REFERENCES
1. Alig L, Fritz M, Schneider S. First-Row Transition Metal
(De)Hydrogenation Catalysis Based On Functional Pincer Ligands.Chemical Reviews. 2019;119(4):2681-2751.
2. Formenti D, Ferretti F, Scharnagl FK, Beller M. Reduction of Nitro
Compounds Using 3d-Non-Noble Metal Catalysts. Chemical Reviews.2019;119(4):2611-2680.
3. Meemken F, Baiker A. Recent Progress in Heterogeneous Asymmetric
Hydrogenation of C═O and C═C Bonds on Supported Noble Metal Catalysts.Chemical Reviews. 2017;117(17):11522-11569.
4. Kang P, Zhang S, Meyer TJ, Brookhart M. Rapid Selective
Electrocatalytic Reduction of Carbon Dioxide to Formate by an Iridium
Pincer Catalyst Immobilized on Carbon Nanotube Electrodes.Angewandte Chemie International Edition. 2014;53(33):8709-8713.
5. Zhang J, Rao C, Peng H, et al. Enhanced toluene combustion
performance over Pt loaded hierarchical porous MOR zeolite. Chem.
Eng. J. 2018;334:10-18.
6. Li W-L, Gao X-Y, Ouyang Y, et al. CFD Analysis of Gas Flow
Characteristics and Residence Time Distribution in a Rotating Spherical
Packing Bed. Ind. Eng. Chem. Res. 2019;58(47):21717-21729.
7. Yu Y, Fu L, Zhang F, Zhou T, Yang H. Pickering-Emulsion Inversion
Strategy for Separating and Recycling Nanoparticle Catalysts.ChemPhysChem. 2014;15(5):841-848.
8. Günther A, Khan SA, Thalmann M, Trachsel F, Jensen KF. Transport and
reaction in microscale segmented gas–liquid flow. Lab on a Chip.2004;4(4):278-286.
9. Zheng X-H, Chu G-W, Kong D-J, et al. Mass transfer intensification in
a rotating packed bed with surface-modified nickel foam packing.Chemical Engineering Journal. 2016;285:236-242.
10. Chen Q-Y, Chu G-W, Luo Y, et al. Polytetrafluoroethylene Wire Mesh
Packing in a Rotating Packed Bed: Mass-Transfer Studies.Industrial & Engineering Chemistry Research.2016;55(44):11606-11613.
11. Machado IV, dos Santos JRN, Januario MAP, Corrêa AG. Greener organic
synthetic methods: Sonochemistry and heterogeneous catalysis promoted
multicomponent reactions. Ultrasonics Sonochemistry.2021;78:105704.
12. Goyal H, Chen T-Y, Chen W, Vlachos DG. A review of
microwave-assisted process intensified multiphase reactors.Chemical Engineering Journal. 2022;430:133183.
13. Kobayashi J, Mori Y, Okamoto K, et al. A Microfluidic Device for
Conducting Gas-Liquid-Solid Hydrogenation Reactions. Science.2004;304(5675):1305-1308.
14. Ansari M, Bokhari HH, Turney DE. Energy efficiency and performance
of bubble generating systems. Chemical Engineering and Processing
- Process Intensification. 2018;125:44-55.
15. Hartman RL, Naber JR, Zaborenko N, Buchwald SL, Jensen KF.
Overcoming the Challenges of Solid Bridging and Constriction during
Pd-Catalyzed C−N Bond Formation in Microreactors. Organic Process
Research & Development. 2010;14(6):1347-1357.
16. Khirani S, Kunwapanitchakul P, Augier F, Guigui C, Guiraud P,
Hébrard G. Microbubble Generation through Porous Membrane under Aqueous
or Organic Liquid Shear Flow. Industrial & Engineering Chemistry
Research. 2012;51(4):1997-2009.
17. Zhao Y, Yao C, Chen G, Yuan Q. Highly efficient synthesis of cyclic
carbonate with CO2 catalyzed by ionic liquid in a microreactor.Green Chemistry. 2013;15(2):446-452.
18. Chen Y, Zhao Y, Han M, Ye C, Dang M, Chen G. Safe, efficient and
selective synthesis of dinitro herbicides via a multifunctional
continuous-flow microreactor: one-step dinitration with nitric acid as
agent. Green Chem. 2013;15(1):91-94.
19. Li X, Liu Y, Jiang H, Chen R. Computational Fluid Dynamics
Simulation of a Novel Membrane Distributor of Bubble Columns for
Generating Microbubbles. Industrial & Engineering Chemistry
Research. 2019;58(2):1087-1094.
20. Liu Y, Han Y, Li X, Jiang H, Chen R. Controlling microbubbles in
alcohol solutions by using a multi-channel ceramic membrane distributor.Journal of Chemical Technology & Biotechnology.2018;93(8):2456-2463.
21. Liu Y, Han Y, Li X, Jiang H, Chen R. Efficient Control of
Microbubble Properties by Alcohol Shear Flows in Ceramic Membrane
Channels. Chemical Engineering & Technology. 2018;41(1):168-174.
22. Han Y, Liu Y, Jiang H, Xing W, Chen R. Large scale preparation of
microbubbles by multi-channel ceramic membranes: Hydrodynamics and mass
transfer characteristics. The Canadian Journal of Chemical
Engineering. 2017;95(11):2176-2185.
23. Hou M, Jiang H, Liu Y, Chen C, Xing W, Chen R. Membrane Based
Gas–Liquid Dispersion Integrated in Fixed-Bed Reactor: A Highly
Efficient Technology for Heterogeneous Catalysis. Industrial &
Engineering Chemistry Research. 2018;57(1):158-168.
24. Xie B, Zhou C, Chen J, Huang X, Zhang J. Preparation of microbubbles
with the generation of Dean vortices in a porous membrane.Chemical Engineering Science. 2022;247:117105.
25. Xie BQ, Zhou CJ, Sang L, Ma XD, Zhang JS. Preparation and
characterization of microbubbles with a porous ceramic membrane.Chemical Engineering and Processing - Process Intensification.2021;159:108213.
26. Xie B, Zhou C, Huang X, Chen J, Ma X, Zhang J. Microbubble
Generation in Organic Solvents by Porous Membranes with Different
Membrane Wettabilities. Industrial & Engineering Chemistry
Research. 2021;60(23):8579-8587.
27. Shuai Y, Guo X, Wang H, et al. Characterization of the bubble swarm
trajectory in a jet bubbling reactor. AIChE Journal.2019;65(5):e16565.
28. Zeng W, Jia C, Luo H, Yang G, Yang G, Zhang Z. Microbubble-Dominated
Mass Transfer Intensification in the Process of Ammonia-Based Flue Gas
Desulfurization. Industrial & Engineering Chemistry Research.2020;59(44):19781-19792.
29. Browne C, Tabor RF, Chan DYC, Dagastine RR, Ashokkumar M, Grieser F.
Bubble Coalescence during Acoustic Cavitation in Aqueous Electrolyte
Solutions. Langmuir. 2011;27(19):12025-12032.
30. Wang H, Zhang Z-y, Yang Y-m, Zhang H-s. Surface Tension Effects on
the Behavior of Two Rising Bubbles. Journal of Hydrodynamics.2011;23(2):135-144.
31. Li W, Jiao S, Tang K, Yang Y, Qu W, Chai X. Experimental
Investigation on Characteristic of Single Bubble Motion in Stagnant
Water. Atom. Energy Sci. Technol. 2020;54(09):1652-1659.
32. Yang B, Jafarian M, Freidoonimehr N, Arjomandi M. Trajectory of a
spherical bubble rising in a fully developed laminar flow.International Journal of Multiphase Flow. 2022;157:104250.