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Abstract

Accurate and precise estimation of process variables is key to effective process mon-

itoring. The estimation accuracy depends on the choice of the sensor network. There-

fore, this paper aims at developing convex optimization formulations for designing the

optimal sensor network using information-theoretic measures in linear steady-state data

reconciliation. To this end, the estimation errors are characterized by a multivariate

Gaussian distribution, and thus the analytical form for entropy and Kullback-Leibler

divergences (forward, reverse, and symmetric) of estimation errors can be obtained

to formulate the optimal sensor network design. The proposed information theoretic-

based optimal sensor selection problems are shown to be integer semidefinite program-

ming problems where the relaxation of binary decision variables results in solving a

convex optimization problem. Thus, we use a branch and bound method to obtain a

globally optimal sensor network design. Demonstrative case studies are presented to

illustrate the efficacy of the proposed optimal sensor selection formulations.
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1 Introduction

The selection of sensors is vital for efficiently performing process monitoring, fault detection

and diagnosis, and process control. In recent years, sensor placement has played a significant

role in the industrial internet of things. A typical process plant has many process variables;

however, the number of sensors that can be placed is limited due to sensor cost or inability

to place a sensor in the desired location, etc. Further, the installed sensors should enable one

to infer the unmeasured variables using the process model. Therefore, the sensor selection

problem involves selecting a subset of the available sensors to be used for monitoring the

process variables. The goal is to determine the best combination of sensors to achieve

the desired level of accuracy in the measurement of the process variables. This problem

can be formulated as an optimal design problem where the goal is to optimize a utility

function based on one or more of the following criteria: (a) minimizing the average estimation

error that signifies the ability to obtain accurate estimates of process variables using data

reconciliation,1–5 (b) minimizing the operational cost or hardware cost of a plant,6–10 (c)

maximizing network reliability, or the sensor networks’ ability to estimate process variables

even in the situation where one or more sensors fail.11–16 In addition, observability is often

enforced such that the sensor networks can be used to estimate unmeasured variables using

measurements and the process model. This work focuses on optimal sensor selection based

on information-theoretic measures for the purpose of data reconciliation.

Vaclaveck and Loucka17 developed a sensor network design approach for steady-state

systems using graph theory to assure the observability of critical process variables. From

a fault detection and diagnosis aspect, a diagnostic system’s effectiveness is determined by

a reliable set of sensors. Thus, the reliability of sensor networks is often used as a metric

for the sensor selection problem. Ali and Narasimhan11–13 presented a cutset-based graph

theoretic approach to decide on measurement selection by maximizing reliability. Kotecha

et al.14 defined the reliability of steady-state linear flow processes as described by Ali and

Narasimhan.11 They also defined network variance, which measures uncertainty in estimates,
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as the highest estimation variance among all variables. They established that there is a dual

relationship between maximizing reliability and minimizing variance. On the other hand,

Bhushan et al.18 defined unreliability as the probability of a fault occurring and remaining

undetected and developed an optimization methodology to minimize the unreliability of

detecting faults in the process.

From a data reconciliation perspective, an appropriate selection of sensors is crucial for

improving the accuracy of the estimation of process variables. One of the earlier works on

sensor placement for a steady-state, linear process using the data reconciliation aspect was

proposed by Kretsovalis and Mah.1 The trace of the covariance matrix of estimations of vari-

ables was minimized to improve the accuracy of process variable estimation, such that the

obtained sensor network forms an observable set. Alternately, with growing global competi-

tion, maximizing the economic performance of process plants is of the utmost importance,

leading to the adoption of capital cost as a vital metric for optimization. In this regard,

Bagajewicz6 proposed a sensor placement strategy to minimize the capital cost subject to

precision bounds for reconciled values and robustness to gross errors. The optimization

problem formulated by Bagajwicz was a Mixed Integer Non-Linear Programming (MINLP)

problem. Bagajwicz and Sanchez8 later considered an optimization problem that involved

minimizing the total sensor network cost subject to the reliability of estimating a process

variable. Following this, Chmielewski et al.10 proposed a method to convert the non-linear

constraints from the MINLP problem proposed by Bagajwicz into Linear Matrix Inequality

(LMI) constraints. This resulted in a convex program that yield a globally optimal sensor

network. Nabil and Narasimhan2 developed a sensor network design formulation that incor-

porated the notion of process economics by defining a loss in operational profit, and it was

shown to minimize the trace of the weighted error covariance matrix. Furthermore, Balaji

et al.3 applied the A-optimal sensor selection criterion in a reaction system with a linear

measurement model.

Various information-theoretic measures, like entropy, correntropy, and mutual informa-
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tion entropy have been used for data reconciliation. Entropy is a measure of uncertainty or

randomness in a system. Crowe19 maximized entropy to determine the conditional distribu-

tion of data given true values with minimal incorporation of prior knowledge, and then the

maximum likelihood of the resulting density function is used to obtain the reconciled esti-

mates. Further, it was shown that, for the case when the bounds and sensor error variances

are assumed to be known a priori, the developed entropy-based approach yields a well-known

weighted least square solution. Correntropy is a measure of the similarity between two data

sets and is defined as the expected value of the squared difference between the two data

sets.20 Further, Yang et al.21 used mutual information for nonlinear data reconciliation to

deal with correlations between nonlinearly related variables.

In the context of sensor selection, information-theoretic measures have also been used

for sensor selection. The entropy of an estimated process variable quantifies the uncertainty

of the estimate, incorporating the distribution of errors, which can be used to determine

the most optimal sensors for the process. One illustration of the utilization of entropy in

sensor selection can be observed in localization problems.22 The algorithm proposed in this

study selected the sensor network that resulted in the greatest reduction in entropy, based

on the target location distribution and sensor locations. Another instance of the application

of entropy in sensor selection can be found in the field of structural damage detection.23

The authors employed entropy as a metric to reduce the number of required sensors while

maintaining the accuracy of the damage detection model. These examples highlight the

potential of entropy as a valuable metric in the selection of optimal sensors. The process

of selecting the optimal set of sensors can be facilitated through the application of mutual

information. One such application considers mutual information as a metric for evaluating

sensor performance and is aimed at identifying the sensor network that provides the high-

est level of accuracy in tracking a specified number of objects.24 By maximizing mutual

information, the optimal sensor network is obtained, which is capable of effectively tracking

the maximum number of objects while minimizing the use of sensors. Mutual information
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has also been used in power transmission applications.25 By utilizing mutual information, a

sensor network can be selected that provides the most comprehensive information about the

target state, thereby optimizing data transfer and reducing waste. Very recently, Prakash

and Bhushan26 recently presented a reverse Kullback-Leibler (KL) divergence for designing

sensor networks from a data reconciliation perspective for non-Gaussian noise distributions.

Unlike the previous work on sensor selection using reverse KL divergence,26 we assume that

the estimation errors can be characterized using multivariate Gaussian distributions. More-

over, we use symmetric KL divergence to quantify the process variables’ estimation accuracy

in a linear steady-state data reconciliation problem. This is in contrast to asymmetric reverse

KL divergence used by Prakash and Bhushan.26 Further, they obtained the optimal sensor

network through enumeration.

The main contributions of this work are as follows: (a) proposed information-theoretic

measures such as entropy, forward, reverse, and symmetric KL divergences for optimal sen-

sor selection for linear data reconciliation, (b) developed a computationally tractable integer

semidefinite programming formulations for minimization of entropy of estimation errors,

and minimization of reverse KL divergence, (c) proposed convex reformulations for the min-

imization of forward as well as symmetric KL divergences, and developed computationally

tractable mixed-integer semidefinite programming formulations, (d) a globally optimal sen-

sor network can be obtained using a branch and bound technique in which a semidefinite

program is solved at each branching node of all the proposed formulations, and (e) demon-

strated the efficacy the proposed approach using benchmark examples.

The rest of the paper is organized as follows. Firstly, we present the definition and

properties of entropy and different variants of KL divergence. Secondly, we discuss the

different formulations of data reconciliation. Thirdly, we propose an information-theoretic

framework for optimal sensor selection using entropy, forward, reverse, and symmetric KL

divergences, and developed computationally tractable optimization formulations. Next, three

demonstrative case studies are presented. Finally, conclusions are presented.
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2 Preliminaries

In this section, we briefly discuss the definitions and properties of information-theoretic

measures such as entropy and KL divergences.

2.1 Entropy

In information theory, entropy is a measure of the uncertainty of a random variable. It

measures the amount of information that is contained in a signal or in a set of data.27 In

general, the more uncertainty or randomness there is in a set of data, the higher its entropy

will be. A set of data that is highly predictable will have a low entropy, while a set of data

that is completely random will have a high entropy. There are several ways to measure

entropy, but the most common is the Shannon entropy,27 which is defined as:

H(z) = −
∫
S

p(z) log p(z)dz (1)

where H(z) is the entropy of the random variable z, S = {z | p(z) > 0} is the support

set of z, and p(z) is the probability density function. H(z) is always non-negative i.e.,

H(z) ≥ 0. Also to be noticed is the fact that the maximum value of Shannon entropy occurs

when all events in the system are equally likely. Since the entropy is highest, it indicates

maximum uncertainty or randomness. Another important property of Shannon’s entropy

is that Shannon’s entropy is monotonically increasing with respect to the probabilities of

events of a system. This property enables the comparison of the uncertainty of different

systems. If Shannon’s entropy is greater for one system than another, it can be concluded

that the first system is more random or uncertain than the other. For a multivariate random

variable z ∈ Rnz following Gaussian distribution, z ∼ N (µ,Σ), the Shannon’s entropy is

defined as,28

H(z) =
nz

2
(1 + log(2π)) +

1

2
log |Σ| (2)
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where nz is the dimensionality of z, and | · | denotes the determinant operation.

2.2 Kullback - Leibler Divergence

For two arbitrary probability density functions (PDF), f(z) and g(z), of a multivariate

random variable z ∈ Rnz , Kullback-Leibler divergence is defined as,28

DKL(f ||g) =
∫ ∞

−∞
f(z) log

(
f(z)

g(z)

)
dz (3)

It should be noted that DKL(f ||g) is a non-negative (i.e., DKL(f ||g) ≥ 0), asymmetric

measure (i.e., DKL(f ||g) ̸= DKL(g||f)), and it does not satisfy the triangular inequality

property28. KL divergence enables one to compare two distributions. For the case of two

multivariate Gaussian distributions f ∼ N (µf ,Σf ) and g ∼ N (µg,Σg), the forward KL

divergence, denoted by Df
KL, is defined as,

Df
KL := DKL(f ||g) =

1

2

[
Tr(ΣfΣg

−1) + log
( |Σg|
|Σf |

)
+ (µg − µf )

TΣg
−1(µg − µf )− nz

] (4)

where Tr(·) and | · | denote the trace and determinant operations, respectively. Now, the

reverse KL divergence, denoted by Dr
KL, is defined as,

Dr
KL := DKL(g||f) =

1

2

[
Tr(ΣgΣf

−1) + log
( |Σf |
|Σg|

)
+ (µf − µg)

TΣf
−1(µf − µg)− nz

] (5)

It should be noted that in the case of forward KL divergence, the logarithmic difference

between f(z) and g(z) is weighted by g(z), whereas in reverse KL divergence, it is weighted

by f(z). It is important to recall that Df
KL ̸= Dr

KL. Symmetric KL divergence (Ds
KL) is

often used to alleviate the asymmetric issue of forward and reverse KL divergences, and it
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is expressed as follows,

Ds
KL(f, g) = Ds

KL(g, f) =
1

2

(
Df

KL +Dr
KL

)
=

1

4

[
Tr(ΣfΣg

−1) + Tr(ΣgΣf
−1)

+ (µg − µf )
T
[
Σg

−1 + Σ−1
f

]
(µg − µf )− 2nz

] (6)

3 Data Reconciliation

Data reconciliation is a vital tool in modern process monitoring systems. It utilizes the pro-

cess model and description of measurement errors to improve measured variables’ accuracy

and obtain estimates for unmeasured quantities.29 Consider a measurement model of the

form,

ym = xm + ϵm (7)

where ym ∈ Rp, xm ∈ Rp and ϵm ∈ Rp respectively signify the measurement vector, the true

values of measured variables, and the vector of measurement noises. For steady-state linear

processes, the model equations can be expressed as,

Ax = 0 (8)

where A ∈ Rr×n represents the process constraint matrix, r denotes the number of inde-

pendent model equations, and x ∈ Rn represents the vector of all the process variables

(both measured, xm, and unmeasured variables, xu), that is, x = [xm;xu]
T . In general, the

formulation of a linear steady-state data reconciliation problem is as follows:

min
x̂m,x̂u

(ym − x̂m)
TΣ−1

ϵ (ym − x̂m)

s.t. Amx̂m + Aux̂u = 0

(9)
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where Am and Au are submatrices of A of appropriate dimensions, respectively. Σ−1
ϵ =

diag(1/σ2
i ) is a diagonal matrix whose elements are equal to the inverse of error variances of

measurements. The solution to the above constrained optimization problem can be obtained

using Lagrange’s multipliers,

x̂m = ym − Σ−1
ϵ AT (AΣ−1

ϵ AT )−1Aym (10)

It should be noted that the performance of the data reconciliation depends critically on the

set of measured variables, redundancy in measurements, and sensor precision.

Reformulated Data Reconciliation Problem

In this subsection, we recast the data reconciliation problem using the concept of primary

variables following the works of Nabil and Narasimhan2 and Chmielewski et al.10 This allows

one to conveniently express the data reconciliation in terms of potential measurements. The

process variables of interest x can be categorized as primary variables, xp ∈ Rn−r, and

secondary variables, xs ∈ Rr. This is in contrast to a typical data reconciliation problem, in

which the process variables are categorized as measured, xm, and unmeasured, xu, variables.

Any set of n − r variables that guarantee network observability can be treated as primary

variables, and the remaining variables correspond to the secondary variables. It is now

possible to rewrite the process model constraints (8) in terms of primary and secondary

variables as,

Apxp + Asxs = 0 (11)

where Ap and As are submatrices of A of appropriate dimensions. Given that the primary

variables form a minimum observable network, the matrix As will be invertible, and so the

secondary variables are given by,

xs = −As
−1Apxp (12)
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Defining y ∈ Rn as the measurement vector of all process variables, the measurement model

can be written as follows,

y = Cxp + ϵ (13)

where,

C =

 I

−As
−1Ap

 (14)

and I denotes identity matrix of size n − r. The data reconciliation problem is then posed

as,

min
x̂p

(y − Cx̂p)
TQ(y − Cx̂p) (15)

where,

Q = Σ−1
ϵ = diag

{ qi
σi

2

}
(16)

Here qi is a binary variable indicating if the particular variable i is measured or not, and σi
2

denotes the variance of measurement noise ϵi in the ith measured variable. It should be noted

that 1/σi
2 denotes sensor precision, and it can be obtained from the vendor manual. Given

the set of measured variables and their corresponding sensor precision values, the solution

to the unconstrained optimization problem (15) above yields,

x̂p = (CTQC)−1CTQy (17)

and the reconciled estimate of variables can be obtained as follows,

x̂ = Cx̂p (18)

It is essential to mention that the reconciled estimates obtained using equation (17) are the

same as solving the optimization formulation (9). Equation (17) lets one quickly compute

the reconciled estimates for different measurements by setting the appropriate qi = 1. On
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the other hand, formulation (9) requires redefining the Am and the Au matrices for different

measurements. Thus, equation (17) provides a convenient way to express reconciled estimates

in terms of all potential measurements of interest. Furthermore, this helps one to obtain the

analytical expression for the error covariance matrix Σe of the estimation error in x̂. Defining

the estimation error, e = x− x̂, the error covariance matrix is given by,

Σe = C(CTQC)−1CT (19)

Thus, the accuracy of reconciled estimates can be characterized using e ∼ N (0,Σe), where

zero mean indicates there are no gross errors. Notably, the selection of sensors significantly

impacts the accuracy of reconciled estimates.

4 Optimal Sensor Selection using Information Theo-

retic Measures

In this section, we present an information-theoretic framework for sensor selection in data

reconciliation.

4.1 Problem statement

In this work, we consider the problem of optimal sensor network design for linear, steady-state

processes such that the most accurate reconciled estimates are obtained while performing

data reconciliation if the determined optimal sensor network is employed. Therefore, the

aim of this work is to determine the optimal set of Ns sensors among the N potential sensors

such that the overall estimation error is minimized from an information-theoretic viewpoint.
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It can be mathematically expressed as,

min
qi∈{0,1}

I(e)

s.t.
∑
i

qi = Ns

(20)

where I(·) denotes the chosen information-theoretic metric to quantify estimation errors of

a sensor network for linear data reconciliation. More specifically, we propose the following

information-theoretic measures for this purpose: entropy and variants of Kullback-Leibler

(KL) divergence. These measures can be used to evaluate the quality of the reconciled

estimate and also compare the accuracy of the estimate for different sensor network config-

urations. Therefore, we develop optimal sensor network design formulations based on these

measures.

4.2 Entropy-based optimal sensor selection

In this subsection, we develop an optimization formulation based on the entropy of estimation

errors in reconciled estimates. As discussed previously, the choice of sensor network has a

significant impact on the overall estimation error. Thus, to evaluate the performance of

different sensor networks, entropy can be used as a measure of estimation error, with lower

entropy values indicating a lower estimation error. Therefore, minimizing entropy can be

employed as an objective function for sensor network design optimization problems. In other

words, our goal is to find the optimal sensor network that results in the minimum entropy

of estimation errors.

Recall that the accuracy of reconciled estimates is characterized by estimation errors,

e ∼ N (0,Σe), and hence it is given by,

N (0,Σe) =
1√

(2π)nz |Σe|
exp

(
− 1

2
eTΣ−1

e e
)

(21)
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where nz is the dimensionality of the distribution. Thus, the entropy of estimation error is

given by,

H(e) = − E [logN (0,Σe)]

= − E [log[(2π)−nz/2|Σe|−1/2exp(−1

2
eTΣ−1

e e)]]

=
nz

2
(1 + log(2π)) +

1

2
log |Σe|

(22)

Assuming that gross errors do not exist and that the estimation errors depend only on

the sensor network and its precision values. The estimation error of the sensor network

can be modeled as a Gaussian distribution with mean zero and covariance matrix Σe, where

Σe = C(CTQC)−1CT with qi = 1 if i ∈ SN . Now, the entropy-based optimal sensor selection

problem can be expressed as follows,

min
qi∈{0,1}

nz

2
(1 + log(2π)) +

1

2
log det(C(CTQC)−1CT )

s.t.
∑
i

qi = Ns

(23)

It is known that the error covariance matrix Σe may not be invertible due to degeneracy

issues, as reported by Prakash and Bhushan.26 This poses a challenge in computing the

entropy of the estimation error distribution. To circumvent this degeneracy issue, we recast

the optimization problem as minimizing the entropy of estimation errors in primary variables.

Thus, the accuracy of reconciled estimates is characterized using the estimation errors in

primary variables, ep ∼ N (0,Σe,p) where Σe,p = (CTQC)−1. Now, the entropy-based optimal

sensor selection problem is recast as follows,

min
qi∈0,1

np

2
(1 + log(2π))− 1

2
log det(CTQC)

s.t.
∑
i

qi = Ns

(24)

where Q = diag{qi/σ2
i }, where qi is a binary variable indicating if sensor i is selected or

not, and np is the number of primary variables. The resulting optimization problem (24)
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is an integer nonlinear programming problem as the second term involves the computation

of determinants involving binary decision variables. However, the integer relaxation of the

binary decision variable yields −log det(.) which is known to be a convex function in terms

of continuous variables. Thus, the relaxed problem is convex, therefore, it can be solved

for global optimality. Hence, the integer programming problem can be solved to global

optimality using the branch and bound algorithm by solving the relaxed problem at every

branching step.

4.3 Kullback-Leibler divergence based optimal sensor selection

In this subsection, we propose the use of the Kullback-Leibler (KL) divergence as a metric

for optimal sensor selection. As it is widely known that KL divergence can be used as a

similarity (or dissimilarity) measure between two distributions, say f and g. Therefore, it

can be used to compute the similarity between the estimation error distributions obtained

by two different sensor networks. It is well-known that the most accurate values of process

variables can be obtained through data reconciliation when all variables are measured and no

gross errors exist in the measurements. Let g represent the distribution of estimation errors

obtained when all sensors are chosen, and it is assumed to follow a normal distribution with

mean 0 and covariance Σg = C(CT Q̄C)−1CT , where Q̄ represents the diagonal Q matrix for

the case where all sensors are chosen. Similarly, let f represent the distribution of estimation

errors when a sensor network (denoted by SN) is chosen. The distribution f follows a normal

distribution with mean 0 and covariance Σf = C(CTQC)−1CT with qi = 1 if i ∈ SN .

4.3.1 Sensor Network Design using Forward Kullback-Leibler divergence

As mentioned in the preliminaries section, there exist two variants of KL divergence viz.

forward and reverse KL divergences. The optimal sensor selection problem based on forward
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KL divergence can be formulated as follows,

min Df
KL(f, g)

s.t.
∑
i

qi = Ns

(25)

In light of the degeneracy issues highlighted by Prakash and Bhushan,26 we rewrite the

formulation in terms of the estimation errors in primary variables. The variance-covariance

matrix of estimation errors in primary variables is given by:

Σxp = (CTQC)−1 (26)

Let gp ∼ N (0,Σgp) represent the distribution of estimation errors in primary variables when

all variables are measured, and fp ∼ N (0,Σfp) represent the distribution of estimation errors

in primary variables for a given sensor network SN . Σgp = (CT Q̄C)−1 when all sensors are

selected, and Σfp = (CTQC)−1 when qi = 1 if i ∈ SN . The formulation thus becomes,

min Df
KL(fp, gp)

s.t.
∑
i

qi = Ns

(27)

Upon substitution of Σfp and Σgp in the expressions for forward KL (4), we get

min
1

2

[
Tr{(CTQC)−1(CT Q̄C)}+ log det(CT Q̄C)−1

− log det(CTQC)−1 − np

]
s.t.

∑
i

qi = Ns

(28)

The resulting formulation is an integer nonlinear programming problem that is hard to solve

in general. Therefore, in the following subsection, we present a convex reformulation to

obtain a computationally tractable optimization problem.
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Convex Reformulation of Forward Kullback-Leibler divergence

In this subsection, we reformulate the proposed optimization problem (28) using convex

optimization. To this end, we provide some basic definitions enabling the reformulation.

More details on these concepts can be found in the original reference.30

Definition 1: An epigraph of a function f : Rt 7→ R is the subset of Rt+1 given by,

epi(f) = {(u, v)| x ∈ domain(f), f(u) ≤ v}

Definition 2: Let G be positive definite i.e. G ≻ 0, then the matrix T = E − FG−1F T is

the Schur complement of G in the matrix

X =

 E F

F T G


Then the condition for positive definiteness of block matrix X is if G ≻ 0, then X ≻ 0 only

if T ≻ 0.

Using the above definitions, and letting W3 = (CT Q̄C)−1 and W4 = (CT Q̄C) , we can

reformulate the original problem (32) as,

min
1

2

[
Tr{YW4}+ log det(W3)− log det(Y )− np

]
s.t. Y ≻ (CTQC)−1∑

i

qi = Ns

(29)
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This can be written as,

min
1

2

[
Tr{YW4}+ log det(W3)− log det(Y )− np

]
s.t.

 Y I

I CTQC

 ≻ 0

∑
i

qi = Ns

(30)

Notice that the second and fourth terms in the equation (30) are known constants, and

thus do not affect the optimal solution. The resulting formulation is a Mixed Integer SemiDef-

inite Programming (MISDP) problem, which when relaxed becomes a semidefinite program-

ming problem, which is known to be convex. A branch and bound algorithm can be used to

find the globally optimal solution to this problem.

4.3.2 Sensor Network Design using Reverse Kullback-Leibler divergence

The optimal sensor selection problem based on reverse KL divergence can be formulated as

follows,

min Dr
KL(f, g)

s.t.
∑
i

qi = Ns

(31)

As discussed above, owing to the degeneracy issues, the optimization formulation resembles

the formulation for reverse KL divergence and is given by,

min Dr
KL(fp, gp)

s.t.
∑
i

qi = Ns

(32)
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Upon substitution of Σfp and Σgp in the expressions for reverse KL (5), we get

min
1

2

[
Tr({CT Q̄C)−1(CTQC)} − log det(CT Q̄C)−1

+ log det(CTQC)−1 − np

]
s.t.

∑
i

qi = Ns

(33)

The resulting optimization formulation for reverse KL divergence is an Integer SemiDef-

inite Programming (ISDP) problem, which upon relaxation of binary variables results in a

convex function. Thus the problem can be solved to global optimality using a branch and

bound algorithm.

4.3.3 Sensor Network Design using Symmetric Kullback-Leibler divergence

In this subsection, we formulate an optimization problem for optimal sensor selection using

the symmetric Kullback-Leibler divergence. The optimal sensor selection problem in terms

of estimation errors in primary variables is formulated as follows:

min
qi∈{0,1}

Ds
KL(fp, gp)

s.t.
∑
i

qi = Ns

(34)

The symmetric KL divergence in the above formulation (34) can be easily computed, al-

leviating the degeneracy issues in (31). Assuming no gross errors, the Ds
KL(fp, gp) can be

obtained using (6) as,

Ds
KL(fp, gp) =

1

4

[
Tr(ΣfpΣgp

−1) + Tr(ΣgpΣfp
−1)

− 2np

] (35)
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It is worth noting that Σgp is an invertible and known matrix. Substituting for Σfp =

(CTQC)−1 and letting W1 = Σ−1
gp and W2 = Σgp, we get,

Ds
KL(fp, gp) =

1

4

[
Tr((CTQC)−1W1) + Tr(W2(C

TQC))

− 2np

] (36)

Recall that Q = diag{qi/σ2
i } where qi is a binary variable indicating whether the i-th sensor

is selected or not. The first term is nonlinear owing to inverse operation, whereas the second

term is linear in terms of decision variable qi, and the last term is a constant. Hence, the

resulting optimization problem is a nonlinear integer programming problem, which is hard

to solve in general. Therefore, we provide a convex reformulation of the symmetric KL

divergence-based optimal sensor selection in the next subsection.

Convex Reformulation of Symmetric Kullback-Leibler divergence

By factorizing, W1 = BBT , where B is the square root of W1, and using the property that

cyclic permutations have no effect on the trace operator, we get

Ds
KL(fp, gp) =

1

4

[
Tr(BT (CTQC)−1B)

+ Tr(W2(C
TQC))− 2np

] (37)

Using definition 1 in (37), the optimization problem (34) can be rewritten as,

min
qi∈{0,1},α

1

2

[
α + Tr(W2(C

TQC))− 2np

]
s.t. T r(BT (CTQC)−1B) ≤ α∑

i

qi = Ns

(38)
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Introducing the internal matrix variable Y and using definition 2, the overall optimization

problem can be recast as follows:

min
qi∈{0,1},α,Y

1

4

[
α + Tr(W2(C

TQC))− 2np

]
s.t. T r(Y ) ≤ α

Y ≻ 0 Y B

BT CTQC

 ≻ 0

∑
i

qi = Ns

(39)

The resulting formulation (39) is a Mixed Integer Semidefinite Programming (MISDP) prob-

lem. It is important to notice that the integer relaxation of the binary variable qi requires

one to solve an optimization problem with a linear cost function subject to linear matrix

inequalities and linear equality. Thus, the relaxed problem is a semidefinite programming

problem known to be convex in general. Therefore, we use branch and bound to solve the

integer problem in which a semidefinite programming solver is used at each branching node.

Hence, the proposed sensor selection problem employing the symmetric KL divergence can be

solved using a branch and bound algorithm for global optimality. The optimization problem

was solved using the SDPT3 toolbox in MATLAB R2021b.31

5 Case studies

5.1 Two splitter system

Consider a two-splitter system shown in Figure 1. There are a total of five flow streams and

two process units. The steady-state balance equations governing the process are given by,
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Figure 1: A simple splitter system

F1 = F2 + F3

F3 = F4 + F5

(40)

Therefore, the degree of freedom of this system is three, i.e., any three variables that

form an observable sensor network can be chosen as primary variables. Let us choose the

primary variables as xp = {F1, F2, F5} and the corresponding measurement matrix C can be

obtained using (14) as,

C =



1 0 0

0 1 0

1 −1 0

1 −1 −1

0 0 1


(41)

The number of observable sensor networks in this case is 8. In this work, the error variance

values are considered to be unequal, and are given by, Σϵ = diag{0.37, 0.29, 0.45, 0.61, 0.49}.

Table 1 presents the forward, reverse and symmetric KL divergence values of all the observ-

able sensor networks. It can also be inferred from Table 1 that the optimal sensor networks
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obtained by minimizing the trace of estimation errors29 and by minimizing the maximum

eigenvalue30 are different. The optimal sensor network obtained using entropy and the sym-

metric KL was found to be {F1, F2, F5} with the optimal H value of 2.30 and an optimal

Ds
KL value of 0.57. Also to be noted is the fact that the optimal sensor network obtained by

reverse KL divergence is the same as that of entropy and symmetric KL divergence, while

the optimal network obtained using forward KL divergence was found to be {F2, F3, F5} with

an optimal Df
KL value of 0.81. This example illustrates that minimizing the forward KL is

not the same as minimizing the reverse KL divergence as these measures are asymmetric.

Therefore, we propose to use symmetric KL as a measure for sensor network design as it is

an average of forward and reverse KL. Thus, determining the optimal sensor network based

on symmetric KL signifies the minimal average estimation error obtained by accounting for

the complete distribution information of estimation errors.

Table 1: Comparison of sensor network design obtained using different measures for the case
of minimum observable networks

Sensor Tr(Σe)
29 log detΣep

30 λmax(Σe)
30 H Df

KL Dr
KL Ds

KL

F1,F2,F4 3.20 -2.73 2.11 2.89 1.06 0.40 0.73
F1,F2,F5 2.96 -2.95 1.98 2.78a 0.82 0.34c 0.58d

F1,F3,F4 3.31 -2.29 1.90 3.11 1.31 0.51 0.91
F1,F3,F5 3.07 -2.51 1.78 3.00 1.11 0.45 0.78
F1,F4,F5 4.04 -2.20 2.94 3.16 2.53 0.64 1.58
F2,F3,F4 3.15 -2.53 1.87 2.99 1.02 0.43 0.72
F2,F3,F5 2.91 -2.75 1.75 2.88 0.81b 0.36 0.59
F2,F4,F5 3.88 -2.45 2.90 3.03 2.00 0.55 1.28
a,b,c,d are optimal sensor networks obtained using (24), (30), (33), and (39) respectively.

5.2 Ammonia system

Let us consider the representative process network of an ammonia process as presented in

Figure 2.2 It has five process units and eight flow streams. The steady-state mass balance

equations of the process are given by,
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Figure 2: Simplified flow network of an ammonia process

F2 − F1 − F7 = 0

F3 − F2 = 0

F4 − F3 = 0

F5 + F6 − F4 = 0

F7 + F8 − F5 = 0

The degree of freedom for the system is three. Therefore, any three variables that form

an observable sensor network can be chosen as primary variables. In this work, we choose

the primary variables as xp = {F1, F2, F5}, and the corresponding measurement matrix C is

given by,

C =


1 0 0 0 0 0 −1 1

0 1 1 1 0 1 1 −1

0 0 0 0 1 −1 0 1


T

(42)

Notice that the choice of primary variables does not affect the optimal solution, and

the number of observable sensor networks for this process is 32. Table 2 compares average

error, forward KL, reverse KL, and symmetric KL divergences of all the minimal observable
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Table 2: Comparison of information-theoretic based sensor network design formulations

# Sensor Tr(Σe)
2 H Df

KL Dr
KL Ds

KL

Networks case 1 case 2 case 1 case 2 case 1 case 2 case 1 case 2 case 1 case 2
1 F1,F2,F5 12 5.04 4.26 2.94 2.77 2.51 0.80 0.75 1.78 1.63
2 F1,F2,F6 11 4.93 4.26 3.05 2.27 2.36 0.80 0.81 1.53 1.59
3 F1,F2,F8 12 5.05 4.26 2.96 2.77 2.54 0.83 0.79 1.80 1.67
4 F1,F3,F5 12 4.98 4.26 2.93 2.77 2.45 0.80 0.74 1.78 1.60
5 F1,F3,F6 11 4.88 4.26 3.04 2.27 2.31 0.80 0.81 1.53 1.56
6 F1,F3,F8 12 5.00 4.26 2.95 2.77 2.49 0.83 0.78 1.80 1.64
7 F1,F4,F5 12 4.39 4.26 2.79a 2.77 1.89 0.80 0.64c 1.78 1.27d

8 F1,F4,F6 11 4.38 4.26 2.90 2.27 1.84b 0.80 0.71 1.53 1.28
9 F1,F4,F8 12 4.50 4.26 2.82 2.77 2.02 0.83 0.68 1.80 1.35
10 F1,F5,F6 14 6.61 4.26 3.06 3.77 4.48 0.89 0.94 2.33 2.71
11 F1,F5,F7 14 6.16 4.26 3.01 3.77 3.90 0.89 0.89 2.33 2.39
12 F1,F5,F8 16 6.86 4.26 2.97 4.77 5.01 0.92 0.91 2.84 2.96
13 F1,F6,F7 14 6.37 4.26 3.11 3.77 4.19 0.89 0.96 2.33 2.58
14 F1,F7,F8 13 5.73 4.26 3.03 3.27 3.51 0.92 0.94 2.09 2.22
15 F2,F5,F7 11 4.94 4.26 3.07 2.27 2.42 0.80 0.83 1.53 1.62
16 F2,F5,F8 12 5.29 4.26 3.04 2.77 2.90 0.83 0.85 1.80 1.87
17 F2,F6,F7 12 5.69 4.26 3.17 2.77 3.20 0.80 0.89 1.78 2.05
18 F2,F6,F8 12 5.71 4.26 3.14 2.77 3.22 0.83 0.92 1.80 2.07
19 F2,F7,F8 12 5.49 4.26 3.09 2.77 2.93 0.83 0.87 1.80 1.90
20 F3,F7,F8 11 4.89 4.26 3.06 2.27 2.37 0.80 0.82 1.53 1.59
21 F3,F6,F8 12 5.24 4.26 3.02 2.77 2.85 0.83 0.84 1.80 1.84
22 F3,F6,F7 12 5.63 4.26 3.16 2.77 3.14 0.80 0.89 1.78 2.01
23 F3,F5,F8 12 5.66 4.26 3.13 2.77 3.17 0.83 0.91 1.80 2.04
24 F3,F5,F7 12 5.44 4.26 3.08 2.77 2.88 0.83 0.86 1.80 1.87
25 F4,F7,F8 11 4.39 4.26 2.92 2.27 1.89 0.80 0.72 1.53 1.30
26 F4,F6,F8 12 4.74 4.26 2.89 2.77 2.37 0.83 0.74 1.80 1.55
27 F4,F6,F7 12 5.03 4.26 3.03 2.77 2.53 0.80 0.79 1.78 1.66
28 F4,F5,F8 12 5.16 4.26 3.00 2.77 2.70 0.83 0.81 1.80 1.75
29 F4,F5,F7 12 4.94 4.26 2.94 2.77 2.40 0.83 0.76 1.80 1.58
30 F5,F6,F7 14 6.84 4.26 3.19 3.77 4.91 0.89 1.02 2.33 2.96
31 F5,F6,F8 13 6.31 4.26 3.15 3.27 4.23 0.92 1.04 2.09 2.63
32 F6,F7,F8 16 7.94 4.26 3.21 4.77 6.33 0.92 1.06 2.84 3.70
a,b,c,d are optimal sensor networks obtained using (24), (30), (33), and (39) respectively
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Figure 3: Df
KL vs Dr

KL values of minimum observable sensor networks of ammonia process

sensor networks. Further, we consider two cases. In case 1, we assume equal, and unit error

variances for all potential measured variables, that is, Σϵ = diag{1, 1, 1, 1, 1, 1, 1, 1}. All

the optimal sensor networks obtained using the average error formulation are also optimal in

terms of forward and symmetric KL divergence. The optimal sensor networks obtained are as

follows: {F1, F2, F6}, {F1, F3, F6}, {F1, F4, F6}, {F2, F5, F7}, {F3, F5, F7}, and {F4, F5, F7}.

These sensor networks have a symmetric KL divergence value of 1.53. In addition, reverse

KL divergence have a few more optimal sensor networks that are not optimal with respect

to symmetric KL divergence. They are as follows: {F1, F2, F5}, {F1, F3, F5}, {F1, F4, F5},

{F2, F6, F7}, {F4, F6, F7}.

In case 2, we consider unequal error variances for all potential measured variables, that is,

Σϵ = diag{0.380, 0.430, 0.420, 0.320, 0.440, 0.545, 0.490, 0.460}. The optimal sensor network

obtained by minimizing the average error is {F1, F4, F6}. In contrast, the optimal sensor

network obtained by entropy and the proposed symmetric KL divergence was found to

be {F1, F4, F5} with the optimal H value of 2.79 and Ds
KL value of 1.26. Coincidentally,
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{F1, F4, F5} is also the optimal sensor network based on reverse KL divergence; however, it

is not an optimal sensor network in terms of forward KL divergence. The optimal sensor

network obtained using forward KL divergence is {F1, F4, F6}, with a Df
KL value of 1.84. This

demonstrates that the sensor network that is optimal in terms of forward KL divergence may

not be optimal in terms of reverse KL divergence, as these measures are asymmetric. This

can also be clearly inferred using Figure 3.

Figure 4 shows the distribution of estimation errors of primary variables for different

observable sensor networks. The reference distribution (best achievable) indicates the case

where all sensors are chosen. It is provided to compare the relative accuracy of primary

variables that can be achieved when the optimal sensors are placed. It can be seen from the

plots that sensor network 7 is closest to the reference distribution in terms of similarity, while

sensor network 32 is the furthest. Thus symmetric KL divergence provides a quantifying

metric for designing sensor networks by accounting for the complete distribution of estimation

errors in reconciled estimates.

Table 4 lists the optimal sensor networks obtained for different values of Ns. Notice that

as the number of sensors increases, the estimation errors of process variables approach the

least achievable estimation errors when all sensors are selected. This can also be seen from

the symmetric KL divergence values. The diagonal plots in Figure 5 present the distribution

of estimation errors in primary variables of the ammonia process. The reference distribution

is again the same, i.e., it indicates the case where all sensors are chosen. The off-diagonal

plots show the contours of estimation errors between two primary variables with a 95%

confidence interval. For example, the contours in subplot(2,1) represent the estimation

errors between F1 and F2. Thus, minimizing average error, Tr(Σe), does not account for

estimation errors between two different variables, although it will be affected by the choice

of the sensor network. Therefore, the proposed symmetric KL divergence measure can be

considered more meaningful since it accounts for the complete distribution of estimation

errors in the sensor selection.
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Figure 4: Plots showing estimation errors of various sensor networks
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Figure 5: Plots showing estimation errors of primary variables when optimal sensor networks
are chosen based on Ds

KL with Ns = 3, 5 and 7
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Table 3: Optimal redundant sensor networks based on H for a given Ns

Ns Optimal Sensor Networks H
3 F1, F4, F5 2.79
4 F1, F4, F5, F8 2.16
5 F1, F4, F5, F7, F8 1.87
6 F1, F4, F5, F6, F7, F8 1.60
7 F1, F3, F4, F5, F6, F7, F8 1.41
8 F1, F2, F3, F4, F5, F6, F7, F8 1.28

Table 4: Optimal redundant sensor networks based on Ds
KL for a given Ns

Ns Optimal Sensor Networks Ds
KL

3 F1, F4, F5 1.26
4 F1, F4, F5, F8 0.37
5 F1, F3, F4, F5, F8 0.18
6 F1, F3, F4, F5, F7, F8 0.09
7 F1, F3, F4, F5, F6, F7, F8 0.01
8 F1, F2, F3, F4, F5, F6, F7, F8 0.00

5.3 Steam Metering Network

Consider the steam metering system as shown in Figure 6. The steam metering network

has twenty eight flow streams and eleven process systems. Hence the degree of freedom

for the system is 17, i.e., any seventeen variables that form an observable sensor network

can be chosen as primary variables. In this work, we choose the primary variables as

xp = {F1, F2, F5, F6, F7, F8, F12, F14, F15, F16, F17, F19, F20, F21, F23, F24, F27}. For details on

the model, the reader is referred to the Supplementary Material.

In this case, the minimum number of observable sensor networks are 12,43,845. We again

consider the case of unequal variances and is given by, Σϵ = diag{0.021, 0.025, 2.795, 2.748,

1.331, 2.806, 0.058, 4.101, 0.021, 1.310, 0.371, 1.681, 2.781, 2.296, 1.50, 0.591, 0.818, 0.405, 0.198,

0.262, 2.181, 0.136, 0.064, 1.166, 2.136, 2.033, 1.769, 1.805} taken from the work by Narasimhan.29

In this case, the optimal sensor network obtained by minimizing the average error is {F1, F2, F4,

F7, F9, F10, F11, F13, F16, F18, F19, F20, F21, F22, F23, F24, F27}, whereas the one obtained using

entropy is {F1, F2, F7, F9, F10, F11, F16, F17, F18, F19, F20, F21, F22, F23, F24, F27F28} with an en-
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Figure 6: Steam metering system

tropy value of 13.04 and that using the proposed approach is {F1, F2, F7, F9, F10, F11, F13, F16,

F17, F18, F19, F20, F21, F22, F23, F24, F27} with the symmetric KL divergence value of 3.62. Also

to be noted is the fact that using forward KL divergence also gives the same optimal sen-

sor network as using symmetric KL divergence, whereas reverse KL divergence gives the

same optimal network as using entropy. Table 5 presents average error, entropy, forward

KL divergence values, reverse KL divergence, and symmetric KL divergence values of a few

of the minimum observable sensor networks, respectively. Due to solver issues, forward KL

did not converge in this case. Figure 7 shows the convergence plots of the trace based for-

mulation with the proposed entropy and symmetric KL formulation in a steam metering

system. It is worth mentioning that the entropy formulation converged in 293 seconds. The
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Table 5: Representative sensor network designs in steam metering system

Sensor Network Tr(Σe)
2 H Df

KL Dr
KL Ds

KL

F1,F2,F3,F5,F6,F7,F8,F11,F14,F15,F16,F18,F19,F20,F24,F27,F28 91.20 19.40 300.96 6.70 153.83
F1,F2,F7,F9,F10,F11,F16,F17,F18,F19,F20,F21,F22,F23,F24,F27,F28 59.08 13.04a 6.04 1.56c 3.80
F1,F2,F3,F6,F7,F8,F10,F11,F14,F15,F16,F22,F23,F24,F26,F27,F28 80.13 19.31 223.52 6.43 114.97
F1,F2,F7,F9,F10,F11,F13,F16,F17,F18,F19,F20,F21,F22,F23,F24,F27 55.36 13.26 5.60b 1.64 3.62d

F1,F3,F6,F7,F8,F9,F11,F13,F14,F17,F19,F20,F22,F23,F24,F25,F28 133.68 17.83 157.48 5.40 81.44
F2,F4,F5,F6,F7,F8,F10,F12,F14,F15,F18,F19,F20,F22,F23,F25,F26 76.20 20.17 264.66 7.01 135.83
F1,F2,F4,F7,F9,F10,F11,F13,F16,F18,F19,F20,F21,F22,F23,F24,F27 53.38 13.86 8.86 2.01 5.43
F1,F2,F4,F5,F6,F7,F8,F12,F14,F15,F16,F18,F19,F20,F22,F23,F26 67.96 17.48 203.24 4.87 104.05
F3,F4,F5,F6,F7,F9,F10,F11,F14,F15,F16,F19,F22,F23,F24,F27,F28 89.84 19.93 248.62 7.07 127.8
F3,F4,F5,F6,F8,F12,F13,F14,F15,F17,F18,F21,F24,F25,F26,F27,F28 177.16 29.12 1074.69 14.77 544.73
F1,F2,F7,F9,F10,F11,F14,F16,F17,F18,F19,F21,F23,F24,F25,F27,F28 84.08 15.50 31.74 3.51 17.63

a,c,d are optimal sensor networks obtained using (24), (33), and (39) respectively. b is
obtained by enumeration.

proposed symmetric KL divergence formulation converged in 3308 seconds, however, the

average error (trace of estimation error) formulation did not converge even after 24 hours.

This demonstrates the computational efficacy of the proposed information theoretic-based

sensor network design formulations.

6 Data Availability and Reproducibility Statement

The details of the linear process model, corresponding C matrix, and the sensor error vari-

ances of all three case studies are provided in Supplementary Material. Additionally, the

estimation error covariances of primary variables for different sensor networks that are used

for plotting Figures 4 and 5 have also been provided. The .zip file contains all the numer-

ical data for plotting the distribution contours (Figures 4 and 5), and the convergence plot

(Figure 7). Data used for plotting Figure 3 are presented in Table 2 of this manuscript.

7 Conclusions

This work presents a convex optimization approach to the design of sensor networks for

data reconciliation in a linear steady-state process. We have proposed different information

theoretic measures that account for the complete distribution of estimation errors in the
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Figure 7: Convergence plots of the Tr(Σe), H, and Ds
KL formulations

design of sensor networks. Firstly, it was shown that the optimal sensor selection problem

formulated using the entropy of estimation errors and reverse KL are integer semidefinite

programming problems. Further, it was shown that the minimization of entropy of estimation

errors is the same as the maximization of the logarithm of the determinant of estimation

errors. Secondly, it was shown that the design of an optimal sensor network using forward,

and symmetric KL, are formulated as mixed integer semidefinite programming problems.

All the proposed sensor network design formulations using information-theoretic measures

are convex when binary variables are relaxed. Thus we obtain the globally optimal sensor

networks using all the proposed formulations. Furthermore, we highlighted that the forward

and reverse KL divergences yield different optimal sensor networks even when the reference

distribution is the same due to the asymmetric property. On the other hand, a symmetric

KL divergence-based sensor network design problem determines the sensor network that

minimizes the average between the forward and the reverse KL divergences as it alleviates

the asymmetric issue. Therefore, we propose to use symmetric KL as a measure to design
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sensor networks as it is symmetric, and accounts for the complete distribution information of

estimation errors. Case studies demonstrated that the proposed formulations yield globally

optimal sensor networks, as well as, their computational effectiveness. Demonstration of the

proposed symmetric KL divergence-based sensor selection on a large-scale process network

is currently under investigation.
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