Figure 5 (a) Schematic illustration of the components of the
anti-counterfeiting pattern “Fortune cat” and the encryption pattern
“8089”. (b) Photographs of the quadruple anti-counterfeiting
demonstration process of “Fortune cat” pattern. (c) Photographs of the
decryption of the “8089” pattern.
afterglow is observed instantly and clearly. More importantly, the
afterglow of the pattern fabricated by 5-TAT-OMe/PPh3system disappears after turning off the UV-lamp for six seconds, while
the other parts of “Fortune cat” fabricated by
6-TAT-H/PPh3 and 6-TAT-CN/PPh3 systems
maintain yellow-green afterglow. After stopping the UV light irradiation
for nine seconds, only the head of the “Fortune cat” composed of
6-TAT-H/PPh3 emits yellow-green phosphorescence. Hence,
the “Fortune cat” pattern presents four-level of anti-counterfeiting
(Figure 5b). Similarly, these host-guest systems could be applied to
achieve advanced data encryption. As shown in Figure 5a, the pattern of
“8089” consisting of 6-TAT-H/PPh3,
6-TAT-CN/PPh3, and 5-TAT-OMe/PPh3 is
fabricated. Upon natural light and UV light, it appears as “8089”.
However, the data turns to “6743” after the cessation of UV
irradiation for 4s, which further changes to “5117” after 9 s, as
shown in Figure 5c. Such abundant variations improve the security and
reliability of data encryption.
Conclusions
In summary, six TAT-based luminogens with different peripherial groups
are designed and synthesized. Dispersing them into a rigid
PPh3 matrix triggers the persistent RTP via a host-guest
strategy. The large conjugated TAT π-planes of the guest (luminogens)
could suppress the non-radiative transitions by reducing molecular
vibrations and rotations. The rigid host (PPh3) matrix
with good crystallinity could prevent the close molecular packing of
guest π-planes and avoid the guest forming trap states. In addition, the
experimental results and theoretical simulation indicate that the energy
transfer from host to guest is an important factor to induce strong
phosphorescence. Among six luminogens, 6-TAT-CN/PPh3co-crystalline films obtain the highest phosphorescence yield of 29.35%
with a phosphorescence lifetime of 0.76 s. Moreover, these host-guest
materials exhibit great potentials in multi-level dynamic data
encryption and anti-counterfeiting. This work deepens the insight for
low cost, halogen free, and facile fabrication of all-organic persistent
RTP materials.
Experimental
The experimental details are shown in Supporting Information.
Supporting Information
The supporting information for this article is available on the WWW
under https://doi.org/10.1002/cjoc.2023xxxxx.
Acknowledgement
This work was financially supported by the National Natural Science
Foundation of China (Grant number: 22275189, 22275193, and 22005307),
the Natural Science Foundation of Fujian Province (E131AJ0101), Fujian
Science & Technology Innovation Laboratory for Optoelectronic
Information of China (2021ZR115), and Fujian Institute of Research on
the Structure of Matter, Chinese Academy of Sciences (E055AJ01).
References
- Kabe, R.; Adachi, C. Organic Long Persistent Luminescence.Nature. 2017, 550 , 384-387.
- Zhang, Y.; Su, Y.; Wu, H.; Wang, Z.; Wang, C.; Zheng, Y.; Zheng, X.;
Gao, L.; Zhou, Q.; Yang, Y.; Chen, X.; Yang, C.; Zhao, Y. Large-Area,
Flexible, Transparent, and Long-Lived Polymer-Based Phosphorescence
Films. J. Am. Chem. Soc. 2021, 143 ,
13675-13685.
- Wang, J.; Gu, X.; Ma, H.; Peng, Q.; Huang, X.; Zheng, X.; Sung, S. H.
P.; Shan, G.; Lam, J. W. Y.; Shuai, Z.; Tang, B. Z. A Facile Strategy
for Realizing Room Temperature Phosphorescence and Single Molecule
White Light Emission. Nat. Commun. 2018, 9 ,
2963.
- Cao, P.; Chen, Q.; Wu, P. Aqueous Room-Temperature Phosphorescence
from Assembled Phosphors for Analytical Detection. Chin. J.
Chem. 2023, 41, 979-990.
- Ye, W.; Wang, Y.; Cao, T.; Meng, H.; Wang, C.; Hu, B.; Gao, Z.; Wang,
C. Respiration-Responsive Colorful Room-Temperature Phosphorescent
Materials and Assembly-Induced Phosphorescence Enhancement Strategies.Small. 2023, e2207403.
- Li, D.; Yang, J.; Fang, M.; Tang, B.; Li, Z. Stimulus-Responsive Room
Temperature Phosphorescence Materials with Full-Color Tunability from
Pure Organic Amorphous Polymers. Sci. Adv. 2022,8, eabl8392.
- An, Z.; Zheng, C.; Tao, Y.; Chen, R.; Shi, H.; Chen, T.; Wang, Z.; Li,
H.; Deng, R.; Liu, X.; Huang, W. Stabilizing Triplet Excited States
for Ultralong Organic Phosphorescence. Nat. Mater.2015, 14 , 685-90.
- Yin, Z.; Gu, M.; Ma, H.; Jiang, X.; Zhi, J.; Wang, Y.; Yang, H.; Zhu,
W.; An, Z. Molecular Engineering through Control of Structural
Deformation for Highly Efficient Ultralong Organic Phosphorescence.Angew. Chem. Int. Ed. 2021, 60 , 2058-2063.
- Zhang, Z. Y.; Xu, W. W.; Xu, W. S.; Niu, J.; Sun, X. H.; Liu, Y. A
Synergistic Enhancement Strategy for Realizing Ultralong and Efficient
Room-Temperature Phosphorescence. Angew. Chem. Int. Ed.2020, 59 , 18748-18754.
- Huang, Z.; He, Z.; Ding, B.; Tian, H.; Ma, X. Photoprogrammable
Circularly Polarized Phosphorescence Switching of Chiral Helical
Polyacetylene Thin Films. Nat. Commun. 2022,13 , 7841.
- Dang, Q.; Jiang, Y.; Wang, J.; Wang, J.; Zhang, Q.; Zhang, M.; Luo,
S.; Xie, Y.; Pu, K.; Li, Q.; Li, Z. Room-Temperature Phosphorescence
Resonance Energy Transfer for Construction of near-Infrared Afterglow
Imaging Agents. Adv. Mater. 2020, 32 , e2006752.
- Wang, X. F.; Xiao, H.; Chen, P. Z.; Yang, Q. Z.; Chen, B.; Tung, C.
H.; Chen, Y. Z.; Wu, L. Z. Pure Organic Room Temperature
Phosphorescence from Excited Dimers in Self-Assembled Nanoparticles
under Visible and near-Infrared Irradiation in Water. J. Am.
Chem. Soc. 2019, 141 , 5045-5050.
- Tian, Y.; Yang, J.; Liu, Z.; Gao, M.; Li, X.; Che, W.; Fang, M.; Li,
Z. Multistage Stimulus-Responsive Room Temperature Phosphorescence
Based on Host-Guest Doping Systems. Angew. Chem. Int. Ed.2021, 60 , 20259-20263.
- Wang, Z.; Zhang, Y.; Wang, C.; Zheng, X.; Zheng, Y.; Gao, L.; Yang,
C.; Li, Y.; Qu, L.; Zhao, Y. Color-Tunable Polymeric Long-Persistent
Luminescence Based on Polyphosphazenes. Adv. Mater.2020, 32 , e1907355.
- Qian, C.; Ma, Z.; Fu, X.; Zhang, X.; Li, Z.; Jin, H.; Chen, M.; Jiang,
H.; Jia, X.; Ma, Z. More Than Carbazole Derivatives Activate Room
Temperature Ultralong Organic Phosphorescence of Benzoindole
Derivatives. Adv. Mater. 2022, 34 , e2200544.
- Zheng, H.; Cao, P.; Wang, Y.; Lu, X.; Wu, P. Ultralong
Room-Temperature Phosphorescence from Boric Acid. Angew. Chem.
Int. Ed. 2021, 60 , 9500-9506.
- Zhang, G.; Chen, J.; Payne, S., J.; Kooi, S., E.; Demas, J., N.;
Fraser, C., L. Multi-Emissive Difluoroboron Dibenzoylmethane
Polylactide Exhibiting Intense Fluorescence and Oxygen-Sensitive
Room-Temperature. J. Am. Chem. Soc. 2007, 129,8942-8943.
- Yang, Z.; Xu, C.; Li, W.; Mao, Z.; Ge, X.; Huang, Q.; Deng, H.; Zhao,
J.; Gu, F. L.; Zhang, Y.; Chi, Z. Boosting the Quantum Efficiency of
Ultralong Organic Phosphorescence up to 52% Via Intramolecular
Halogen Bonding. Angew. Chem. Int. Ed. 2020,59 , 17451-17455.
- Chen, B.; Huang, W.; Su, H.; Miao, H.; Z hang, X.; Zhang, G. An
Unexpected Chromophore-Solvent Reaction Leads to Bicomponent
Aggregation-Induced Phosphorescence. Angew. Chem. Int. Ed.2020, 59 , 10023-10026.
- He, Z.; Gao, H.; Zhang, S.; Zheng, S.; Wang, Y.; Zhao, Z.; Ding, D.;
Yang, B.; Zhang, Y.; Yuan, W. Z. Achieving Persistent, Efficient, and
Robust Room-Temperature Phosphorescence from Pure Organics for
Versatile Applications. Adv. Mater. 2019, 31 ,
e1807222.
- Liu, W.; Wang, J.; Gong, Y.; Liao, Q.; Dang, Q.; Li, Z.; Bo, Z.
Room-Temperature Phosphorescence Invoked through Norbornyl-Driven
Intermolecular Interaction Intensification with Anomalous Reversible
Solid-State Photochromism. Angew. Chem. Int. Ed. 2020,59 , 20161-20166.
- Kuila, S.; George, S. J. Phosphorescence Energy Transfer: Ambient
Afterglow Fluorescence from Water-Processable and Purely Organic Dyes
Via Delayed Sensitization. Angew. Chem. Int. Ed. 2020,59 , 9393-9397.
- Kuila, S.; Garain, S.; Bandi, S.; George, S. J. All‐Organic,
Temporally Pure White Afterglow in Amorphous Films Using Complementary
Blue and Greenish‐Yellow Ultralong Room Temperature Phosphors.Adv. Funct. Mater. 2020, 30 , 2003693.
- Gu, L.; Wu, H.; Ma, H.; Ye, W.; Jia, W.; Wang, H.; Chen, H.; Zhang,
N.; Wang, D.; Qian, C.; An, Z.; Huang, W.; Zhao, Y. Color-Tunable
Ultralong Organic Room Temperature Phosphorescence from a
Multicomponent Copolymer. Nat. Commun. 2020,11 , 944.
- Hamzehpoor, E.; Perepichka, D. F. Crystal Engineering of Room
Temperature Phosphorescence in Organic Solids. Angew. Chem. Int.
Ed. 2020, 59 , 9977-9981.
- Li, Q.; Li, Z. Molecular Packing: Another Key Point for the
Performance of Organic and Polymeric Optoelectronic Materials.Acc. Chem. Res. 2020, 53 , 962-973.
- Ning, Y.; Yang, J.; Si, H.; Wu, H.; Zheng, X.; Qin, A.; Tang, B. Z.
Ultralong Organic Room-Temperature Phosphorescence of
Electron-Donating and Commercially Available Host and Guest Molecules
through Efficient Förster Resonance Energy Transfer. Sci. China
Chem. 2021, 64 , 739-744.
- Qu, G.; Zhang, Y.; Ma, X. Recent Progress on Pure Organic Room
Temperature Phosphorescence Materials Based on Host-Guest
Interactions. Chin. Chem. Lett. 2019, 30 ,
1809-1814.
- Lei, Y.; Dai, W.; Guan, J.; Guo, S.; Ren, F.; Zhou, Y.; Shi, J.; Tong,
B.; Cai, Z.; Zheng, J.; Dong, Y. Wide-Range Color-Tunable Organic
Phosphorescence Materials for Printable and Writable Security Inks.Angew. Chem. Int. Ed. 2020, 59 , 16054-16060.
- Hirata, S. Roles of Localized Electronic Structures Caused by Pi
Degeneracy Due to Highly Symmetric Heavy Atom-Free Conjugated
Molecular Crystals Leading to Efficient Persistent Room-Temperature
Phosphorescence. Adv. Sci. 2019, 6 , 1900410.
- Zhao, W.; He, Z.; Tang, B. Z. Room-Temperature Phosphorescence from
Organic Aggregates. Nat. Rev. Mater. 2020, 5 ,
869-885.
- Gao, M.; Tian, Y.; Li, X.; Gong, Y.; Fang, M.; Yang, J.; Li, Z. The
Effect of Molecular Conformations and Simulated ”Self-Doping” in
Phenothiazine Derivatives on Room-Temperature Phosphorescence.Angew. Chem. Int. Ed. 2023, 62 , e202214908.
- Liu, F.; Liao, Q.; Wang, J.; Gong, Y.; Dang, Q.; Ling, W.; Han, M.;
Li, Q.; Li, Z. Intermolecular Electronic Coupling of
9-Methyl-9H -Dibenzo[a,c] Carbazole for Strong Emission in
Aggregated State by Substituent Effect. Sci. China Chem.2020, 63 , 1435-1442.
- Lu, Z.; Li, C.; Fang, T.; Li, G.; Bo, Z. Triindole-Cored Star-Shaped
Molecules for Organic Solar Cells. J. Mater. Chem. A.2013, 1 , 7657-7665.
- Yao, Z.; Liao, X.; Guo, Y.; Zhao, H.; Guo, Y.; Zhang, F.; Zhang, L.;
Zhu, Z.; Kloo, L.; Ma, W.; Chen, Y.; Sun, L. Exploring Overall
Photoelectric Applications by Organic Materials Containing Symmetric
Donor Isomers. Chem. Mater. 2019, 31 ,
8810-8819.
- Li, X. C.; Wang, C. Y.; Lai, W. Y.; Huang, W. Triazatruxene-Based
Materials for Organic Electronics and Optoelectronics. J. Mater.
Chem. C. 2016, 4 , 10574-10587.
- Yao, Z.; Zhang, M.; Wu, H.; Yang, L.; Li, R.; Wang, P. Donor/Acceptor
Indenoperylene Dye for Highly Efficient Organic Dye-Sensitized Solar
Cells. J. Am. Chem. Soc. 2015, 137 , 3799-802.
- Feng, S.; Zhu, L.; Wang, D.; Li, C.; Chen, Y.; Chen, X.; Liu, J.;
Huang, W.; Ling, Y.; Huang, W. Rigidity-Tuned Full-Color Emission:
Uncommon Luminescence Change from Polymer Free-Volume Variations.Adv. Mater. 2022, 34 , e2201337.
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in
Dispersion Corrected Density Functional Theory. J. Comput.
Chem. 2011, 32 , 1456-65.
- Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer.J. Comput. Chem. 2012, 33 , 580-92.
- Stephens, P., J.; Devlin, F., J. Ab Initio Calculation of
Vibrational Absorption and Circular Dichroism Spectra Using Density
Functional Force Fields. J. Phys. Chem. 1994,98 , 11623-11627.
- Petersson, G. A.; Bennett, A.; Tensfeldt, T. G.; AlLaham, M. A.;
Shirley, W. A.; Mantzaris, J. A Complete Basis Set Model Chemistry. I.
The Total Energies of Closed‐Shell Atoms and Hydrides of the First‐Row
Elements. J. Chem. Phys. 1988, 89 , 2193-2218.
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics.J. Mol. Graphics. 1996, 14, 33-38.
- Hariharan, P. C.; Pople, J. A. Accuracy of Ahnequilibrium Geometries
by Single Determinant Molecular Orbital Theory. Mol. Phys.1974, 27 , 209-214.
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and
Accurate Ab Initio Parametrization of Density Functional
Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem.
Phys. 2010, 132 , 154104.