Figure 5 (a) Schematic illustration of the components of the anti-counterfeiting pattern “Fortune cat” and the encryption pattern “8089”. (b) Photographs of the quadruple anti-counterfeiting demonstration process of “Fortune cat” pattern. (c) Photographs of the decryption of the “8089” pattern.
afterglow is observed instantly and clearly. More importantly, the afterglow of the pattern fabricated by 5-TAT-OMe/PPh3system disappears after turning off the UV-lamp for six seconds, while the other parts of “Fortune cat” fabricated by 6-TAT-H/PPh3 and 6-TAT-CN/PPh3 systems maintain yellow-green afterglow. After stopping the UV light irradiation for nine seconds, only the head of the “Fortune cat” composed of 6-TAT-H/PPh3 emits yellow-green phosphorescence. Hence, the “Fortune cat” pattern presents four-level of anti-counterfeiting (Figure 5b). Similarly, these host-guest systems could be applied to achieve advanced data encryption. As shown in Figure 5a, the pattern of “8089” consisting of 6-TAT-H/PPh3, 6-TAT-CN/PPh3, and 5-TAT-OMe/PPh3 is fabricated. Upon natural light and UV light, it appears as “8089”. However, the data turns to “6743” after the cessation of UV irradiation for 4s, which further changes to “5117” after 9 s, as shown in Figure 5c. Such abundant variations improve the security and reliability of data encryption.
Conclusions
In summary, six TAT-based luminogens with different peripherial groups are designed and synthesized. Dispersing them into a rigid PPh3 matrix triggers the persistent RTP via a host-guest strategy. The large conjugated TAT π-planes of the guest (luminogens) could suppress the non-radiative transitions by reducing molecular vibrations and rotations. The rigid host (PPh3) matrix with good crystallinity could prevent the close molecular packing of guest π-planes and avoid the guest forming trap states. In addition, the experimental results and theoretical simulation indicate that the energy transfer from host to guest is an important factor to induce strong phosphorescence. Among six luminogens, 6-TAT-CN/PPh3co-crystalline films obtain the highest phosphorescence yield of 29.35% with a phosphorescence lifetime of 0.76 s. Moreover, these host-guest materials exhibit great potentials in multi-level dynamic data encryption and anti-counterfeiting. This work deepens the insight for low cost, halogen free, and facile fabrication of all-organic persistent RTP materials.
Experimental
The experimental details are shown in Supporting Information.
Supporting Information
The supporting information for this article is available on the WWW under https://doi.org/10.1002/cjoc.2023xxxxx.
Acknowledgement
This work was financially supported by the National Natural Science Foundation of China (Grant number: 22275189, 22275193, and 22005307), the Natural Science Foundation of Fujian Province (E131AJ0101), Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China (2021ZR115), and Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (E055AJ01).
References
  1. Kabe, R.; Adachi, C. Organic Long Persistent Luminescence.Nature. 2017, 550 , 384-387.
  2. Zhang, Y.; Su, Y.; Wu, H.; Wang, Z.; Wang, C.; Zheng, Y.; Zheng, X.; Gao, L.; Zhou, Q.; Yang, Y.; Chen, X.; Yang, C.; Zhao, Y. Large-Area, Flexible, Transparent, and Long-Lived Polymer-Based Phosphorescence Films. J. Am. Chem. Soc. 2021, 143 , 13675-13685.
  3. Wang, J.; Gu, X.; Ma, H.; Peng, Q.; Huang, X.; Zheng, X.; Sung, S. H. P.; Shan, G.; Lam, J. W. Y.; Shuai, Z.; Tang, B. Z. A Facile Strategy for Realizing Room Temperature Phosphorescence and Single Molecule White Light Emission. Nat. Commun. 2018, 9 , 2963.
  4. Cao, P.; Chen, Q.; Wu, P. Aqueous Room-Temperature Phosphorescence from Assembled Phosphors for Analytical Detection. Chin. J. Chem. 2023, 41, 979-990.
  5. Ye, W.; Wang, Y.; Cao, T.; Meng, H.; Wang, C.; Hu, B.; Gao, Z.; Wang, C. Respiration-Responsive Colorful Room-Temperature Phosphorescent Materials and Assembly-Induced Phosphorescence Enhancement Strategies.Small. 2023, e2207403.
  6. Li, D.; Yang, J.; Fang, M.; Tang, B.; Li, Z. Stimulus-Responsive Room Temperature Phosphorescence Materials with Full-Color Tunability from Pure Organic Amorphous Polymers. Sci. Adv. 2022,8, eabl8392.
  7. An, Z.; Zheng, C.; Tao, Y.; Chen, R.; Shi, H.; Chen, T.; Wang, Z.; Li, H.; Deng, R.; Liu, X.; Huang, W. Stabilizing Triplet Excited States for Ultralong Organic Phosphorescence. Nat. Mater.2015, 14 , 685-90.
  8. Yin, Z.; Gu, M.; Ma, H.; Jiang, X.; Zhi, J.; Wang, Y.; Yang, H.; Zhu, W.; An, Z. Molecular Engineering through Control of Structural Deformation for Highly Efficient Ultralong Organic Phosphorescence.Angew. Chem. Int. Ed. 2021, 60 , 2058-2063.
  9. Zhang, Z. Y.; Xu, W. W.; Xu, W. S.; Niu, J.; Sun, X. H.; Liu, Y. A Synergistic Enhancement Strategy for Realizing Ultralong and Efficient Room-Temperature Phosphorescence. Angew. Chem. Int. Ed.2020, 59 , 18748-18754.
  10. Huang, Z.; He, Z.; Ding, B.; Tian, H.; Ma, X. Photoprogrammable Circularly Polarized Phosphorescence Switching of Chiral Helical Polyacetylene Thin Films. Nat. Commun. 2022,13 , 7841.
  11. Dang, Q.; Jiang, Y.; Wang, J.; Wang, J.; Zhang, Q.; Zhang, M.; Luo, S.; Xie, Y.; Pu, K.; Li, Q.; Li, Z. Room-Temperature Phosphorescence Resonance Energy Transfer for Construction of near-Infrared Afterglow Imaging Agents. Adv. Mater. 2020, 32 , e2006752.
  12. Wang, X. F.; Xiao, H.; Chen, P. Z.; Yang, Q. Z.; Chen, B.; Tung, C. H.; Chen, Y. Z.; Wu, L. Z. Pure Organic Room Temperature Phosphorescence from Excited Dimers in Self-Assembled Nanoparticles under Visible and near-Infrared Irradiation in Water. J. Am. Chem. Soc. 2019, 141 , 5045-5050.
  13. Tian, Y.; Yang, J.; Liu, Z.; Gao, M.; Li, X.; Che, W.; Fang, M.; Li, Z. Multistage Stimulus-Responsive Room Temperature Phosphorescence Based on Host-Guest Doping Systems. Angew. Chem. Int. Ed.2021, 60 , 20259-20263.
  14. Wang, Z.; Zhang, Y.; Wang, C.; Zheng, X.; Zheng, Y.; Gao, L.; Yang, C.; Li, Y.; Qu, L.; Zhao, Y. Color-Tunable Polymeric Long-Persistent Luminescence Based on Polyphosphazenes. Adv. Mater.2020, 32 , e1907355.
  15. Qian, C.; Ma, Z.; Fu, X.; Zhang, X.; Li, Z.; Jin, H.; Chen, M.; Jiang, H.; Jia, X.; Ma, Z. More Than Carbazole Derivatives Activate Room Temperature Ultralong Organic Phosphorescence of Benzoindole Derivatives. Adv. Mater. 2022, 34 , e2200544.
  16. Zheng, H.; Cao, P.; Wang, Y.; Lu, X.; Wu, P. Ultralong Room-Temperature Phosphorescence from Boric Acid. Angew. Chem. Int. Ed. 2021, 60 , 9500-9506.
  17. Zhang, G.; Chen, J.; Payne, S., J.; Kooi, S., E.; Demas, J., N.; Fraser, C., L. Multi-Emissive Difluoroboron Dibenzoylmethane Polylactide Exhibiting Intense Fluorescence and Oxygen-Sensitive Room-Temperature. J. Am. Chem. Soc. 2007, 129,8942-8943.
  18. Yang, Z.; Xu, C.; Li, W.; Mao, Z.; Ge, X.; Huang, Q.; Deng, H.; Zhao, J.; Gu, F. L.; Zhang, Y.; Chi, Z. Boosting the Quantum Efficiency of Ultralong Organic Phosphorescence up to 52% Via Intramolecular Halogen Bonding. Angew. Chem. Int. Ed. 2020,59 , 17451-17455.
  19. Chen, B.; Huang, W.; Su, H.; Miao, H.; Z hang, X.; Zhang, G. An Unexpected Chromophore-Solvent Reaction Leads to Bicomponent Aggregation-Induced Phosphorescence. Angew. Chem. Int. Ed.2020, 59 , 10023-10026.
  20. He, Z.; Gao, H.; Zhang, S.; Zheng, S.; Wang, Y.; Zhao, Z.; Ding, D.; Yang, B.; Zhang, Y.; Yuan, W. Z. Achieving Persistent, Efficient, and Robust Room-Temperature Phosphorescence from Pure Organics for Versatile Applications. Adv. Mater. 2019, 31 , e1807222.
  21. Liu, W.; Wang, J.; Gong, Y.; Liao, Q.; Dang, Q.; Li, Z.; Bo, Z. Room-Temperature Phosphorescence Invoked through Norbornyl-Driven Intermolecular Interaction Intensification with Anomalous Reversible Solid-State Photochromism. Angew. Chem. Int. Ed. 2020,59 , 20161-20166.
  22. Kuila, S.; George, S. J. Phosphorescence Energy Transfer: Ambient Afterglow Fluorescence from Water-Processable and Purely Organic Dyes Via Delayed Sensitization. Angew. Chem. Int. Ed. 2020,59 , 9393-9397.
  23. Kuila, S.; Garain, S.; Bandi, S.; George, S. J. All‐Organic, Temporally Pure White Afterglow in Amorphous Films Using Complementary Blue and Greenish‐Yellow Ultralong Room Temperature Phosphors.Adv. Funct. Mater. 2020, 30 , 2003693.
  24. Gu, L.; Wu, H.; Ma, H.; Ye, W.; Jia, W.; Wang, H.; Chen, H.; Zhang, N.; Wang, D.; Qian, C.; An, Z.; Huang, W.; Zhao, Y. Color-Tunable Ultralong Organic Room Temperature Phosphorescence from a Multicomponent Copolymer. Nat. Commun. 2020,11 , 944.
  25. Hamzehpoor, E.; Perepichka, D. F. Crystal Engineering of Room Temperature Phosphorescence in Organic Solids. Angew. Chem. Int. Ed. 2020, 59 , 9977-9981.
  26. Li, Q.; Li, Z. Molecular Packing: Another Key Point for the Performance of Organic and Polymeric Optoelectronic Materials.Acc. Chem. Res. 2020, 53 , 962-973.
  27. Ning, Y.; Yang, J.; Si, H.; Wu, H.; Zheng, X.; Qin, A.; Tang, B. Z. Ultralong Organic Room-Temperature Phosphorescence of Electron-Donating and Commercially Available Host and Guest Molecules through Efficient Förster Resonance Energy Transfer. Sci. China Chem. 2021, 64 , 739-744.
  28. Qu, G.; Zhang, Y.; Ma, X. Recent Progress on Pure Organic Room Temperature Phosphorescence Materials Based on Host-Guest Interactions. Chin. Chem. Lett. 2019, 30 , 1809-1814.
  29. Lei, Y.; Dai, W.; Guan, J.; Guo, S.; Ren, F.; Zhou, Y.; Shi, J.; Tong, B.; Cai, Z.; Zheng, J.; Dong, Y. Wide-Range Color-Tunable Organic Phosphorescence Materials for Printable and Writable Security Inks.Angew. Chem. Int. Ed. 2020, 59 , 16054-16060.
  30. Hirata, S. Roles of Localized Electronic Structures Caused by Pi Degeneracy Due to Highly Symmetric Heavy Atom-Free Conjugated Molecular Crystals Leading to Efficient Persistent Room-Temperature Phosphorescence. Adv. Sci. 2019, 6 , 1900410.
  31. Zhao, W.; He, Z.; Tang, B. Z. Room-Temperature Phosphorescence from Organic Aggregates. Nat. Rev. Mater. 2020, 5 , 869-885.
  32. Gao, M.; Tian, Y.; Li, X.; Gong, Y.; Fang, M.; Yang, J.; Li, Z. The Effect of Molecular Conformations and Simulated ”Self-Doping” in Phenothiazine Derivatives on Room-Temperature Phosphorescence.Angew. Chem. Int. Ed. 2023, 62 , e202214908.
  33. Liu, F.; Liao, Q.; Wang, J.; Gong, Y.; Dang, Q.; Ling, W.; Han, M.; Li, Q.; Li, Z. Intermolecular Electronic Coupling of 9-Methyl-9H -Dibenzo[a,c] Carbazole for Strong Emission in Aggregated State by Substituent Effect. Sci. China Chem.2020, 63 , 1435-1442.
  34. Lu, Z.; Li, C.; Fang, T.; Li, G.; Bo, Z. Triindole-Cored Star-Shaped Molecules for Organic Solar Cells. J. Mater. Chem. A.2013, 1 , 7657-7665.
  35. Yao, Z.; Liao, X.; Guo, Y.; Zhao, H.; Guo, Y.; Zhang, F.; Zhang, L.; Zhu, Z.; Kloo, L.; Ma, W.; Chen, Y.; Sun, L. Exploring Overall Photoelectric Applications by Organic Materials Containing Symmetric Donor Isomers. Chem. Mater. 2019, 31 , 8810-8819.
  36. Li, X. C.; Wang, C. Y.; Lai, W. Y.; Huang, W. Triazatruxene-Based Materials for Organic Electronics and Optoelectronics. J. Mater. Chem. C. 2016, 4 , 10574-10587.
  37. Yao, Z.; Zhang, M.; Wu, H.; Yang, L.; Li, R.; Wang, P. Donor/Acceptor Indenoperylene Dye for Highly Efficient Organic Dye-Sensitized Solar Cells. J. Am. Chem. Soc. 2015, 137 , 3799-802.
  38. Feng, S.; Zhu, L.; Wang, D.; Li, C.; Chen, Y.; Chen, X.; Liu, J.; Huang, W.; Ling, Y.; Huang, W. Rigidity-Tuned Full-Color Emission: Uncommon Luminescence Change from Polymer Free-Volume Variations.Adv. Mater. 2022, 34 , e2201337.
  39. Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32 , 1456-65.
  40. Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer.J. Comput. Chem. 2012, 33 , 580-92.
  41. Stephens, P., J.; Devlin, F., J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994,98 , 11623-11627.
  42. Petersson, G. A.; Bennett, A.; Tensfeldt, T. G.; AlLaham, M. A.; Shirley, W. A.; Mantzaris, J. A Complete Basis Set Model Chemistry. I. The Total Energies of Closed‐Shell Atoms and Hydrides of the First‐Row Elements. J. Chem. Phys. 1988, 89 , 2193-2218.
  43. Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics.J. Mol. Graphics. 1996, 14, 33-38.
  44. Hariharan, P. C.; Pople, J. A. Accuracy of Ahnequilibrium Geometries by Single Determinant Molecular Orbital Theory. Mol. Phys.1974, 27 , 209-214.
  45. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132 , 154104.