Reference
Abercrombie, E. D., Keefe, K. A., DiFrischia, D. S., & Zigmond, M. J.
(1989). Differential effect of stress on in vivo dopamine release in
striatum, nucleus accumbens, and medial frontal cortex. Journal of
Neurochemistry , 52 (5), 1655–1658.
https://doi.org/10.1111/j.1471-4159.1989.tb09224.x
Alexander, J. K., Hillier, A., Smith, R. M., Tivarus, M. E., &
Beversdorf, D. Q. (2007). Beta-adrenergic modulation of cognitive
flexibility during stress. Journal of Cognitive Neuroscience,
19 (3), 468–478. https://doi.org/10.1162/jocn.2007.19.3.468
Allen, A. P., Kennedy, P. J., Cryan, J. F., Dinan, T. G., & Clarke, G.
(2014). Biological and psychological markers of stress in humans: focus
on the Trier Social Stress Test. Neuroscience & Biobehavioral
Reviews, 38 , 94–124. https://doi.org/10.1016/j.neubiorev.2013.11.005
Ananiadou, K., & Claro, M. (2009). 21st century skills and competences
for new millennium learners in OECD countries, OECD Education
Working Papers, No. 41 , OECD Publishing,
Paris. https://doi.org/10.1787/218525261154.
Arafah, B. H., Nishiyama, F. J., Tlaygeh, H. M., & Hejal, R. B. (2007).
Measurement of salivary cortisol concentration in the assessment of
adrenal function in critically ill subjects: A surrogate marker of the
circulating free cortisol. Journal of Clinical Endocrinology
Metabolism, 92 (8), 2965–2971. https://doi.org/10.1210/jc.2007- 0181
Arnsten, A. F. T. (2009). Stress signalling pathways that impair
prefrontal cortex structure and function. Nature Reviews
Neuroscience , 10 (6), 410–422. https://doi.org/10.1038/nrn2648
Barbato, G., Ficca, G., Muscettola, G., Fichele, M., Beatrice, M., &
Rinaldi, F., (2000). Diurnal variation in spontaneous eye-blink rate.Psychiatry Research, 93 (2), 145–151.
https://doi.org/10.1016/S0165-1781(00)00108-6
Beversdorf, D. Q., Hughes, J. D., Steinberg, B. A., Lewis, L. D., &
Heilman, K. M. (1999). Noradrenergic modulation of cognitive flexibility
in problem solving. Neuroreport. 10 , 2763–2767.
https://doi.org/10.1097/00001756-199909090-00012
Beversdorf, D. Q. (2019). Neuropsychopharmacological regulation of
performance on creativity-related tasks. Current Opinion in
Behavioral Sciences , 27 , 55–63.
https://doi.org/10.1016/j.cobeha.2018.09.010
Beversdorf, D. Q., White, D. M., Chever, D. C., Hughes, J. D., &
Bornstein, R. A. (2002). Central beta-adrenergic modulation of cognitive
flexibility. Neuroreport, 13 (18), 2505–2507.
https://doi.org/10.1097/01.wnr.0000048923.00321.a7
Blackford, J. U., Buckholtz, J. W., Avery, S. N., Zald, D. H. (2010). A
unique role for the human amygdala in novelty detection.NeuroImage 50, 1188–1193.
https://doi.org/10.1016/j.neuroimage.2009.12.083
Boot, N., Baas, M., van Gaal, S., Cools, R., & De Dreu, C. K. W.
(2017). Creative cognition and dopaminergic modulation of
fronto-striatal networks: Integrative review and research agenda.Neuroscience & Biobehavioral Reviews , 78 , 13–23.
https://doi.org/10.1016/j.neubiorev.2017.04.007
Bremner, J. D., Krystal, J. H., Southwick, S. M., & Charney, D. S.
(1996). Noradrenergic mechanisms in stress and anxiety: I. Preclinical
studies. Synapse, 23 (1), 28–38.
https://doi.org/10.1002/(SICI)1098-2396(199605)23:1<28::AID-SYN4>3.0.CO;2-J
Byron, K., Khazanchi, S., & Nazarian, D. (2010). The relationship
between stressors and creativity: A meta-analysis examining competing
theoretical models. Journal of Applied Psychology, 95 , 201–212.
https://doi.org/10.1037/a0017868
Chrousos, G. P., (2009). Stress and disorders of the stress system.Nature Reviews Endocrinology, 5 (7), 374–381.
https://doi.org/10.1038/nrendo.2009.106.
Chakravarty, A. (2010). The creative brain – Revisiting concepts.Medical Hypotheses , 74 (3), 606–612.
https://doi.org/10.1016/j.mehy.2009.10.014
Chermahini, S. A., & Hommel, B. (2010). The (b)link between creativity
and dopamine: Spontaneous eye blink rates predict and dissociate
divergent and convergent thinking. Cognition , 115 (3),
458–465. https://doi.org/10.1016/j.cognition.2010.03.007
Akbari Chermahini, S., & Hommel, B. (2012). More creative through
positive mood? Not everyone! Frontiers in Human Neuroscience, 6 .
https://doi.org/10.3389/fnhum.2012.00319
Cools, R., & D’Esposito, M. (2011). Inverted-U–shaped dopamine actions
on human working memory and cognitive control. Biological
Psychiatry, 69 (12), e113–e125.
http://dx.doi.org/10.1016/j.biopsych.2011.03.028.
Dave, A. A., Lehet, M., Diwadkar, V. A., & Thakkar, K. N. (2021).
Ocular measures during associative learning predict recall accuracy.International Journal of Psychophysiology , 166 , 103–115.
https://doi.org/10.1016/j.ijpsycho.2021.05.010
de Kloet, E. R., Joëls, M., & Holsboer, F. (2005). Stress and the
brain: From adaptation to disease. Nature Reviews Neuroscience,
6 (6), 463–475. https://doi.org/10.1038/nrn1683
de Rooij, A., Vromans, R. D., & Dekker, M. (2011). Noradrenergic
Modulation of Creativity: Evidence from Pupillometry. Creativity
Research Journal, 30 (4), 339–351.
https://doi.org/10.1080/10400419.2018.1530533
Dedovic, K., Rexroth, M., Wolff, E., Duchesne, A., Scherling, C.,
Beaudry, T., Lue, S.D., Lord, C., Engert, V., & Pruessner, J.C. (2009).
Neural correlates of processing stressful information: An event-related
fMRI study. Brain Research, 1293 , 49–60.
https://doi.org/10.1016/j.brainres.2009.06.044
Dedovic, K., Duchesne, A., Andrews, J., Engert, V., & Pruessner, J. C.
(2009). The brain and the stress axis: The neural correlates of cortisol
regulation in response to stress. NeuroImage. 47 , 864–871.
https://doi.org/10.1016/j.neuroimage.2009.05.074
D’Esposito, M., & Postle, B. R. (2015). The cognitive neuroscience of
working memory. Annual Review of Psychology, 66 , 115–142.
https://doi.org/10.1146/annurev-psych-010814-015031
Dodds, C. M., Müller, U., Clark, L., Van, L. A., Cools, R., & Robbins,
T. W. (2008). Methylphenidate has differential effects on blood
oxygenation level-dependent signal related to cognitive subprocesses of
reversal learning. Journal of Neuroscience, 28 (23), 5976–5982.
https://doi.org/10.1523/JNEUROSCI.1153-08.2008
Dosenbach, N. U. F., Fair, D. A., Miezin, F. M., Cohen, A. L., Wenger,
K. K., Dosenbach, R. A. T., Fox, M. D., Snyder, A. Z., Vincent, J. L.,
Raichle, M. E., Schlaggar, B. L., & Petersen, S. E. (2007). Distinct
brain networks for adaptive and stable task control in humans.Proceedings of the National Academy of Sciences, 104 (26),
11073–11078. https://doi.org/10.1073/pnas.0704320104
Dorn, L. D., Lucke, J. F., Loucks, T. L., & Berga, S. L. (2007).
Salivary cortisol reflects serum cortisol: Analysis of circadian
profiles. Annals of Clinical Biochemistry, 44 (3), 281–284.
https://doi.org/10.1258/000456307780480954.
Duan, H., Wang, X., Hu, W., & Kounios, J. (2020). Effects of acute
stress on divergent and convergent problem-solving. Thinking &
Reasoning, 26 (1), 68–86.
https://doi.org/10.1080/13546783.2019.1572539
Dumontheil, I., Gilbert, S. J., Frith, C. D., & Burgess, P. W. (2010).
Recruitment of lateral rostral prefrontal cortex in spontaneous and
task-related thoughts. Quarterly Journal of Experimental
Psychology, 63 (9), 1740–1756.
https://doi.org/10.1080/17470210903538114
Ehinger, B. V., Groß, K., Ibs, I., & König, P. (2019). A new
comprehensive eye-tracking test battery concurrently evaluating the
pupil labs glasses and the EyeLink 1000. PeerJ, 7 , e7086.
https://doi.org/10.7717/peerj.7086
Fabio, R. A., Picciotto, G., & Caprì, T. (2021). The effects of
psychosocial and cognitive stress on executive functions and automatic
processes in healthy subjects: A pilot study. Current Psychology ,41 , 7555–7564. https://doi.org/10.1007/s12144-020-01302-1
Freed, W. J., Kleinman, J. E., Karson, C. N., Potkin, S. G., Murphy, D.
L., & Wyatt, R. J. (1980). Eye-blink rates and platelet monoamine
oxidase activity in chronic schizophrenic patients. Biological
psychiatry, 15(2), 329–332.
Fogelman, N., & Canli, T. (2018). Early life stress and cortisol: A
meta-analysis. Hormones and Behavior , 98 , 63–76.
https://doi.org/10.1016/j.yhbeh.2017.12.014
Fox, M. D., Corbetta, M., Snyder, A. Z., Vincent, J. L., & Raichle, M.
E. (2006). Spontaneous neuronal activity distinguishes human dorsal and
ventral attention systems. Proceedings of the National Academy of
Sciences, 103 (26), 10046–10051.
https://doi.org/10.1073/pnas.0604187103
Gabrys, R. L., Howell, J. W., Cebulski, S. F., Anisman, H., & Matheson,
K. (2019). Acute stressor effects on cognitive flexibility: Mediating
role of stressor appraisals and cortisol. Stress , 22 (2),
182–189. https://doi.org/10.1080/10253890.2018.1494152
Guedj, C., Meunier, D., Meunier, M., & Hadj-Bouziane, F. (2017). Could
LC-NE-dependent adjustment of neural gain drive functional brain network
reorganization? Neural Plasticity , 2017 , 1–12.
https://doi.org/10.1155/2017/4328015
Guilford, J. P. (1950). Creativity. American Psychologist, 5 ,
444–454. https://doi.org/10.1037/ h0063487
Hasselmo, M. E., Linster, C., Patil, M., Ma, D., & Cekic, M. (1997).
Noradrenergic suppression of synaptic transmission may influence
cortical signal-to-noise ratio. Journal of Neurophysiology ,77 (6), 3326–3339. https://doi.org/10.1152/jn.1997.77.6.3326
Hayes, A. F. (2017). Introduction to mediation, moderation, and
conditional process analysis: A regression-based approach. Guilford
publications.
Hermans, E. J., Henckens, M. J., Joëls, M., & Fernández, G. (2014).
Dynamic adaptation of large-scale brain networks in response to acute
stressors. Trends in Neurosciences, 37 (6), 304–314.
http://dx.doi.org/10.1016/j.tins.2014.03.006.
Heilman, K. M., Nadeau, S. E., & Beversdorf, D. O. (2003). Creative
Innovation: Possible Brain Mechanisms. Neurocase, 9 (5), 369–379.
https://doi.org/10.1076/neur.9.5.369.16553
Heilman, K. M. (2016). Possible brain mechanisms of creativity.Archives of Clinical Neuropsychology , 31 (4), 285–296.
https://doi.org/10.1093/arclin/acw009
Hillier, A., Alexander, J. K., & Beversdorf, D. Q. (2006). The effect
of auditory stressors on cognitive flexibility. Neurocase, 12 (4),
228–231. https://doi.org/10.1080/13554790600878887
Howells, F. M., Stein, D. J., & Russell, V. A. (2012). Synergistic
tonic and phasic activity of the locus coeruleus norepinephrine (LC-NE)
arousal system is required for optimal attentional performance.Metabolic Brain Disease , 27 (3), 267–274.
https://doi.org/10.1007/s11011-012-9287-9
Hu, N., Hu, X., Xu, Z., Li, Q., Long, Q., Gu, Y., & Chen, A. (2019).
Temporal dynamic modulation of acute stress on error processing in
healthy males. Psychophysiology, 56 (9), e13398.
https://doi.org/10.1111/psyp.13398
Izawa, S., Sugaya, N., Yamamoto, R., Ogawa, N., & Nomura, S. (2010).
The cortisol awakening response and autonomic nervous system activity
during nocturnal and early morning periods. Neuroendocrinology
Letters, 31 (5), 685–689. https://pubmed.ncbi.nlm.nih.gov/21178943/
Jongkees, B. J., & Colzato, L. S. (2016). Spontaneous eye blink rate as
predictor of dopamine-related cognitive function—A review.Neuroscience & Biobehavioral Reviews , 71 , 58–82.
https://doi.org/10.1016/j.neubiorev.2016.08.020
Kaminer, J., Powers, A.S., Horn, K.G., Hui, C., & Evinger, C. (2011).
Characterizing the spontaneous blink generator: An animal model.Neuroscience, 31 , 11256–11267.
https://doi.org/10.1523/JNEUROSCI.6218-10.2011
Kalia, V., Vishwanath, K., Knauft, K., Vellen, B. V. D., Luebbe, A., &
Williams, A. (2018). Acute stress attenuates cognitive flexibility in
males only: An fNIRS examination. Frontiers in Psychology ,9 , 2084. https://doi.org/10.3389/fpsyg.2018.02084
Kellendonk, C., Simpson, E.H., Polan, H.J., Malleret, G., Vronskaya, S.,
Winiger, V., Moore, H., & Kandel, E.R. (2006). Transient and selective
overexpression of dopamine D2 receptors in the striatum causes
persistent abnormalities in prefrontal cortex functioning. Neuron,
49 , 603–615. https://doi.org/10.1016/j.neuron.2006.01.023
Kleven, M. S., & Koek, W. (1996). Differential effects of direct and
indirect dopamine agonists on eye blink rate in cynomolgus monkeys.Journal of Pharmacology and Experimental Therapeutics, 279 ,
1211–1219. https://psycnet.apa.org/record/1997-02921-005
Knapen, T., de Gee, J.W., Brascamp, J., Nuiten, S., Hoppenbrouwers, S.,
Theeuwes, J. (2016). Cognitive and
ocular factors jointly determine pupil responses under equiluminance.PLoS One 11 (5), e0155574.
https://doi.org/10.1371/journal.pone.0155574
Knauft, K., Waldron, A., Mathur, M., & Kalia, V. (2021). Perceived
chronic stress influences the effect of acute stress on cognitive
flexibility. Scientific Reports , 11 (1), 23629.
https://doi.org/10.1038/s41598-021-03101-5
Knudsen, E. I. (2007). Fundamental Components of Attention. Annual
Review of Neuroscience, 3 0(1), 57–78.
https://doi.org/10.1146/annurev.neuro.30.051606.094256
Kongs, S. K., Thompson, L. L., Iverson, G. L., & Heaton, R. K. (1993).Wisconsin Card Sorting Test–64 card version professional manual .
Psychological Assessment Resources.
Koss, M.C. (1986). Pupillary dilation as an index of central nervous
system α2adrenoceptor activation. Journal ofPharmacological Methods, 15 (1), 1–19. https://doi.org/
10.1016/0160-5402(86)90002-1.
Kuchinke, L., Schneider, D., Kotz, S. A., & Jacobs, A. M. (2011).
Spontaneous but not explicit processing of positive sentences impaired
in Asperger’s syndrome: Pupillometric evidence. Neuropsychologia ,49 (3), 331–338.
https://doi.org/10.1016/j.neuropsychologia.2010.12.026
Laredo, S. A., Steinman, M. Q., Robles, C. F., Ferrer, E., Ragen, B. J.,
& Trainor, B. C. (2015). Effects of defeat stress on behavioral
flexibility in males and females: Modulation by the mu-opioid receptor.European Journal of Neuroscience, 41 (4), 434–441.
https://doi.org/10.1111/ejn.12824
Langer, K., Hagedorn, B., Stock, L.-M., Otto, T., Wolf, O. T., &
Jentsch, V. L. (2020). Acute stress improves the effectivity of
cognitive emotion regulation in men. Scientific Reports ,10 (1), 11571. https://doi.org/10.1038/s41598-020-68137-5
Langer, K., Jentsch, V. L., & Wolf, O. T. (2022). Cortisol promotes the
cognitive regulation of high intensive emotions independent of timing.European Journal of Neuroscience , 55 (9–10), 2684–2698.
https://doi.org/10.1111/ejn.15182
Lovallo, W. R., Buchanan, T. W. (2016). Stress hormones in
psychophysiological research: emotional, behavioral, and cognitive
implications. In J. T. Cacioppo, L. G. Tassinary, & G. G. Berntson
(Eds.), Handbook of psychophysiology (pp. 465–494). Cambridge
University Press. https://doi.org/10.1017/9781107415782.021
Lucas, B. J., Nordgren, L. F. (2015). People underestimate the value of
persistence for creative performance. Journal of Personality and
Social Psychology, 109 , 232–243. https://doi.org/10.1037/pspa0000030
Mayseless, N., Uzefovsky, F., Shalev, I., Ebstein, R. P., &
Shamay-Tsoory, S. G., (2013). The association between creativity and 7R
polymorphism in the dopamine receptor D4 gene (DRD4). Frontiers in
Human Neuroscience, 7 , 1–7. https://doi.org/10.3389/fnhum.2013.00502
Menon, V. (2011). Large-scale brain networks and psychopathology: A
unifying triple network model. Trends in Cognitive Sciences,
15 (10), 483–506. https://doi.org/10.1016/j.tics.2011.08.003
Menon, V., & Uddin, L. Q. (2010). Saliency, switching, attention and
control: A network model of insula function. Brain Structure and
Function, 214 (5–6), 655–667.
https://doi.org/10.1007/s00429-010-0262-0
Munck, A., Guyre, P. M., & Holbrook, N. J. (1984). Physiological
functions of glucocorticoids in stress and their relation to
pharmacological actions. Endocrine Reviews, 5 (1), 25–44.
https://doi. org/10.1210/edrv-5-1-25
Murphy, P. R., Robertson, I. H., Balsters, J. H., & O’connell, R. G.
(2011). Pupillometry and P3 index the locus coeruleus-noradrenergic
arousal function in humans: Indirect markers of locus coeruleus
activity. Psychophysiology, 48 (11), 1532–1543.
https://doi.org/10.1111/j.1469-8986.2011.01226.x
Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter,
A., & Wager, T. D. (2000). The unity and diversity of executive
functions and their contributions to complex “frontal lobe” tasks: A
latent variable analysis. Cognitive Psychology , 41 (1),
49–100. https://doi.org/10.1006/cogp.1999.0734
Nieuwenhuis, S., De Geus, E. J., & Aston-Jones, G. (2011). The
anatomical and functional relationship between the P3 and autonomic
components of the orienting response. Psychophysiology, 48 (2),
162–175. https://doi.org/10.1111/j.14698986.2010.01057.x.
Neri, D. F., Wiegmann, D., Stanny, R. R., Shappell, S. A., McCardie, A.,
& McKay, D. L. (1995). The effects of tyrosine on cognitive performance
during extended wakefulness. Aviation, Space, and Environmental
Medicine, 66 (4), 313–319. Available from:
https://pubmed.ncbi.nlm.nih.gov/7794222/
Nijstad, B.A., De Dreu, C. K. W., Rietzschel, E. F., Baas, M. (2010).
The dual pathway to creativity model: Creative ideation as a function of
flexibility and persistence. European Review of Social Psychology,
21 , 34–77. https://doi.org/10.1080/10463281003765323
Nyhus, E., & Barceló, F. (2009). The Wisconsin Card Sorting Test and
the cognitive assessment of prefrontal executive functions: A critical
update. Brain and Cognition , 71 (3), 437–451.
https://doi.org/10.1016/j.bandc.2009.03.005
Pajkossy, P., Szőllősi, Á., Demeter, G., & Racsmány, M. (2018).
Physiological Measures of Dopaminergic and Noradrenergic Activity During
Attentional Set Shifting and Reversal. Frontiers in Psychology,
9 , 506. https://doi.org/10.3389/fpsyg.2018.00506
Pariante, C. M., & Lightman, S. L. (2008). The HPA axis in major
depression: classical theories and new developments. Trends in
neurosciences, 31 (9), 464–468.
https://doi.org/10.1016/j.tins.2008.06.006
Plessow, F., Fischer, R., Kirschbaum, C., & Goschke, T. (2011).
Inflexibly focused under stress: Acute psychosocial stress increases
shielding of action goals at the expense of reduced cognitive
flexibility with increasing time lag to the stressor. Journal of
Cognitive Neuroscience, 23 (11), 3218–3227.
https://doi.org/10.1162/jocn_a_00024
Qin, S., Hermans, E. J., van Marle, H. J., Luo, J., & Fernández, G.
(2009). Acute psychological stress reduces working memory-related
activity in the dorsolateral prefrontal cortex. Biological
Psychiatry, 66 (1), 25–32.
https://doi.org/10.1016/j.biopsych.2009.03.006
Radel, R., Davranche, K., Fournier, M., & Dietrich, A. (2015). The role
of (dis)inhibition in creativity: decreased inhibition improves idea
generation. Cognition 134, 110–120.
https://doi.org/10.1016/j.cognition.2014.09.001.
Rajkowski, J., Kubiak, P., & Aston-Jones, G. (1993). Correlations
between locus coeruleus (LC) neural activity, pupil diameter and
behavior in monkey support a role of LC in attention. Society for
Neuroscience Abstracts, 19 , 974. Available from:
https://eurekamag.com/research/030/732/030732406.php
Sanger, J., Bechtold, L., Schoofs, D., Blaszkewicz, M., & Wascher, E.
(2014). The influence of acute stress on attention mechanisms and its
electrophysiological correlates. Frontiers in Behavioral
Neuroscience, 8 , 353. https://doi.org/10.3389/fnbeh.2014.00353
Shansky, R.M., & Lipps, J. (2013). Stress-induced cognitive
dysfunction: hormone-neurotransmitter interactions in the prefrontal
cortex. Frontiers in Human Neuroscience, 7 , 123.
https://doi.org/10.3389/fnhum.2013.00123
Shields, G. S., Bonner, J. C., & Moons, W. G. (2015). Does cortisol
influence core executive functions? A meta-analysis of acute cortisol
administration effects on working memory, inhibition, and set-shifting.Psychoneuroendocrinology, 58 , 91–103.
https://doi.org/10.1016/j.psyneuen.2015.04.017
Shukla, D. (1985). Blink rate as clinical indicator. Neurology,
35 , 286. https://doi.org/10.1212/wnl.35.2.286
Thierry, A. M., Tassin, J. P., Blanc, G., & Glowinski, J. (1976).
Selective activation of the mesocortical DA system by stress.Nature, 263 (5574), 242–244. https://doi.org/10.1038/263242a0
Sanchez-Ruiz, M.-J., Pérez-González, J. C., Romo, M., & Matthews, G.
(2015). Divergent thinking and stress dimensions. Thinking Skills
and Creativity , 17 , 102–116.
https://doi.org/10.1016/j.tsc.2015.06.005
Sternberg, R.J., & Lubart, T.I. (1996). Investing in creativity.American Psychologist, 51 , 677–688.
doi:10.1037//0003-066X.51.7.677
Ulrich-Lai, Y. M., & Herman, J. P. (2009). Neural regulation of
endocrine and autonomic stress responses. Nature Reviews
Neuroscience, 10 (6), 397–409. https://doi.org/10.1038/nrn2647
Unsworth, N., Robison, M. K., & Miller, A. L. (2019). Individual
differences in baseline oculometrics: Examining variation in baseline
pupil diameter, spontaneous eye blink rate, and fixation stability.Cognitive, Affective, & Behavioral Neuroscience. 19, 1074–1093.
https://doi.org/10.3758/s13415-019-00709-z
Usher, M., Cohen, J. D., Servan-Schreiber, D., Rajkowski, J., &
Aston-Jones, G. (1999). The role of Locus Coeruleus in the regulation of
cognitive performance. Science , 283 (5401), 549–554.
https://doi.org/10.1126/science.283.5401.549
Villarejo, M. V., Zapirain, B. G., & Zorrilla, A. M. (2012). A stress
sensor based on Galvanic Skin Response (GSR) controlled by ZigBee.Sensors , 12 (5), 6075–6101.
https://doi.org/10.3390/s120506075
Walker, F. R., Pfingst, K., Carnevali, L., Sgoifo, A., & Nalivaiko, E.
(2017). In the search for integrative biomarker of resilience to
psychological stress. Neuroscience & Biobehavioral Reviews ,74 , 310–320.
https://doi.org/10.1016/j.neubiorev.2016.05.003
Wang, X., Duan, H., Kan, Y., Wang, B., Qi, S., & Hu, W. (2019). The
creative thinking cognitive process influenced by acute stress in
humans: An electroencephalography study. Stress , 22 (4),
472–481. https://doi.org/10.1080/10253890.2019.1604665
Wang, Y., Guo, X., Wang, M., Kan, Y., Zhang, H., Zhao, H., Meilin, W.,
& Duan, H. (2022). Transcranial direct current stimulation of bilateral
dorsolateral prefrontal cortex eliminates creativity impairment induced
by acute stress. International Journal of Psychophysiology ,171 , 1–11. https://doi.org/10.1016/j.ijpsycho.2021.11.001
Wingo, T., Nesil, T., Choi, J.-S., & Li, M. D. (2016). Novelty seeking
and drug addiction in humans and animals: From behavior to molecules.Journal of Neuroimmune Pharmacology , 11 (3), 456–470.
https://doi.org/10.1007/s11481-015-9636-7
World Medical Association (2013). World Medical Association
Declaration of Helsinki. Ethical principles for medical research
involving human subjects . Available from:
https://www.wma.net/en/30publications/10policies/b3.htm.
Yeh, Y.-c., Lai, G.-J., Lin, C. F., Lin, C.-W., & Sun, H.-C. (2015).
How stress influences creativity in game-based situations: Analysis of
stress hormones, negative emotions, and working memory. Computers
& Education, 81 , 143–153.
https://doi.org/10.1016/j.compedu.2014.09.011
Zhang, W., Sjoerds, Z., & Hommel, B. (2020). Metacontrol of human
creativity: The neurocognitive mechanisms of convergent and divergent
thinking. NeuroImage , 210 , 116572.
https://doi.org/10.1016/j.neuroimage.2020.116572
Zhang, W., Hashemi, M. M., Kaldewaij, R., Koch, S. B. J., Beckmann, C.,
Klumpers, F., & Roelofs, K. (2019). Acute stress alters the ‘default’
brain processing. NeuroImage, 189 , 870–877.
https://doi.org/10.1016/j.neuroimage.2019.01.063
Zhang, W., Kaldewaij, R., Hashemi, M. M., Koch, S. B. J., Smit, A., van
Ast, V. A., Beckmann, C. F., Klumpers, F., & Roelofs, K. (2022).
Acute-stress-induced change in salience network coupling prospectively
predicts post-trauma symptom development. Translational
Psychiatry, 12 (1), 63. https://doi.org/10.1038/s41398-022-01798-0