

Thompson et al., 2014).53

The United Kingdom’s bottom-up N2O emissions are reported in the U.K. National54

Atmospheric Emissions Inventory (NAEI; Ricardo Energy & Environment, 2019) each55

year which inform the National Inventory Reports (NIRs) submitted annually to the United56

Nations Framework Convention on Climate Change (UNFCCC). Anthropogenic emis-57

sions of N2O are reported to be 72.6 Gg N2O yr−1 for the year 2021 (Brown et al., 2023),58

which are around 4% of the U.K.’s total carbon dioxide equivalent (CO2,eq) GHG emis-59

sions. Agricultural N2O emissions in the reported inventory account for 70% of 2021 U.K.60

N2O emissions, with ∼ 10% of U.K. N2O emissions attributed to fossil fuel combustion61

and fugitive emissions, and the remaining anthropogenic emissions coming from the waste62

and industrial sectors (Fig. 1; Brown et al., 2023). Agricultural emissions are predom-63

inately from agricultural soils (57% of U.K. N2O emissions) with the remaining agricul-64

tural N2O emissions mostly from livestock manure management as well as indirect emis-65

sions from nitrogen runoff and leaching. A feature of the NAEI is that GHG fluxes are66

spatially distributed at 1 km2 resolution for each SNAP (Selected Nomenclature for re-67

porting of Air Pollutants) sector.68

Under the 2008 Climate Change Act (UK Government, 2008) the U.K. has ambi-69

tious goals to achieve net-zero GHG emissions by 2050. Interim targets (“Carbon Bud-70

gets”) have been enacted, with the Fifth U.K. Carbon Budget requiring GHG emissions71

to be reduced to 57% of 1990 CO2,eq levels by 2030 (Committee on Climate Change, 2015).72

Current GHG emissions mitigation policy suggest U.K. N2O emissions will remain ap-73

proximately constant until 2030 (U.K. Department for Energy Security and Net Zero,74
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Figure 1. Bottom-up UKEM (a) total; (b) agricultural; (c) other anthropogenic (including

shipping); (d) marine N2O emissions for the year 2020 at 1 km2 spatial resolution. Note that ma-

rine emissions are on a smaller scale than the other sectors and are not part of the NAEI. White

areas indicate where emissions are zero.

2022). Given the potential uncertainties in inventories, which are used to guide these pol-75

icy scenarios, there is a need to independently monitor progress towards such targets.76

Atmospheric mole fraction measurements of trace gases can be used to evaluate emis-77

sions reported in national greenhouse gas inventories through inverse modelling. Atmo-78

spheric measurements are used in the inverse model to adjust bottom-up emissions through79

Bayesian inference. This approach has previously been used for deriving top-down N2O80

emissions estimates for the U.K. (Manning et al., 2011; Ganesan et al., 2015) and else-81

where (e.g. Stell et al., 2022; Nevison et al., 2018; Thompson et al., 2014). Previous stud-82

ies found top-down emissions were approximately 13−22% lower than those reported83

in the U.K. inventory at that time (Manning et al., 2011; Ganesan et al., 2015). Top-84

down estimates for earlier than 2012 had relatively large uncertainties as atmospheric85

observations were only available from the Mace Head station on the west coast of the86

Republic of Ireland (Fig. 2). The establishment of the U.K. Deriving Emissions linked87

to Climate Change (DECC) network in 2012 for making continuous measurements of at-88

mospheric trace gases across the U.K. (Stanley et al., 2018; Stavert et al., 2019) has im-89

proved top-down emissions estimates, providing a higher sensitivity to emissions across90

–3–



manuscript submitted to JGR: Atmospheres

the U.K. and Republic of Ireland, leading to smaller top-down uncertainties (e.g. Lunt91

et al., 2021).92

Ganesan et al. (2015), using atmospheric N2O measurements from the U.K. DECC93

network with a hierarchical Bayesian inverse model (Ganesan et al., 2014), found aver-94

age U.K. emissions of 101 (68-150) Gg N2O yr−1 for 2012-2014 and identified a pronounced95

seasonal cycle with an amplitude of ∼ 50 Gg N2O yr−1 peaking during the early sum-96

mer. The observed seasonality was hypothesized to be due to agricultural application97

of nitrogen-based fertilizers.98

Seasonal changes in U.K. N2O emissions are not captured in the U.K. NAEI in-99

ventory, which only produces annual estimates. To facilitate comparison of top-down and100

bottom-up seasonal cycles, temporal profiles derived from direct flux measurements and101

other data sources are used to downscale the annual NAEI N2O emissions at a source102

sub-sector level to a monthly time resolution and combined with marine emissions from103

Lessin et al. (2020) for the surrounding seas in the U.K. Emissions Model (UKEM, pre-104

viously referred to as “UKGHG”) (P. Levy, 2020).105

Here, we present results of top-down U.K. N2O emissions from 2013-2022 derived106

using two different Bayesian inverse models and compare these estimates to the U.K. NAEI107

and the downscaled monthly estimates from the UKEM. Compared to previous U.K. N2O108

publications, we use observations from five stations in the U.K. DECC network (only three109

stations were available for Ganesan et al. (2015)) and over a longer time period, result-110

ing in better resolved emission trends and seasonal patterns.111

2 Data and Methods112

2.1 Atmospheric measurements113

We use atmospheric N2O mole fraction measurements from five U.K. DECC net-114

work stations (Stanley et al., 2018; Stavert et al., 2019) between 2013-2022. Tall-tower115

measurement stations in the U.K. DECC network sample ambient air from inlets mounted116

> 90 m above ground level (agl) on telecommunications towers (Fig. 2), and the coastal117

Mace Head (MHD) station measures closer to the surface at ∼ 10 m agl. Atmospheric118

N2O measurements from MHD, Tacolneston (TAC) and Ridge Hill (RGL) stations sam-119

pled across the entire 2013-2022 period, with Bilsdale (BSD) and Heathfield (HFD) be-120

coming operational in 2014.121

Both gas chromatograph coupled to electron capture detectors (GC-ECD) and optical-122

based instruments (Picarro G5310, LGR; Text S1) are used for measuring atmospheric123

N2O mole fractions in the U.K. DECC network. Optical instruments are calibrated to124

the World Meteorological Organization (WMO)-X2006A scale (Hall et al., 2007) with125

samples averaged into ∼ 1 min intervals. The GC-ECD instruments are calibrated to126

the Scripps Institution of Oceanography (SIO-16) scale and sample approximately ev-127

ery 10 min. A correction of -0.43 ppb is applied to N2O measurements made on the SIO-128

16 scale to adjust these measurements to the WMO-X2006A calibration scale (Prinn et129

al., 2018).130

At certain measurement stations (e.g. BSD) there are periods when concurrent GC-131

ECD and optical-based atmospheric N2O measurements are available. In such cases, we132

use measurements from optical-based instruments in preference to those from the GC-133

ECD instruments, due to their greater precision and higher frequency. Measurements134

are always used from the highest air inlet available. Information about the instrumen-135

tation and inlet heights used for each of the stations are summarized in Fig. 2, with the136

U.K. DECC network further described in Stanley et al. (2018) and Stavert et al. (2019).137
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Figure 2. Summary of atmospheric N2O mole fraction data used from the U.K. DECC net-

work for 2013-2022. Instrument names and inlet heights (in brackets with “m” referring to

metres above ground level) used for different periods are shown on the left. Gaps (white space)

denote when measurements were unavailable. Shaded blue sections represent when gas chro-

matographs coupled to electron capture detectors (GC-ECD) were used, whereas sections shaded

in lighter blue are when optical spectrometers were used. Hashed areas represent periods using

GC-ECD measurements after a change in inlet height. Station locations are shown on the right

in blue along with the May 2020 UKEM N2O emissions regridded to match the NAME footprint

resolution.

Measurements were averaged over 4 h periods and filtered to remove measurements138

that are more likely to be affected by local processes during times of stagnant air (e.g.139

Ganesan et al., 2015). Such meteorological conditions are unlikely to be accurately cap-140

tured at the spatiotemporal resolution of the atmospheric transport model (Section 2.2)141

used in this work. Each inverse model uses a different approach for filtering atmospheric142

measurements during stagnant air conditions. Further details about the filtering approaches143

are provided in Text S2. A comparison of top-down emissions derived using the same144

inverse method but with the different filtering approaches, and without any data filter-145

ing, is presented in Text S3.146

Uncertainty in the atmospheric N2O observations is quantified as the sum in quadra-147

ture of the instrument precision and observation variability in the 4 h averaging period.148

Observation uncertainties were on average ∼ 0.28 ppb for the GC-ECD instruments and149

∼ 0.21 ppb for the optical instruments across the respective periods shown in Fig. 2.150

2.2 Atmospheric transport model151

The U.K. Met Office Lagrangian dispersion model: NAME (Numerical Atmospheric152

dispersion Modelling Environment; Jones et al., 2007) v7.2 was used to quantify the re-153

lationship between surface emissions and atmospheric mole fractions observed at each154

measurement station in both inverse models (Section 2.3). “Footprints” of surface emis-155

sion sensitivities were calculated from ensembles of particle back-trajectories in NAME.156

Each grid cell of the footprint describes the influence of emissions from that grid cell on157

the mole fraction measured at the receptor site at a certain time (Manning et al., 2011;158

Rigby et al., 2012).159

Here, NAME footprints use the same specification as Manning et al. (2021). Hourly160

footprints were calculated with a ∼ 25 km (0.352o × 0.234o) spatial resolution over a161

model domain spanning approximately 98o W to 40o E and 11o N to 79o N using a 30-162
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day back-trajectory duration and particle release rate of 2 × 104 h−1. Meteorological163

fields from the Met Office Unified Model (UM) underlie the footprints with hourly, high-164

resolution up to ∼ 1.5 km (0.0135o × 0.0135o) with 57 vertical levels up to ∼ 12 km165

UKV meteorological fields used for over the British Isles and 3-hourly UM 0.1406o×0.0938o166

with 59 vertical levels up to ∼ 30 km global meteorological fields used for the rest of167

the modelling domain.168

Footprints were combined with gridded a priori emissions (Section 2.4) to simu-169

late atmospheric N2O mole fractions at each measurement station.170

2.3 Inversion methodology171

Two inverse models - InTEM (Inversion Technique for Emissions Modelling) and172

RHIME (Regional Hierarchical Inverse Modelling Environment) - are used for deriving173

top-down U.K. N2O fluxes and are described below. Whilst both inverse models follow174

a Bayesian framework the inverse methods differ in several aspects: in the calculation175

of boundary condition/baseline mole fractions; the treatment of model-data uncertain-176

ties; and the approach for calculating the posterior emissions. Both inverse models in-177

fer emissions for each calendar month assuming N2O emissions are constant in each 1-178

month period of inference.179

2.3.1 InTEM inverse model180

InTEM is an established Bayesian inverse model (Arnold et al., 2018; Manning et181

al., 2011, 2021) developed by the U.K. Met Office that has been widely used for trace182

gas inversions of different species across different regions (e.g. Rigby et al., 2019; Man-183

ning et al., 2021; Ganesan et al., 2020). InTEM is also used by the U.K. government for184

evaluating its nationally reported greenhouse gas emissions (Brown et al., 2022, 2023).185

The InTEM framework minimizes the model-data mismatch constrained by obser-186

vation uncertainties, model uncertainties, and a priori information and its associated un-187

certainties, which are assumed to be Gaussian. To prevent non-physical solutions, In-188

TEM uses a non-negative least squares solver. The model-data uncertainty is calculated189

as the sum in quadrature of the observational uncertainty, baseline uncertainty and es-190

timated model uncertainty. The model uncertainty forms the largest contribution of the191

model-data uncertainty in InTEM and is calculated (for all trace gas species) by using192

the larger of: the concentration of the median pollution event over the year, or 10% of193

the concentration of the individual pollution event.194

InTEM uses gridded N2O emissions estimates (Section 2.4) and a time-varying mole195

fraction baseline as a priori constraints. The mole fraction baseline is derived using at-196

mospheric N2O measurements from Mace Head that are representative of the well-mixed197

northern hemispheric baseline. This baseline is derived using filters to minimize influ-198

ences from populated regions, local sources, high altitudes and southerly latitudes (Manning199

et al., 2021). The mole fraction baseline is subsequently adjusted in the inversion by 11200

values depending on the geographical direction and altitude from which the air enters201

the model domain (Arnold et al., 2018), along with the spatial distribution of N2O emis-202

sion values (Manning et al., 2021; Arnold et al., 2018). InTEM solves for posterior emis-203

sions in 100 scaling regions across Europe and imposes an a priori emissions uncertainty204

of 80% of NAEI N2O emissions for the U.K. To account for small systematic differences205

in the modelling and between measurements, a prior offset uncertainty with 1σ uncer-206

tainty of 0.6 ppb is included for each station and subsequently solved for in the inver-207

sion. InTEM is further described in Manning et al. (2021); Arnold et al. (2018); Red-208

ington et al. (2023).209
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2.3.2 RHIME inverse model210

RHIME (also previously referred to as “Bristol-MCMC”; Ganesan et al., 2014) has211

been frequently used for trace gas inversions of various atmospheric species across the212

globe (e.g. Say et al., 2021; Ganesan et al., 2015; Western et al., 2022). Here, Bayesian213

inference using MCMC (Markov Chain Monte Carlo) is used to quantify a mean scal-214

ing (with confidence intervals) of a priori emissions across 193 scaling regions in the model215

domain. A scaling of boundary conditions on the four cardinal boundaries of the NAME216

domain is also derived in the inversion.217

Boundary condition fields representing mole fractions along the edges of the model218

domain are specified using CAMS (Copernicus Atmosphere Monitoring Service) v20r1219

global inversion-optimized fluxes for each month. A scaling is calculated for each bound-220

ary in each 1-month period of inference to derive posterior boundary condition mole frac-221

tions. This ensures the CAMS data are not systematically underestimating or overes-222

timating the baseline mole fractions at each of the measurement stations.223

RHIME uses hyperparameters that characterize probability density functions (PDFs)224

of: the a priori emissions, boundary condition mole fractions, model-data covariances and225

offset terms. The RHIME framework allows uncertainties in the scaling parameters to226

be included in the model, with the a priori scaling sampled from a lognormal distribu-227

tion ∼ LN(µ = 0.346, σ = 0.693) and the model-data uncertainty from ∼ LN(µ =228

−0.987, σ = 0.588). The model-data uncertainty is calculated as the sum in quadra-229

ture of the observational uncertainty and the absolute model uncertainty - derived from230

the model-data hyperparameter. The offset term is normally distributed with µ = 0231

ppb, σ = 0.60 ppb. Like Western et al. (2022) and Say et al. (2021), we use a No-U-232

Turn (NUTS) sampler (Hoffman & Gelman, 2014) for the a priori emissions and a slice233

sampler for estimating the model-data uncertainty. The samplers used a total 250,000234

iterations (discarding the first 50,000) with 2 chains running in parallel. A Gelman-Rubin235

diagnostic is used to check for parameter convergence in both chains.236

2.4 A priori emissions237

The UKEM model (P. Levy, 2020) takes spatial data from the U.K. and Repub-238

lic of Ireland inventories and processes them in a number of steps. These steps include:239

reprojection to a latitude–longitude grid, combining point- and area-based emissions, rec-240

onciling data from different sources into a single consistent classification scheme, rescal-241

ing to match national totals, back-projecting a time series of maps as inventories are up-242

dated annually, and adding in marine biogenic fluxes. For N2O, marine biogenic fluxes243

from NEMO-ERSEM (the Nucleus for European Modelling of the Ocean model coupled244

with the European Regional Seas Ecosystem Model; Lessin et al., 2020) were used as245

the best available data on fluxes for the coastal sea around the U.K.246

Inventory data are only produced annually. However, emissions may vary over much247

shorter timescales. The annual-scale emissions are therefore disaggregated in time in UKEM,248

to give the appropriate seasonal, day-of-week, and diurnal patterns. For some sectors,249

the variation in time is largely negligible (e.g. industry) or poorly known (e.g. LULUCF,250

waste), and these are represented as constant in time. For other sectors (agriculture, trans-251

port, energy), strong temporal patterns exist and can be characterized with activity data252

at higher temporal resolution from a variety of sources (P. Levy, 2020).253

For N2O, the key sector is agriculture, and the UKEM model uses activity data254

from the same process as the agricultural GHG inventory (Brown et al., 2023) but at monthly255

resolution when available. For example, the timing of synthetic fertilizer application is256

estimated from the British Survey of Fertiliser Practice (https://www.gov.uk/government/257

collections/fertiliser-usage). The timing of N2O emission after application is es-258

timated from existing data where fluxes have been measured in the field, generally us-259

–7–



manuscript submitted to JGR: Atmospheres

ing the closed static chamber technique. Typically, most of the emission occurs within260

only a few weeks of application (P. E. Levy et al., 2017). This produces a pronounced261

peak in the late spring, closely following the pattern in the application of synthetic fer-262

tilizer. The spatial distribution follows the distribution of cropland, where fertilizer in-263

puts are highest (Fig. 1). An additional source is the mineralization of degrading peat264

soils in the Fenland areas in south-east England, though the magnitude of this is very265

uncertain.266

Emissions from the marine sector are generally highest in the coastal zone, where267

inputs from rivers produce higher nitrogen concentrations. However, even near the coast,268

marine emissions are generally around ten times smaller than land emissions (Fig. 1),269

and although they peak during summer, their influence on the overall pattern is rela-270

tively small. At times, the modelled marine fluxes show net N2O uptake, but only in a271

small region in the north-west of the domain.272

As UKEM N2O monthly emissions are only available for the U.K. and Republic273

of Ireland, 0.1o×0.1o monthly anthropogenic emissions from EDGAR (Emissions Database274

for Global Atmospheric Research; Crippa et al. (2021)) v6.0 are used for the rest of the275

modelling domain. Version 6.0 is used because monthly N2O emissions are not currently276

available in the latest version (v7.0) of EDGAR. We “regrid” emissions data to match277

the NAME footprint spatial resolution and domain using a mass-conservative approach.278

As gridded emissions are only available for each month in 2013-2020, 2020 emissions are279

used as the a priori estimate for the 2021 and 2022 inversions.280

Two sets of a priori emissions are used in the inversions. The first uses the monthly-281

resolved emissions and the second uses annual emissions, which are constant across each282

year. This provides an additional means of diagnosing whether any seasonal trends in283

the posterior emissions are driven by atmospheric measurements or by the a priori emis-284

sions.285

2.5 Optimization of sectoral seasonal profiles286

We are interested in comparing the U.K. top-down (derived using the inverse mod-287

els; Section 2.3) and bottom-up (modelled in UKEM; Section 2.4) seasonal emissions pro-288

files.289

To investigate which N2O emission sources could be driving seasonal differences290

we identified key agricultural sub-sectors that exhibit seasonal cycles in the U.K. These291

are: synthetic fertilizer usage, and manure management practices relating to: cattle dur-292

ing times they are housed (“cattle housing”), cattle during times of grazing (“cattle graz-293

ing”), the spreading of cattle manure, the spreading of poultry manure, and the spread-294

ing of digestate. Bottom-up emissions from all remaining N2O sources are aggregated295

together. Each of these sub-sectors has a distinct temporal seasonal profile in the bottom-296

up UKEM emissions.297

Here, we optimize the 2013-2022 averaged UKEM sub-sector emissions profiles to298

the averaged top-down seasonal emissions cycles - derived using InTEM and RHIME -299

to investigate which bottom-up emissions sources could be leading to differences with300

the top-down seasonal cycles.301

We use a Bayesian approach to calculate the scale factors for each bottom-up sub-302

sector that minimizes the mismatch with the average top-down seasonal cycles. The pos-303

terior scale factors, Xpost, for each of the seven bottom-up sub-sector seasonal profiles304

are calculated using:305

Xpost = Xprior + (QpriorH
T)(HQpriorH

T +R)−1(Y −HXprior), (1)
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with associated covariance:306

Qpost = Qprior − (QpriorH
T)(HQpriorH

T +R)−1HQprior. (2)

Here, Xprior is a 7×1 matrix with elements of value 1 denoting the a priori scale fac-307

tors for each UKEM emissions sub-sector. H is a 12×7 matrix representing the monthly308

sub-sector UKEM seasonal emissions profiles (in Gg N2O yr−1). Y is a 12×1 matrix309

representing the average top-down seasonal emissions (in Gg N2O yr−1) with associated310

uncertainties (in Gg N2O yr−1) captured in R. Matrix R is a 12×12 diagonal matrix311

where each element is the corresponding monthly 1σ value of the top-down seasonal emis-312

sions cycle. The uncertainty of the scale factors for each of the UKEM seasonal profiles313

are captured in Q which is a 7× 7 diagonal matrix with elements of value 1 denoting314

uncertainties of 100% on each of the bottom-up sub-sectors.315

3 Results316

3.1 Emissions and trends in N2O (2013-2022)317

Figure 3. Time series of a priori and posterior monthly N2O emissions for the U.K. (a) Mean

monthly posterior emissions from InTEM (red) and RHIME (blue) for the land component of the

U.K. (solid line) and the land plus surrounding seas of the U.K. (dashed line) with corresponding

monthly a priori emissions in black. (b) InTEM and RHIME posterior emissions derived using

monthly varying a priori emissions (solid line) and annually constant a priori emissions (dotted

line). Shaded regions correspond to the 68% confidence interval ranges in both panels.

Top-down U.K. N2O emissions were generally higher than their corresponding bottom-318

up UKEM/NAEI emissions across the 10-year period spanning January 2013 to Decem-319

ber 2022 (Fig. 3, Table 1). On average, top-down emissions from RHIME were 38.0±320
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32.6(1σ) Gg N2O yr−1 (32.7%) higher than the bottom-up estimates, and InTEM was321

16.8±37.4(1σ) Gg N2O yr−1 (14.0%) higher. Whilst RHIME posterior emissions are322

on average 21.2±19.9(1σ) Gg N2O yr−1 higher than the InTEM posterior emissions,323

there are overlapping 68% confidence intervals (CI) for most of the inversion period. The324

InTEM and RHIME top-down emissions are statistically well-correlated (R2 = 0.86,325

p < 0.01). We later discuss potential reasons for differences between the InTEM and326

RHIME top-down emissions (Section 4).327

We find an average of 5% of U.K. top-down emissions originate from the surround-328

ing seas (Fig. 3a; Table 1), whereas a priori emissions estimate 8% of U.K. N2O emis-329

sions arise from the marine sector. InTEM infers that marine emissions should on av-330

erage be lower than the bottom-up estimates whereas RHIME infers the opposite (Ta-331

ble 1). Previous studies have highlighted that U.K. DECC stations are less sensitive to332

offshore emissions (Lunt et al., 2021) and as marine emissions form a small proportion333

of U.K. N2O emissions we therefore limit our analysis to land-based emissions.334

Figure 4. Annual top-down U.K. N2O emissions from InTEM (red) and RHIME (blue) along

with the linear trends for 2013-2022 that are extrapolated to 2030, with 2030 values indicated by

circular markers. Shaded areas and error bars denote the 1σ range. Current U.K. NAEI emis-

sions and U.K. DESNZ projected emissions are shown in black.

We determine the RHIME and InTEM emissions trend over 2013-2022 by apply-335

ing a linear regression to the annual totals. Across this period, a mean negative trend336

of −2.10±0.72(1σ) Gg N2O yr−2 (p < 0.01) was calculated for RHIME top-down emis-337

sions and −0.68 ± 0.48 (1σ) Gg N2O yr−2 (p < 0.01) for InTEM top-down emissions338

(Fig. 4). Figure 4 shows that, comparatively, the NAEI N2O emissions remain relatively339

constant across this period.340

The U.K. Government Department for Energy Security and Net Zero (DESNZ) pro-341

duces GHG emissions projections based on current U.K. NAEI emissions and existing/near-342

finalised U.K. emissions mitigation policies (UK Department for Business Energy and343

Industrial Strategy, 2022). Projected U.K. N2O emissions from 2022-2030 are shown in344

Fig. 4 and remain relatively constant at around 70 Gg N2O yr−1. Extrapolating the In-345

TEM and RHIME 2013-2022 emissions trends finds projected emissions of 82.3±10.9(1σ)346
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Figure 5. Average seasonal emissions profile across 2013-2022 with shaded regions denoting

the 1σ standard deviation in emissions for each month.

Gg N2O yr−1 and 86.5± 16.7 (1σ) Gg N2O yr−1, respectively, for the year 2030 (Fig.347

4).348

3.2 Seasonal cycles349

Pronounced seasonal cycles are observed in the top-down emissions with seasonal350

highs occurring during the summer and seasonal lows during the winter (Fig. 5). We find351

these seasonal cycles are insensitive to the seasonality in the prior. Fig. 3b shows a com-352

parison between posterior emissions that used a priori monthly UKEM emissions that353

either included or excluded a seasonal cycle. A pronounced seasonal peak is always de-354

rived in the top-down emissions, and there is strong agreement between the two sets of355

posterior emissions (Table 1), indicating that the derived seasonal cycle is primarily ob-356

servation driven.357

In certain years there is a clearly identifiable springtime peak, as modelled in the358

bottom-up UKEM emissions, and a secondary, smaller peak occurring later in the year.359

From 2020 onwards these two seasonal peaks are less distinct in the top-down emissions360

compared to earlier years (Fig. 3).361

The average seasonal emissions from 2013-2022 for top-down and bottom-up emis-362

sions are shown in Fig. 5. In UKEM, the modelled springtime seasonal peak rapidly de-363

clines. This is not seen in the top-down emissions, which instead fall more slowly. Ad-364

ditionally, the secondary peak that is sometimes seen in the top-down emissions seasonal365

cycles (Fig. 3) is not seen in UKEM. We find there are differences between the average366

InTEM and RHIME seasonal cycles. Notably, the occurrence of a late-summer/autumnal367

peak is less distinctive in InTEM than in RHIME, with the average InTEM seasonal cy-368

cle appearing more prolonged. The shaded regions in Fig. 5, which denote the 1σ stan-369

dard deviation in emissions for each month across 2013-2022, indicate variability in the370

RHIME seasonal cycle is generally lower than in InTEM for most months. Where the371

variability in the InTEM cycle is similar each month (Fig. 5), the variability in the RHIME372

seasonal cycle between April-July, when the seasonal maximum occurs, is much larger373

than in other months.374
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3.3 Uncertainty analysis375

Median RHIME and InTEM model-data uncertainties with their 68% confidence376

intervals for each station are shown in Fig. 6a. Whilst median model-data uncertainties377

are less than 1 ppb, InTEM uncertainties are nearly four times larger than those from378

RHIME. These differences are reflected in the 68% CI uncertainty ranges of top-down379

emissions which are generally larger in InTEM. Whilst differences in model-data uncer-380

tainties could be partially attributed to the different inversion frameworks, it highlights381

the need for using different inverse methods that describe model-data uncertainties in382

different ways to ensure top-down emissions are more fully understood.383

Figure 6. (a) Mean model-data uncertainties for InTEM (red) and RHIME (blue) for each

of the measurement stations with error bars denoting the 68% confidence intervals. (b) Inverse

model posterior offset bias median and 68% confidence intervals for each of the stations calcu-

lated in InTEM (red) and RHIME (blue).

The InTEM and RHIME inversions account for any small instrumental (or model-384

related) differences that might occur in the atmospheric measurements across the net-385

work by solving for a mole fraction bias at each measurement station in each month. The386

median values with their 68% confidence intervals for each measurement station in In-387

TEM and in RHIME are shown in Fig. 6b. The median bias values from each inversion388

are typically within ±0.2 ppb at each station; similar to the measurement precision of389

the instruments (Section 2.1). However, median values differ by around 0.1 ppb between390

InTEM and RHIME with the largest discrepancies occurring at Bilsdale and Ridge Hill391

stations. The large, overlapping 68% confidence intervals indicate considerable variabil-392

ity in the biases that are solved in the monthly inversions. The posterior biases under-393

score that instrument or model-related differences exist across the U.K. DECC network394

at a magnitude comparable to the measurement uncertainty for N2O. The high-variability395

in the calculated bias values suggests that these instrument-related differences are not396

constant in time and should be accounted for in N2O inverse modelling studies using mea-397

surements from the U.K. DECC network (Thompson et al., 2011, 2014).398

3.4 Posterior UKEM sub-sector emissions seasonal profiles399

Figure 7a shows the 2013-2022 averaged UKEM seasonal cycles of six N2O agri-400

cultural emissions sub-sectors (Section 2.5) with the remaining land-based N2O emis-401

sions aggregated under “Other”. The pronounced springtime peak is driven by synthetic402

fertilizer emissions with some contribution from the manure management sub-sectors.403
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Figure 7. 2013-2022 average N2O seasonal emissions profiles. (a) Disaggregated sub-sector

emissions profiles as modelled in UKEM. Average RHIME and InTEM top-down seasonal emis-

sions (solid lines) and 68% CI (dashed lines) with corresponding mean posterior sub-sector

emissions are shown in (b) and (c), respectively.

As shown in Fig. 5, there are clear differences between the average bottom-up and404

top-down seasonal cycles for U.K. N2O emissions across 2013-2022. To investigate what405

could be driving these differences, we use Bayesian inference (Section 2.5) to calculate406

scale factors for each UKEM sub-sector that optimize the fit to the observed average sea-407

sonal cycle. The seasonal profiles of the individual sectors from the UKEM are preserved.408

Figure 7b and c show the optimized (posterior) sub-sectors that produce the best409

match with the derived seasonal cycles from RHIME and InTEM, respectively. We find410

the optimized fits do not generally have good agreement with the RHIME (R2 = 0.86,411

p < 0.01) and InTEM (R2 = 0.11, p = 0.7) seasonal cycles. Despite the large uncer-412

tainties in RHIME and InTEM there are certain months where the optimized bottom-413

up seasonal cycle does not fall within the RHIME/InTEM uncertainty. The fit to InTEM414

is generally worse than for RHIME, which could be due to the absence of two peaks in415

its average seasonal cycle and larger uncertainties than RHIME.416

However for both RHIME and InTEM, a decrease in synthetic fertilizer emissions417

and an increase in “Other” emissions are inferred in the posterior seasonal profiles (Fig.418

7, Table 2). An increase in emissions related to cattle manure during times of grazing419

and the spreading of poultry manure could explain some of the seasonal differences with420

RHIME-inferred emissions in the latter half of the year. Whereas an increase in emis-421

sions related to the spreading of digestate, cattle manure during times of grazing and hous-422

ing could explain seasonal differences with InTEM-inferred emissions for the latter half423

of the year.424

For January to April, there are only small differences between the RHIME/InTEM425

and optimized UKEM sub-sector emissions. After April, there is a larger mismatch be-426
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Table 2. Mean and 1σ uncertainty in the posterior scale factors for each UKEM emissions

sub-sector when optimised to the average InTEM and RHIME seasonal cycles.

UKEM emissions sub-sector InTEM-optimized RHIME-optimized
scale factor scale factor

Cattle manure, grazing 3.19± 1.61 5.12± 1.51
Cattle manure, housing 0.87± 0.87 0.05± 0.56
Cattle manure, spreading 1.83± 1.59 1.26± 1.28
Synthetic fertilizer 0.11± 0.20 0.17± 0.12
Spreading of digestate 1.11± 1.73 1.00± 1.70
Poultry manure, spreading 1.64± 1.73 3.41± 1.53
Other 2.05± 0.49 3.05± 0.43

tween these seasonal cycles. This mismatch could be attributed to retaining the seasonal427

profiles of each UKEM emissions sub-sectors, which could have time-correlated uncer-428

tainties.429

4 Discussion430

Continuous atmospheric N2O measurements from the U.K. and Republic of Ire-431

land were used in InTEM and RHIME inverse models to derive top-down U.K. N2O emis-432

sions estimates and their trends over 2013-2022. Mean posterior U.K. terrestrial emis-433

sions from InTEM and RHIME over 2013-2022 were 90.5±23.0(1σ) Gg N2O yr−1 and434

111.7±32.1(1σ) Gg N2O yr−1, respectively. The two inversion systems inferred nega-435

tive trends of −0.68±0.48 Gg N2O yr−2 and −2.10±0.72 Gg N2O yr−2, respectively.436

However, it is unclear what could be driving a negative trend in the top-down emissions437

as the NAEI and UKEM sub-sector estimates do not have statistically significant trends438

over this period.439

We find that the top-down emissions are close to the 2012-2014 U.K. emissions es-440

timates of 101 (68-150) Gg N2O yr−1 reported by Ganesan et al. (2015) and are approx-441

imately 14 − 33% higher than the bottom-up N2O emissions reported in NAEI. This442

discrepancy is similar to the 13−22% differences between previously reported top-down443

and bottom-up estimates for the U.K. (Ganesan et al., 2015; Manning et al., 2011). How-444

ever, we find the inventory emissions estimates are lower than the top-down estimates445

whereas previous U.K. N2O studies found inventory emissions were higher. The U.K.446

emissions inventory updates the entire record each year. Revisions to the U.K.’s N2O447

emissions are reflected in the U.K.’s NIR submitted to the UNFCCC, which, for 2022,448

reported smaller N2O emissions than were used as the a priori estimates in Ganesan et449

al. (2015) and Manning et al. (2011) at the time. Average differences of 14−33% be-450

tween top-down and bottom-up U.K. N2O emissions underscore that there are still large451

uncertainties in U.K. N2O emissions.452

Similar to previous regional N2O studies (e.g. Ganesan et al., 2015; Nevison et al.,453

2018; Wagner-Riddle et al., 2017; Jeong et al., 2012) we observe a pronounced seasonal454

cycle in the top-down N2O emissions with a large springtime peak. We also observe a455

secondary peak in the late summer and/or a prolonged decay in the spring peak, which456

have not been previously observed in the U.K. The observed seasonal patterns are likely457

to be driven by agricultural sources since the timings of these peaks are broadly consis-458

tent each year but climatic patterns could also have an influence. Top-down N2O emis-459

sions estimates in California, USA suggest the higher N2O emissions observed during spring460

are linked to the application of fertilizers (Jeong et al., 2018, 2012; Xiang et al., 2013).461
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Nevison et al. (2018) observed a dual seasonal maxima in top-down emissions from 2008-462

2014 in the USA with a spring peak attributed to fertilizer applications and a late win-463

ter peak attributed to freeze-thaw effects (e.g. Wagner-Riddle et al., 2017). Higher av-464

erage winter temperatures in the U.K. and the timing of the second peak make it un-465

likely for freeze-thaw effects to be a driver of seasonal variations of N2O emissions in the466

U.K. Recent N2O flux measurements over different terrestrial ecosystems in the U.K. found467

inconsistent seasonal patterns of total N2O emissions across different land use types (Sgouridis468

& Ullah, 2017). This further suggests that seasonal variations with a springtime peak469

previously observed in the U.K. are driven by agricultural sources. However, environ-470

mental drivers such as precipitation and surface temperature also influence the magni-471

tude and timing of agricultural N2O emissions (Skiba et al., 2012).472

We find the agreement between the average top-down and bottom-up seasonal cy-473

cles could be improved by reducing UKEM synthetic fertilizer N2O emissions by an av-474

erage factor of 0.15±0.12 and increasing N2O emissions from certain types of manure475

management - spreading of digestate and cattle manure during times of grazing and cat-476

tle housing - by an average factor of 4.2±1.5. Modelling the temporal changes of ma-477

nure management N2O emissions is challenging as livestock waste management systems478

vary between sites and over time with little information available about their manage-479

ment practices (Chang et al., 2004). However, it is also possible the top-down and bottom-480

up seasonal cycle mismatch could be attributed to several other sources - such as miss-481

ing emissions from NH3 deposition - but this requires further investigation.482

Whilst we find top-down emissions from InTEM and RHIME are well-correlated483

(R2 = 0.86, p < 0.01) there are differences in the magnitude and seasonal variations484

of N2O emissions and uncertainties. Discrepancies between InTEM and RHIME poten-485

tially arise from differences in the calculation of boundary condition mole fractions, the486

treatment of model-data uncertainties and the approach for calculating posterior emis-487

sions in each inverse method. We find an average difference of 0.18±0.22(1σ) ppb be-488

tween the boundary condition mole fractions (Text S4). A lower mole fraction baseline489

would lead to higher emissions being derived in the inversion.490

The results from these long-term U.K. atmospheric N2O measurements from a dense491

measurement network demonstrate that they can be used for effective evaluation of re-492

gional N2O emissions by using inverse modelling. Understanding of differences between493

top-down and bottom-up N2O emissions could be enhanced by comparing top-down emis-494

sions derived using a different atmospheric transport model with different underlying me-495

teorological fields. Further long-term flux measurements of N2O emissions sources could496

also provide additional constraints on the seasonal discrepancies observed between the497

average top-down and bottom-up seasonal cycles.498

5 Conclusions499

This study presents 10 years of top-down N2O emissions derived using atmospheric500

measurements from across the U.K. and Republic of Ireland. Posterior emissions from501

both InTEM and RHIME inverse models find average U.K. emissions of 90.5±23.0 Gg502

N2O yr−1 and 111.7 ± 32.1 Gg N2O yr−1, respectively across 2013-2020 which are ∼503

14.0 ± 41.0% and ∼ 32.7 ± 23.2% higher than estimated in the U.K. national atmo-504

spheric emissions inventory, respectively. Average differences between the top-down and505

UKEM bottom-up seasonal patterns could be explained by decreasing synthetic fertil-506

izer emissions by an average factor of ∼ 0.15±0.12, and increasing N2O manure man-507

agement emissions (from cattle manure during grazing and housing) by an average fac-508

tor of 4.2±1.5. However, we find large uncertainties associated with the posterior scal-509

ing factors for the agricultural seasonal emissions profiles.510
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6 Open Research511

Atmospheric measurements of N2O used in this work are available from the CEDA512

Archive (O’Doherty et al., 2020): https://data.ceda.ac.uk/badc/uk-decc-network/513

data/n2o/v23.08. A doi for this data is currently being assigned. Python scripts used514

for data analysis are available for use in https://github.com/EricSaboya/uk n2o515
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