Funding
This study was supported by The National Natural Science Foundation of China (81972663, 82173055), Natural Science Foundation of Henan Province(202300410446, 212300410074), Key Scientific Research Project of Henan Higher Education Institutions (20A310024), Youth Talent Innovation Team Support Program of Zhengzhou University (32320290), Provincial and Ministry co-constructed key projects of Henan Medical Science and Technology (SBGJ202102134), Key scientific and technological research projects of Henan Provincial Department of Science and Technology (212102310117), Health Science and Technology Innovation Project of Henan Province (YXKC2022016), Henan Provincial Health Commission and Ministry of Health Co-construction Project, and Henan Provincial Health and Health Commission Joint Construction Project (LHGJ20200158).
1. Li, Q., Hu, W., Liu, W.X., Zhao, L.Y., Huang, D., Liu, X.D., Chan, H., Zhang, Y., Zeng, J.D., Coker, O.O., et al. (2021). Streptococcus thermophilus Inhibits Colorectal Tumorigenesis Through Secreting β-galactosidase. Gastroenterology 160 , 1179-1193. e1114. 10.1053/j.gastro.2020.09.003.
2. Franzosa, E.A., Sirota-Madi, A., Avila-Pacheco, J., Fornelos, N., Haiser, H.J., Reinker, S., Vatanen, T., Hall, A.B., Mallick, H., McIver, L.J. et al. (2019). Gut microbiome structure and metabolic activity in patients with IBD Nat Microbiol 4 , 293-305. 10.1038/s41564-018-0306-4.
3. Tilg, H., Zmora, N., Adolph, T.E., Elinav, E. (2020). Intestinal microbiota fueled metabolic inflammation. Nat Rev Immunol 20 , 40-54. 10.1038/s41577-019-0198-4.
4. X. Wang, G. Sun, T. Feng, J. Zhang, X. Huang, T. Wang, Z. Xie, X. Chu, J. Yang, H. Wang et al. (2019). Sodium oligomannate therapeutically remodels the gut microbiota and suppresses gut bacterial amino acid-shaped neuroinflammation to inhibit Alzheimer’s disease progression. Cell Res 29 , 787-803. 10.1038/s41422-019-0216-x.
5. Barcik, W., Boutin, R.C.T., Sokolowska, M., Finlay, B.B. (2020). Role of Lung and Gut Microbiota in the Pathology of Asthma. Immunity52 , 241-255. 10.1016/j.immuni.2020.01.007.
6. Luck, H., Khan, S., Kim, J. H., Copeland, J. K., Revelo, X. S., Tsai, S., Chakraborty, M., Cheng, K., Tao Chan, Y., Nøhr, M. K., et al. (2019). Gut-associated IgA(+) immune cells regulate obesity-related insulin resistance. Nat Commun 10 , 3650. 10.1038/s41467-019-11370-y.
7. Sorbara, M.T. and Pamer, E.G. (2022). Microbiome-based therapeutics. Nat Rev Microbiol 20 , 365-380. 10.1038/s41579-021-00667-9.
8. S. Hang, D. Paik, L. Yao, E. Kim, J. Trinath, J. Lu, S. Ha, B. N. Nelson, S. P. Kelly, L. Wu et al. (2019). Bile acid metabolites control T(H)17 and T(reg) cell differentiation. Nature 576 , 143-148. 10.1038/s41586-019-1785-z.
9. Zhuang, L., Ding, W., Zhang, Q., Ding, W., Xu, X., Yu, X., Xi, D. (2021). TGR5 attenuates liver ischemia-reperfusion injury by activating the Keap1-Nrf2 Signaling pathway in mice Inflammation 44 , 859-872. 10.1007/s10753-020-01382-y.
10. T. Fu, S. Coulter, E. Yoshihara, T. G. Oh, S. Fang, F. Cayabyab, Q. Zhu, T. Zhang, M. Leblanc, S. Liu et al. (2019). FXR regulates intestinal Cancer Stem Cell proliferation. Cell 176 , 1098-1112.e1018. 10.1016/j.cell.2019.01.036.
11. Mörbe, U. M.; Jørgensen, P. B.; Fenton, T. M.; von Burg, N.; Riis, L. B.; Spencer, J.; Agace, W. (2021). Human gut-associated lymphoid tissue (GALT): diversity, structure, and function. Mucosal Immunol14 , 793-802. 10.1038/s41385-021-00389-4.
12. Martens, E.C., Neumann, M., and Desai, M.S. (2018). Interactions between commensal and pathogenic microorganisms and the intestinal mucosal barrier. Nat Rev Microbiol 16 , 457-470. 10.1038/s41579-018-0036-x.
13. Mishima, Y., Oka, A., Liu, B., Herzog, J. W., Eun, C. S., Fan, T. J., Bulik-Sullivan, E., Carroll, I. M., Hansen, J. J., Chen, L., et al. (2019). The microbiota maintains colonic homeostasis by activating TLR2/MyD88/PI3K signaling in IL-10-producing regulatory B cells. J Clin Invest 129 , 3702-3716. 10.1172/jci93820.
14. Schreurs, R., Baumdick, M.E., Sagebiel, A.F., Kaufmann, M., Mokry, M., Klarenbeek, P.L., Schaltenberg, N., Steinert, F.L., van Rijn, J.M., Drewniak, A., et al. (2019). Human Fetal TNF-α-Cytokine-Producing CD4(+) Effector Memory T Cells Promote Intestinal Development and Mediate Inflammation Early in Life. Immunity 50 , 462-476.e468. 10.1016/j.immuni.2018.12.010.
15. F. Guendel, M. Kofoed-Branzk, K. Gronke, C. Tizian, M. Witkowski, H. W. Cheng, G. A. Heinz, F. Heinrich, P. Durek, P. S. Norris, et al. (2020). Group 3 Innate Lymphoid Cells Program a Distinct Subset of IL-22BP-Producing Dendritic Cells Demarcating Solitary Intestinal Lymphoid Tissues. Immunity 53 , 1015-1032.e1018. 10.1016/j.immuni.2020.10.012.
16. Gabanyi, I., Muller, P.A., Feighery, L., Oliveira, T.Y., Costa-Pinto, F.A., Mucida, D. (2016). Neuroimmune Interactions Drive Tissue Programming in Intestinal Macrophages. Cell 164 , 378-391. 10.1016/j.cell.2015.12.023.
17. Mowat, A.M. and Agace, W.W. (2014). Regional specialization within the intestinal immune system. Nat Rev Immunol 14 , 667-685. 10.1038/nri3738.
18. X. Yang, Y. Guo, C. Chen, B. Shao, L. Zhao, Q. Zhou, J. Liu, G. Wang, W. Yuan, Z. Sun, Z. (2021). Interaction between intestinal microbiota and tumor immunity in the tumor microenvironment. Immunology164 , 476-493. 10.1111/imm.13397.
19. Koh, A., De Vadder, F., Kovatcheva-Datchary, P., Bäckhed, F. (2016). From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell 165 , 1332-1345. 10.1016/j.cell.2016.05.041.
20. Yang, W. & Cong, Y. (2021). Gut microbiota-derived metabolites regulate host immune responses and immune-related inflammatory diseases. Cell Mol Immunol 18 , 866-877. 10.1038/s41423-021-00661-4.
21. Lührs, H., Gerke, T., Müller, J.G., Melcher, R., Schauber, J., Boxberge, F., Scheppach, W., and Menzel, T. (2002). Butyrate inhibits NF-κB activation in lamina propria macrophages of patients with ulcerative colitis. Scand J Gastroenterol 37 , 458-466. 10.1080/003655202317316105.
22. Martin-Gallausiaux, C., Béguet-Crespel, F., Marinelli, L., Jamet, A., Ledue, F., Blottière, H.M., and Lapaque, N. (2018). Butyrate produced by gut commensal bacteria activates TGF-beta1 expression through transcription factor SP1 in human intestinal epithelial cells. Sci Rep 8 , 9742. 10.1038/s41598-018-28048-y.
23. Trompette, A.; Gollwitzer, E.S.; Yadava, K.; Sichelstiel, A.K.; Sprenger, N.; Ngom-Bru, C.; Blanchard, C.; Junt, T.; Nicod, L.P.; Harris, N.L.; Marsland, B.J. (2014). Gut microbiota metabolism in dietary fiber influences allergic airway disease and hematopoiesis. Nat Med 20 , 159-166. 10.1038/nm.3444.
24. Zelante, T., Iannitti, R.G., Cunha, C., De Luca, A., Giovannini, G., Pieraccini, G., Zecchi, R., D’Angelo, C., Massi-Benedetti, C., Fallarino, F., et al. (2013). Tryptophan catabolites from the microbiota engage aryl hydrocarbon receptors and balance mucosal reactivity via interleukin-22. Immunity 39 , 372-385. 10.1016/j.immuni.2013.08.003.
25. Partearroyo, T., Úbeda, N., Montero, A., Achón, M., Varela-Moreiras, G. (2013). Vitamin B(12) and folic acid imbalance modifies NK cytotoxicity, lymphocyte B, and lymphoproliferation in aged rats. Nutrients 5 , 4836-4848. 10.3390/nu5124836.
26. Li, Y., Luo, Z.Y., Hu, Y.Y., Bi, Y.W., Yang, J.M., Zou, W.J., Song, Y.L., Li, S., Shen, T., Li, S.J., et al. (2020). Gut microbiota regulates autism-like behavior by mediating vitamin B(6) homeostasis in EphB6-deficient mice. Microbiome 8 , 120. 10.1186/s40168-020-00884-z.
27. Campbell C., McKenney P.T., Konstantinovsky D. Isaeva O.I. Schizas M. Verter J. Mai C. Jin W.B. Guo C.J. Violante S. et al. (2020). Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature 581 , 475-479. 10.1038/s41586-020-2193-0.
28. Kuipers, F., de Boer, J.F., Staels, B. (2020). Microbiome modulation of host adaptive immunity via bile acid modification. Cell Metab31 , 445-447. 10.1016/j.cmet.2020.02.006.
29. X. Song, X. Sun, S. F. Oh, M. Wu, Y. Zhang, W. Zheng, N. Geva-Zatorsky, R. Jupp, D. Mathis, C. Benoist, and D. L. Kasper, D.L. (2020). Microbial bile acid metabolites modulate gut RORγ(+) regulatory T cell homeostasis. Nature 577 , 410-415. 10.1038/s41586-019-1865-0.
30. Jia, W., Xie, G., and Jia, W. (2018). Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol 15 , 111-128. 10.1038/nrgastro.2017.119.
31. Vital, M., Rud, T., Rath, S., Pieper, D. H., Schlüter, D. (2019). Diversity of bacteria expressing bile acid-inducible 7α-dehydroxylation Genes in the Human Gut. Comput Struct Biotechnol J 17 , 1016-1019. 10.1016/j.csbj.2019.07.012.
32. Tonin, F., Otten, L.G., & Arends, I. (2019). NAD(+) -Dependent Enzymatic Route for the Epimerization of Hydroxysteroids. ChemSusChem12 , 3192-3203. 10.1002/cssc.201801862.
33. Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K., Knight, R. (2012). Diversity, stability, and resilience of human gut microbiota. Nature 489 , 220-230. 10.1038/nature11550.
34. Aguilera-Lizarraga J., Florens M.V., Viola M.F. Jain P. Decraecker L. Appeltans I. Cuende-Estevez M. Fabre N. Beek K. Perna E. et al. (2021). Local immune responses to food antigens drive meal-induced abdominal pain. Nature 590 , 151-156. 10.1038/s41586-020-03118-2.
35. Whibley, N., Tucci, A., Powrie, F. (2019). Regulatory T cell adaptation in the intestine and skin. Nat Immunol 20 , 386-396. 10.1038/s41590-019-0351-z.
36. Hoffmann, T. W., Pham, H. P., Bridonneau, C., Aubry, C., Lamas, B., Martin-Gallausiaux, C., Moroldo, M., Rainteau, D., Lapaque, N., Six, A. et al. (2016). Microorganisms linked to inflammatory bowel disease-associated dysbiosis differentially affect host physiology in gnotobiotic mice. Isme j 10 , 460-477. 10.1038/ismej.2015.127.
37. Henrick B.M., Rodriguez L., Lakshmikanth T. Pou C. Henckel E. Arzoomand A. Olin A. Wang J. Mikes J. Tan Z. et al. (2021). Bifidobacteria-mediated immune system imprinting early in life. Cell184 , 3884-3898.e3811. 10.1016/j.cell.2021.05.030.
38. Britton, G.J., Contijoch, E.J., Spindler, M.P., Aggarwala, V., Dogan, B., Bongers, G., San Mateo, L., Baltus, A., Das, A., Gevers, D., et al. (2020). Defined microbiota transplant restores the Th17/RORγt(+) regulatory T cell balance in mice colonized with inflammatory bowel disease microbiota. Proc Natl Acad Sci U S A 117 , 21536-21545. 10.1073/pnas.1922189117.
39. Mazmanian, S.K., Round, J.L., Kasper, D.L. (2008). A microbial symbiotic factor prevents intestinal inflammatory diseases. Nature453 , 620-625. 10.1038/nature07008.
40. Mager, L.F., Burkhard, R., Pett, N., Cooke, N.C.A., Brown, K., Ramay, H., Paik, S., Stagg, J., Groves, R.A., Gallo, M., et al. (2020). Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science 369 , 1481-1489. 10.1126/science.abc3421.
41. Pandiyan, P., Bhaskaran, N., Zou, M., Schneider, E., Jayaraman, S., Huehn, J. (2019). Microbiome-dependent regulation of T(regs) and Th17 Cells in Mucosa. Front Immunol 10 , 426. 10.3389/fimmu.2019.00426.
42. Li W., Hang S., Fang Y., Bae S., et al. (2021). Bacterial bile acid metabolites modulate T(reg) activity through the nuclear hormone receptor NR4A1. Cell Host Microbe 29 , 1366-1377. e1369. 10.1016/j.chom.2021.07.013.
43. Bernstein, H., Bernstein, C., Payne, C. M., and Dvorak, K. (2009). Bile acids are endogenous etiological agents of gastrointestinal cancer. World J Gastroenterol 15 , 3329-3340. 10.3748/wjg.15.3329.
44. Buffie C.G., Bucci V., et al. (2015). Precision microbiome reconstitution restores bile acid-mediated resistance to Clostridium difficile. Nature 517 , 205-208. 10.1038/nature13828.
45. Fiorucci, S., Biagioli, M., Zampella, A., Distrutti, E. (2018). Bile Acid-activated Receptors Regulate Innate Immunity. Front Immunol9 , 1853. 10.3389/fimmu.2018.01853.
46. Josefowicz, S. Z., Niec, R. E., Kim, H. Y., Treuting, P., Chinen, T., Zheng, Y., Umetsu, D. T., Rudensky, A. Y. (2012). Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature482 , 395-399. 10.1038/nature10772.
47. Sakaguchi, S., Yamaguchi, T., Nomura, T., Ono, M. (2008). Regulatory T cells and immune tolerance. Cell 133 , 775-787. 10.1016/j.cell.2008.05.009.
48. Chang, D.; Xing, Q.; Su, Y.; Zhao, X.; Xu, W.; Wang, X.; Dong, C. (2020). The Conserved Non-coding Sequences CNS6 and CNS9 Control Cytokine-Induced Rorc Transcription during T Helper 17 Cell Differentiation. Immunity 53 , 614-626.e614. 10.1016/j.immuni.2020.07.012.
49. Savage, P. A., Klawon, D. E. J., Miller, C. (2020). Regulatory T Cell development. Annu Rev Immunol 38 , 421-453. 10.1146/annurev-immunol-100219-020937.
50. Tanoue, T., Atarashi, K., Honda, K. (2016). Development and maintenance of intestinal regulatory T cells. Nat Rev Immunol 16 , 295-309. 10.1038/nri.2016.36.
51. Gerriets, V. A., & Rathmell, J. C. (2012). Metabolic pathways in T cell fate and function. Trends Immunol 33 , 168-173. 10.1016/j.it.2012.01.010.
52. X. Liu, Y. Wang, H. Lu, J. Li, X. Yan, M. Xiao, J. Hao, A. Alekseev, H. Khong, T. Chen et al. (2019). Genome-wide analysis identified NR4A1 as a key mediator of T-cell dysfunction. Nature 567 , 525-529. 10.1038/s41586-019-0979-8.
53. Ma, S.; Patel, S.A.; Abe, Y.; Chen, N.; Patel, P. R.; Cho, B. S.; Abbasi, N.; Zeng, S.; Schnabl, B.; Chang, J.T.; Huang, W.J.M. (2022). RORγt phosphorylation protects against T cell-mediated inflammation. Cell Rep 38 , 110520. 10.1016/j.celrep.2022.110520.
54. Sefik E., Geva-Zatorsky N., Oh S., et al. (2015). MUCOSAL IMMUNOLOGY. Individual intestinal symbionts induce a distinct population of RORγ⁺ regulatory T cells. Science 349 , 993-997. 10.1126/science.aaa9420.
55. Mijnheer, G., Lutter, L., Mokry, M., van der Wal, M., Scholman, R., Fleskens, V., Pandit, A., Tao, W., Wekking, M., Vervoort, S., et al. (2021). Conserved transcriptomic and epigenetic signatures of human effector Treg cells in arthritic joint inflammation. Nat Commun12 , 2710. 10.1038/s41467-021-22975-7.
56. Wan, H. and Dupasquier, M. (2005). Dendritic cells in vivo and in vitro. Cell Mol Immunol 2 , 28-35.
57. Todorova, D., Zhang, Y., Chen, Q., Liu, J., He, J., Fu, X., Xu, Y. (2020). hESC-derived immunosuppressive dendritic cells induce immune tolerance in parental hESC-derived allografts. EBioMedicine 62 : 103120. 10.1016/j.ebiom.2020.103120.
58. Saravia, J., Chapman, N. M., Chi, H. (2019). Helper T cell differentiation. Cell Mol Immunol 16 , 634-643. 10.1038/s41423-019-0220-6.
59. Patel, D. D., and Kuchroo, V. K. (2015). Th17 Cell Pathway in Human Immunity: Lessons from Genetics and Therapeutic Interventions. Immunity43 , 1040-1051. 10.1016/j.immuni.2015.12.003.
60. Lee, J. Y., Hall, J. A., Kroehling, L., Wu, L., Najar, T., Nguyen, H. H., Lin, W. Y., Yeung, S. T., Silva, H. M., Li, D. et al. (2020). Serum amyloid A proteins induce pathogenic Th17 cells and promote inflammatory diseases. Cell 180 , 79-91.e16. 10.1016/j.cell.2019.11.026.
61. Paik, D., Yao, L., Zhang, Y., Bae, S., D’Agostino, G.D., Zhang, M., Kim, E., Franzosa, E.A., Avila-Pacheco, J., Bisanz, J.E., et al. (2022). Human gut bacteria produce Τ(Η)17-modulating bile acid metabolites. Nature 603 , 907-912. 10.1038/s41586-022-04480-z.
62. Lee, E.J., Kwon, J.E., Park, M.J., Jung, K.A., Kim, D.S., Kim, E.K., Lee, S.H., Choi, J.Y., Park, S.H., Cho, M.L. (2017). Ursodeoxycholic acid attenuates experimental autoimmune arthritis by targeting Th17 and inducing pAMPK and the transcriptional co-repressor SMILE. Immunol Lett188 , 1-8. 10.1016/j.imlet.2017.05.011.
63. Liu, Y., Chen, K., Li, F., Gu, Z., Liu, Q., He, L., Shao, T., Song, Q., Zhu, F., Zhang, L., et al. (2020). The probiotic Lactobacillus rhamnosus GG Prevents Liver Fibrosis Through Inhibiting Hepatic Bile Acid Synthesis and Enhancing Bile Acid Excretion in Mice. Hepatology71 , 2050-2066. 10.1002/hep.30975.
64. Cao W., Kayama H., Chen M.L. Delmas A. Sun A. Kim S.Y. Rangarajan E.S. McKevitt K. Beck A.P. Jackson C.B. et al. (2017). The xenobiotic transporter Mdr1 Enforces T Cell homeostasis in the presence of intestinal bile acids. Immunity 47 , 1182-1196.e1110. 10.1016/j.immuni.2017.11.012.
65. Ridlon, J. M., Harris, S. C., Bhowmik, S., Kang, D. J., and Hylemon, P. (2016). Consequences of bile salt biotransformation by intestinal bacteria. Gut Microbes 7 , 22-39. 10.1080/19490976.2015.1127483.
66. Ridlon, J. M., Kang, D. J., and Hylemon, P. (2006). Biotransformation of bile salts by human intestinal bacteria. J Lipid Res 47 , 241-259. 10.1194/jlr.R500013-JLR200.
67. van der Lelie, D., Oka, A., Taghavi, S., Umeno, J., Fan, T.J., Merrell, K.E., Watson, S.D., Ouellette, L., Liu, B., Awoniyi, M., et al. (2021). Rationally designed bacterial consortia to treat chronic immune-mediated colitis and restore intestinal homeostasis. Nat Commun12 , 3105. 10.1038/s41467-021-23460-x.
68. Biagioli, M., Carino, A., Cipriani, S., Francisci, D., Marchianò, S., Scarpelli, P., Sorcini, D., Zampella, A., and Fiorucci, S. (2017). The bile acid receptor GPBAR1 regulates the M1/M2 phenotype of intestinal macrophages and activates GPBAR1 to rescue mice from murine colitis. J Immunol 199 , 718-733. 10.4049/jimmunol.1700183.
69. Zhou, H., Zhou, S., Shi, Y., Wang, Q., Wei, S., Wang, P., Cheng, F., Auwerx, J., Schoonjans, K., and Lu, L. (2021). TGR5/Cathepsin E signaling regulates macrophage innate immune activation in liver ischemia and reperfusion injury. Am J Transplant 21 , 1453-1464. 10.1111/ajt.16327.
70. Perino, A., Pols, T.W., Nomura, M., Stein, S., Pellicciari, R., Schoonjans, K. (2014). TGR5 reduces macrophage migration through the mTOR-induced differential translation of C/EBPβ J Clin Invest124 , 5424-5436. 10.1172/jci76289.
71. Zhao, L., Zhang, H., Liu, X., Xue, S., Chen, D., Zou, J., and Jiang, H. (2022). TGR5 deficiency activates antitumor immunity in non-small cell lung cancer by   suppressing M2 macrophage polarization. Acta Pharm Sin B 12 , 787-800. 10.1016/j.apsb.2021.07.011.
72. Haselow, K., Bode, J.G., Wammers, M., Ehlting, C., Keitel, V., Kleinebrecht, L., Schupp, A.K., Häussinger, D., Graf, D. (2013). PKA-dependent bile acids induce a switch in the IL-10/IL-12 ratio and reduce the proinflammatory capability of human macrophages. J Leukoc Biol 94 , 1253-1264. 10.1189/jlb.0812396.
73. Fueyo-González F., McGinty M., Ningoo M., Anderson L., et al. (2022). IFN-β acts directly on T cells to prolong allograft survival by enhancing regulatory T cell induction through Foxp3 acetylation. Immunity 55 , 459-474.e457. 10.1016/j.immuni.2022.01.011.
74. Romero-Ramírez, L., García-Rama, C., Wu, S., and Mey, J. (2022). Bile acids attenuate PKM2 pathway activation in proinflammatory microglia. Sci Rep 12 , 1459. 10.1038/s41598-022-05408-3.
75. Qi, Y. C., Duan, G. Z., Mao, W., Liu, Q., Zhang, Y.L., Li, P.F. (2020). Taurochenodeoxycholic acid mediates the cAMP-PKA-CREB signaling pathway. Chin J Nat Med 18 , 898-906. 10.1016/s1875-5364(20)60033-4.
76. K. Yoneno, T. Hisamatsu, K. Shimamura, N. Kamada, R. Ichikawa, M. Kitazume, M. T. Mori, M. Uo, Y. Namikawa, K. Matsuoka et al. (2013). TGR5 signalling inhibits the production of pro-inflammatory cytokines by in vitro differentiated inflammatory and intestinal macrophages in Crohn’s. Immunology 139 , 19-29. 10.1111/imm.12045.
77. Yang H., Zhou H., Zhuang L., Auwerx J., Schoonjans K., Wang X., Feng C., Lu L. (2017). Plasma membrane-bound G protein-coupled bile acid receptor attenuates liver ischemia/reperfusion injury by inhibiting Toll-like receptor 4 signaling in mice. Liver Transpl 23 , 63-74. 10.1002/lt.24628.
78. Shi, Y., Su, W., Zhang, L., Shi, C., Zhou, J., Wang, P., Wang, H., Shi, X., Wei, S., Wang, Q., et al. (2020). TGR5 regulates macrophage inflammation in Nonalcoholic Steatohepatitis by modulating NLRP3 inflammasome activation. Front Immunol 11 : 609060. 10.3389/fimmu.2020.609060.
79. Liao, C.; Wang, D.; Qin, S.; Zhang, Y.; Chen, J.; Xu, R.; Xu, F.; Zhang, P. (2022). Inflammatory-Dependent Bidirectional Effect of Bile Acids on NLRP3 Inflammasome and Its Role in Ameliorating CPT-11-Induced Colitis. Front Pharmacol 13 , 677738. 10.3389/fphar.2022.677738.
80. Francis, M., Guo, G., Kong, B., Abramova, E.V., Cervelli, J.A., Gow, A.J., Laskin, J.D., Laskin, D.L. (2020). Regulation of Lung Macrophage Activation and Oxidative Stress Following Ozone Exposure by Farnesoid X Receptor. Toxicol Sci 177 , 441-453. 10.1093/toxsci/kfaa111.
81. Parséus, A., Sommer, N., Sommer, F., Caesar, R., Molinaro, A., Ståhlman, M., Greiner, T.U., Perkins, R., and Bäckhed, F. (2017). Microbiota-induced obesity requires the farnesoid X receptor. Gut66 , 429-437. 10.1136/gutjnl-2015-310283.
82. Hao, H., Cao, L., Jiang, C., Che, Y., Zhang, S., Takahashi, S., Wang, G., Gonzalez, F.J. (2017). Farnesoid X Receptor Regulation of the NLRP3 Inflammasome Underlies Cholestasis-Associated Sepsis. Cell Metab25 , 856-867.e855. 10.1016/j.cmet.2017.03.007.
83. Hu, W., Cai, C., Li, Y., Kang, F., Chu, T., and Dong, S. (2022). Farnesoid X receptor agonists attenuate subchondral bone osteoclast fusion and osteochondral pathologies of osteoarthritis by suppressing the JNK1/2/NFATc1 pathway. Faseb j 36 , e22243. 10.1096/fj.202101717R.
84. Jin, D., Lu, T., Ni, M., Wang, H., Zhang, J., Zhong, C., Shen, C., Hao, J., Busuttil, R.W., Kupiec-Weglinski, J.W. et al. (2020). Farnesoid X receptor activation protects the liver from ischemia/reperfusion injury by upregulating small heterodimer partners in Kupffer cells. Hepatol Microbiol 4 , 540-554. 10.1002/hep4.1478.
85. Yao, J., Zhou, C.S., Ma, X., Fu, B.Q., Tao, L.S., Chen, M., and Xu, Y.P. (2014). GW4064 alleviates endotoxin-induced hepatic inflammation by repressing macrophage activation. World J Gastroenterol 20 , 14430-14441. 10.3748/wjg.v20.i39.14430.
86. El Kasmi, K. C., Ghosh, S., Anderson, A. L., Devereaux, M. W., Balasubramaniyan, N., D’Alessandro, A., Orlicky, D. J., Suchy, F. J., Shearn, C. T. and Sokol, R. J. (2022). Pharmacological activation of the hepatic farnesoid X receptor prevents parenteral nutrition-associated cholestasis in mice. Hepatology 75 , 252-265. 10.1002/hep.32101.
87. Anakk, S., Bhosale, M., Schmidt, V.A., Johnson, R.L., Finegold, M.J., Moore, D.D. (2013). Bile acids activate YAP to promote liver carcinogenesis. Cell Rep 5 , 1060-1069. 10.1016/j.celrep.2013.10.030.
88. Ichikawa, R., T. Takayama, K. Yoneno, N. Kamada, M. T. Kitazume, H. Higuchi, K. Matsuoka, M. Watanabe, H. Itoh, T. Kanai et al. (2012). Bile acids induce monocyte differentiation toward interleukin-12 hypo-producing dendritic cells via a TGR5-dependent pathway. Immunology136 , 153-162. 10.1111/j.1365-2567.2012.03554.x.
89. Hu, J., Wang, C., Huang, X., Yi, S., Pan, S., Zhang, Y., Yuan, G., Cao, Q., Ye, X., and Li, H. (2021). Gut microbiota-mediated secondary bile acids regulate dendritic cells to attenuate autoimmune uveitis through TGR5 signaling. Cell Rep 36 , 109726. 10.1016/j.celrep.2021.109726.
90. Brettschneider, E.E.S., and Terabe, M. (2021). The Role of NKT Cells in Glioblastoma. Cells 10 . 10.3390/cells10071641.
91. Biagioli, M., Carino, A., Fiorucci, C., Marchianò, S., Di Giorgio, C., Roselli, R., Magro, M., Distrutti, E., Bereshchenko, O., Scarpelli, P., et al. (2019). GPBAR1 Functions as Gatekeeper for Liver NKT Cells and provides Counterregulatory Signals in Mouse Models of Immune-Mediated Hepatitis. Cell Mol Gastroenterol Hepatol 8 , 447-473. 10.1016/j.jcmgh.2019.06.003.
92. Shao, J., Ge, T., Tang, C., Wang, G., Pang, L., Chen, Z. (2022). Synergistic anti-inflammatory effects of the gut microbiota and lithocholic acid on liver fibrosis. Inflamm Res 71 , 1389-1401. 10.1007/s00011-022-01629-4.
93. Chang, S., Kim, Y.H., Kim, Y.J., Kim, Y.W., Moon, S., Lee, Y.Y., Jung, J.S., Kim, Y., Jung, H.E., Kim, T.J., et al. (2018). Taurodeoxycholate Increases the Number of Myeloid-Derived Suppressor Cells That Ameliorate Sepsis in Mice. Front Immunol 9 , 1984. 10.3389/fimmu.2018.01984.
94. Zhang H., Liu Y., Bian Z., et al. (2014). Critical roles of myeloid-derived suppressor cells and FXR activation in immune-mediated liver injury. J Autoimmun 53 , 55-66. 10.1016/j.jaut.2014.02.010.
95. Nagaishi, T.; Watabe, T.; Kotake, K.; Kumazawa, T.; Aida, T.; Tanaka, K.; Ono, R.; Ishino, F.; Usami, T.; Miura, T., et al. (2022). Immunoglobulin A-specific deficiency induces spontaneous inflammation, specifically in the ileum. Gut 71 , 487-496. 10.1136/gutjnl-2020-322873.
96. Yoshitsugu, R., Liu, H., Kamo, Y., Takeuchi, A., Joe, G.H., Tada, K., Kikuchi, K., Fujii, N., Kitta, S., Hori, S., et al. (2021). 12α-Hydroxylated bile acid enhances the accumulation of adiponectin and immunoglobulin A in the rat ileum. Sci Rep 11 , 12939. 10.1038/s41598-021-92302-z.
97. Y. Yoshikawa, T. Tsujii, K. Matsumura, J. Yamao, Y. Matsumura, R. Kubo, H. Fukui, S. Ishizaka, S. (1992). Immunomodulatory effects of ursodeoxycholic acid on immune response. Hepatology 16 , 358-364. 10.1002/hep.1840160213.
98. Zhai, Z., Niu, K.M., Liu, Y., Lin, C., and Wu, X. (2021). The Gut Microbiota-Bile Acids-TGR5 Axis Mediates Eucommia ulmoides leaf extract alleviation of injury to colonic epithelial integrity. Front Microbiol.12 , 727681. 10.3389/fmicb.2021.727681.
99. Sorrentino, G., Perino, A., Yildiz, E., El Alam, G., Bou Sleiman, M., Gioiello, A., Pellicciari, R., and Schoonjans, K. (2020). Bile Acids Signal via TGR5 to activate intestinal stem cells and promote epithelial regeneration. Gastroenterology 159 , 956-968. e958. 10.1053/j.gastro.2020.05.067.
100. Azuma Y., Uchiyama K., Sugaya T. Yasuda T. Hashimoto H. Kajiwara-Kubota M. Sugino S. Kitae H. Torii T. Mizushima K. et al. (2022). Deoxycholic acid delays wound healing in colonic epithelial cells via the transmembrane G-protein-coupled receptor 5. J Gastroenterol Hepatol 37 , 134-143. 10.1111/jgh.15676.
101. Chang, C., Jiang, J., Sun, R., Wang, S., Chen, H. (2022). Downregulation of Serum and Distal Ileum Fibroblast Growth Factor19 in Bile acid diarrhea Dig Dis Sci 67 , 872-879. 10.1007/s10620-021-07042-x.
102. Vavassori, P., Mencarelli, A., Renga, B., Distrutti, E., Fiorucci, S. (2009). The bile acid receptor FXR modulates intestinal innate immunity. J Immunol 183 , 6251-6261. 10.4049/jimmunol.0803978.
103. Modica, S., Murzilli, S., Salvatore, L., Schmidt, D.R., and Moschetta, A. (2008). Nuclear bile acid receptor FXR protects against intestinal tumorigenesis. Cancer Res 68 , 9589-9594. 10.1158/0008-5472.Can-08-1791.
104. Zhao, L., Xuan, Z., Song, W., Zhang, S., Li, Z., Song, G., Zhu, X., Xie, H., Zheng, S., and Song, P. (2020). A novel role for farnesoid X receptors in bile acid-mediated intestinal glucose homeostasis. J Cell Mol Med 24 , 12848-12861. 10.1111/jcmm.15881.
105. Jin, D., Huang, K., Xu, M., Hua, H., Ye, F., Yan, J., Zhang, G., and Wang, Y. (2022). Deoxycholic acid induces gastric intestinal metaplasia by activating STAT3 signaling and disturbing gastric bile acid metabolism and the microbiota. Gut Microbes 14 , 2120744. 10.1080/19490976.2022.2120744.
106. Yao, Y., Li, X., Xu, B., Luo, L., Guo, Q., Wang, X., Sun, L., Zhang, Z., and Li, P. (2022). Cholecystectomy promotes colon carcinogenesis by activating the Wnt signaling pathway by increasing deoxycholic acid levels. Cell Commun Signals 20 , 71. 10.1186/s12964-022-00890-8.
107. Kuss, S.K., Best, G.T., Etheredge, C.A., Pruijssers, A.J., Frierson, J.M., Hooper, L.V., Dermody, T.S., Pfeiffer, J.K. (2011). The intestinal microbiota promotes enteric virus replication and systemic pathogenesis. Science 334 , 249-252. 10.1126/science.1211057.
108. Karst, S. M. (2016). Influence of commensal bacteria on enteric virus infection Nat Rev Microbiol 14 , 197-204. 10.1038/nrmicro.2015.25.
109. de Graaf, M., van Beek, J., Koopmans, M. (, 2016). Human norovirus transmission and evolution in a changing world. Nat Rev Microbiol14 , 421-433. 10.1038/nrmicro.2016.48.
110. Grau, K. R.; Zhu, S.; Peterson, S. T.; Helm, E. W.; Philip, D.; Phillips, M.; Hernandez, A.; Turula, H.; Frasse, P.; Graziano, V. R.; et al. (2020). The intestinal regionalization of acute norovirus infection is regulated by the microbiota via bile acid-mediated priming with type III interferon. Nat Microbiol 5 , 84-92. 10.1038/s41564-019-0602-7.
111. Song, B., Li, P., Yan, S., Liu, Y., Gao, M., Lv, H., Lv, Z., and Guo, Y. (2022). Effects of dietary Astragalus Polysaccharide supplementation on the Th17/Treg balance and gut microbiota of broiler chickens challenged with necrotic enteritis. Front Immunol 13 , 781934. 10.3389/fimmu.2022.781934.
112. Quraishi, M.N., Acharjee, A., Beggs, A.D., Horniblow, R., Tselepis, C., Gkoutos, G., Ghosh, S., Rossiter, A.E., Loman, N., van Schaik, W., et al. (2020). A Pilot Integrative Analysis of Colonic Gene Expression, Gut Microbiota, and Immune Infiltration in Primary Sclerosing Cholangitis-Inflammatory Bowel Disease: Association of Disease With Bile Acid Pathways. J Crohns Colitis 14 , 935-947. 10.1093/ecco-jcc/jjaa021.
113. Chen, L., Jiao, T., Liu, W., Luo, Y., Wang, J., Guo, X., Tong, X., Lin, Z., Sun, C., Wang, K., et al. (2022). Hepatic cytochrome P450 8B1 and cholic acid potentiate intestinal epithelial injury in colitis by suppressing intestinal stem cell renewal. Cell Stem Cell 29 , 1366-1381.e1369. 10.1016/j.stem.2022.08.008.
114. Qi, X., Yun, C., Sun, L., Xia, J., Wu, Q., Wang, Y., Wang, L., Zhang, Y., Liang, X., Wang, L., et al. (2019). Gut microbiota-bile acid-interleukin-22 axis orchestrates polycystic ovary syndrome. Nat Med25 , 1225-1233. 10.1038/s41591-019-0509-0.
115. Zheng X., Chen T., Jiang R., et al. (2021). Hyocholic acid species improve glucose homeostasis through distinct TGR5 and FXR signaling mechanisms. Cell Metab 33 , 791-803.e797. 10.1016/j.cmet.2020.11.017.
116. Liu, H., Tian, R., Wang, H., Feng, S., Li, H., Xiao, Y., Luan, X., Zhang, Z., Shi, N., Niu, H., and Zhang, S. (2020). Gut microbiota from patients with coronary artery disease contributes to vascular dysfunction in mice by regulating bile acid metabolism and immune activation. J Transl Med 18 , 382. 10.1186/s12967-020-02539-x.
117. Fuchs, C.D. and Trauner, M. (2022). Role of bile acids and their receptors in gastrointestinal and hepatic pathophysiologies. Nat Rev Gastroenterol Hepatol 19 , 432-450. 10.1038/s41575-021-00566-7.
118. Liu, H.M., Liao, J.F., and Lee, T.Y. (2017). Farnesoid X receptor agonist GW4064 ameliorates lipopolysaccharide-induced ileocolitis through TLR4/MyD88 pathway-related mitochondrial dysfunction in mice. Biochem Biophys Res Commun 490 , 841-848. 10.1016/j.bbrc.2017.06.129.
119. Du, J., Zhang, J., Xiang, X., Xu, D., Cui, K., Mai, K., and Ai, Q. (2022). Activation of the farnesoid X receptor suppresses ER stress and inflammation via the YY1/NCK1/PERK pathway in large yellow croaker (Larimichthys crocea). Front Nutr 9 , 1024631. 10.3389/fnut.2022.1024631.
120. Gong, Y., Li, K., Qin, Y., Zeng, K., Liu, J., Huang, S., Chen, Y., Yu, H., Liu, W., Ye, L., and Yang, Y. (2021). Norcholic Acid Promotes Tumor Progression and Immune Escape by Regulating Farnesoid X Receptor in Hepatocellular Carcinoma. Front Oncol 11 : 711448. 10.3389/fonc.2021.711448.
121. Ji, G., Ma, L., Yao, H., Ma, S., Si, X., Wang, Y., Bao, X., Ma, L., Chen, F., Ma, C., et al. (2020). Precise delivery of obeticholic acid via a nanoapproach for triggering natural killer T cell-mediated liver cancer immunotherapy. Acta Pharm Sin B 10 , 2171-2182. 10.1016/j.apsb.2020.09.004.
122. Huang, S., Wu, Y., Zhao, Z., Wu, B., Sun, K., Wang, H., Qin, L., Bai, F., Leng, Y., and Tang, W. (2021). A new mechanism of obeticholic acid in NASH treatment via inhibition of NLRP3 inflammasome activation in macrophages. Metabolism 120 , 154797. 10.1016/j.metabol.2021.154797.
123. Weber, A.A., Mennillo, E., Yang, X., van der Schoor, L.W.E., Jonker, J.W., Chen, S., and Tukey, R.H. (2021). Regulation of Intestinal UDP-Glucuronosyltransferase 1A1 by the Farnesoid X Receptor Agonist Obeticholic Acid Is Controlled by Constitutive Androstane Receptor through Intestinal Maturation. Drug Metab Dispos 49 , 12-19. 10.1124/dmd.120.000240.
124. Li, C., Zhou, W., Li, M., Shu, X., Zhang, L., and Ji, G. (2021). Salvia-Nelumbinis naturalis extract protects mice against MCD diet-induced steatohepatitis via activation of colonic FXR-FGF15 pathway. Biomed Pharmacother 139 , 111587. 10.1016/j.biopha.2021.111587.
125. Khoruts, A., Staley, C., and Sadowsky, M.J. (2021). Faecal microbiota transplantation for Clostridioides difficile: mechanisms and pharmacology. Nat Rev Gastroenterol Hepatol 18 , 67-80. 10.1038/s41575-020-0350-4.
126. Littmann, E.R., Lee, J.J., Denny, J.E., Alam, Z., Maslanka, J.R., Zarin, I., Matsuda, R., Carter, R.A., Susac, B., Saffern, M.S., et al. (2021). Host immunity modulates the efficacy of microbiota transplantation for treatment of Clostridioides difficile infection. Nat Commun 12 , 755. 10.1038/s41467-020-20793-x.
127. Xiao, R., Lei, K., Kuok, H., Deng, W., Zhuang, Y., Tang, Y., Guo, Z., Qin, H., Bai, L.P., and Li, T. (2022). Synthesis and identification of lithocholic acid 3-sulfate as RORγt ligand to inhibit Th17 cell differentiation. J Leukoc Biol 112 , 835-843. 10.1002/jlb.1ma0122-513r.
128. Labiano, I., Agirre-Lizaso, A., Olaizola, P., Echebarria, A., Huici-Izagirre, M., Olaizola, I., Esparza-Baquer, A., Sharif, O., Hijona, E., Milkiewicz, P., et al. (2022). TREM-2 plays a protective role in cholestasis by acting as a negative regulator of inflammation. J Hepatol 77 , 991-1004. 10.1016/j.jhep.2022.05.044.
129. Shen, Y., Lu, C., Song, Z., Qiao, C., Wang, J., Chen, J., Zhang, C., Zeng, X., Ma, Z., Chen, T., et al. (2022). Ursodeoxycholic acid reduces antitumor immunosuppression by inducing CHIP-mediated TGF-β degradation. Nat Commun 13 , 3419. 10.1038/s41467-022-31141-6.
130. Funabashi, M., Grove, T.L., Wang, M., Varma, Y., McFadden, M.E., Brown, L.C., Guo, C., Higginbottom, S., Almo, S.C., and Fischbach, M.A. (2020). A metabolic pathway for bile acid dehydroxylation by the gut microbiome. Nature 582 , 566-570. 10.1038/s41586-020-2396-4.