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Abstract
Research groups use the single motion stimulus design of Dr. D.Tadin (Tadin, Lappin, Gilroy 
& Blake, 2003) that allows to putatively assess spatio-contrast excitatory and inhibitory ef-
fects from duration threshold data of motion perception. The present work presents the correct 
neurocomputational model for this experimental design and analyses issues related to data and 
model comparisons, among which: (1) once the full computational model that predicts the 
psychophysical results is properly defined, it is shown that two low-level models of how in-
hibition acts on neuronal activity, i.e. “divisive inhibition” and “subtractive inhibition”, pre-
dict exactly the same thresholds and cannot arguably be claimed that one is better than an-
other  one,  (2)  it  is  excitatory  and  inhibitory  processes  that  are  the  mechanisms  shaping 
threshold changes, i.e. perceptual “facilitation” and “suppression” in the behavioural domain, 
(3) that this experimental design allows a  quantitative  comparison and usage of such “con-
trast–size tuning” data, (4) that such studies must be carefully designed once the model is cor-
rectly understood and applied, because of the rather large parameter space (~10-12 variables) 
necessary to explain the behavioural measures even in such simple experiments.

Introduction
Changes in perception under experimental manipulations are interesting scientific tools in our 
search to relate visual perception and its putative neural substrate (Spillmann & Dresp, 1995; 
Spillmann & Ehrenstein,  1996;  Spillmann & Werner,  1996;  Eagleman,  2001;  Albright  & 
Stoner, 2002; Born & Bradley, 2005) (for recent literature, see  Kling, Field, Brainard and 
Chichilnisky (2019); Pasternak and Tadin (2020)). Human motion perception is known to ex-
hibit various astonishing effects, among which very known in the public domain are motion 
illusions  (for  some  examples  among  many  websites,  see  https://michaelbach.de/ot/in-
dex.html), with even simple motion stimuli providing sometimes counter-intuitive results.
Concerning the percept of a single motion direction, that is, of an object or a collection of ob-
jects (as rain drops or dots) moving in a single unidirectional motion in a fixed spatial loca-
tion, it is considered to be created from the interaction between excitatory, pooling informa-
tion across space and directions, and inhibitory, suppressing information across space and dir-
ections, interactions between motion sensitive neurons. For example, the percept of random-
dot kinematograms/patterns (RDK/RDPs) was reported already for more than 50 years to be 
strongly shaped by the context in which the target motion was presented (Tynan & Sekuler, 
1975;  Levinson  &  Sekuler,  1976;  Marshak  &  Sekuler,  1979;  Chang  &  Julesz,  1984; 
Watamaniuk, Sekuler & Williams, 1989; Nawrot & Sekuler, 1990). Limiting the topic to the 
spatial  spread  of  the  interactions,  two  interesting  studies  (Murakami  &  Shimojo,  1993; 
Murakami & Shimojo, 1996) showed that size tuning of these centre-surround contextual in-
teractions in motion perception seems to be eccentricity invariant. That is, when rescaling the 
measures for different eccentricities all results seem to follow a single curve. This recalls the 
size tuning characteristics of receptive fields and their magnification with visual eccentricity. 



T.Tzvetanov  Suppression and facilitation of motion perception 2/17

The authors proposed a simple spatial centre-surround model of receptive fields for explain-
ing their observations.
Yet in another type of psychophysical probes, D.Tadin and colleagues demonstrated that per-
ception of simple moving grating stimuli  (Tadin et al., 2003), or a type of RDK  (Tadin & 
Lappin, 2005), have very peculiar perceptual results with respect to size and contrast of the 
stimuli (see Figure  1a,b for stimulus illustrations). Globally, large and low contrast stimuli 
needed much less presentation time for being perceived than large and high contrast stimuli, 
while the opposite was observed for small stimuli. That is, there is an inverted effect on per-
ception as a function of contrast for small and large stimulus sizes (Figure 1c). These observa-
tions  were attributed to the contrast  and size tuning properties  of  centre-surround motion 
tuned neuronal populations.
This tuning has a simple form with excitatory and inhibitory components (Figure 1d,e). It has 
a visuospatial receptive field structure with a relative-to-surround small excitatory centre and 
spatially larger inhibitory surround (Fig.1d) and contrast responses such that the excitatory 
component is activated much rapidly at low contrasts (Fig.1e). The final neuronal activity is a 
combination of the responses of these two drives. It is their precise shape and method to com-

Figure 1: Stimulus examples, example data and model hypothesis. (a,b) Example of stimuli used for 
measuring duration thresholds of motion perception. (a) A type of random dot kinematogram (RDK)  
(random light and dark pixels seen through a fixed Gaussian spatial window) whose motion on a  
given trial could be left- or rightwards (arrows with interrogation mark); remarque: typically only a pro -
portion of the pixels move in one direction from frame to frame, the remaining being random noise (il -
lustration based on the stimulus description in Tadin and Lappin (2005); Tadin et al. (2019) ). (b) A 
Gabor patch stimulus with vertical orientation whose motion could be left- or rightward on a given  
trial. (c) Report of effects of stimulus contrast and size on duration thresholds (data extracted and  
replotted from Figure 1A in Tadin and Lappin (2005)). Duration Threshold is the necessary stimulus 
presentation time in order to correctly perceive its direction of motion. Curves are model fits (see 
Modelling and Equation 21). (d-e) Spatial and contrast tuning characteristics of the receptive field  
components. (d)   illustration of spatial  receptive field components,  excitatory (red) and inhibitory  
(blue), with Gaussian profiles. (e) Contrast response functions of excitatory (red) and inhibitory (blue)  
components of the receptive field.
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bine them that gives the particular property of the neurons. If one creates stimuli that some-
what match the preferred characteristics of these neurons, then it is considered that these neur-
onal responses are directly influencing the percept of the stimulus. This gives us a simple way 
to probe, non-invasively, this particular computational structure of the motion perception sys-
tem. D. Tadin’s insights and results, including later work of collaborators and other research-
ers, are noteworthy because they showed how we can access the spatial and contrast charac-
teristics of this motion tuned system.
To quantitatively understand these behavioural results, some models were proposed (Tadin & 
Lappin, 2005; Betts, Sekuler & Bennett, 2012; Schallmo et al., 2018), but they turned out to 
lack firm neurocomputational grounds  (Tzvetanov, 2018) for inferring something about the 
underlying mechanisms. Furthermore, the present model-based analyses appear necessary be-
cause, after a first unsuccessful attempt to peer review and publish this work, my opinion to 
the editors at that time that more application-oriented studies will use this design seems to be 
confirmed. A Pubmed search of Tadin et al. (2003) publication gave 21 results for “Cited by” 
references during the period 2021-2023 (til 31. October), from which about a third to half are 
comparisons of neurotypical groups (control) versus some groups with differences or correla-
tions with MRS estimates of GABA inhibition (e.g. ageing, depression, adolescence, mental 
disorders, etc.; including reviews) (e.g. Perani et al. (2021); Song et al. (2021); Ip and Bridge 
(2022); Liu et al. (2022); Murray and Norton (2023)). Therefore, the foundations for model-
ling and interpreting the experimental results in this design, and more generally for other fea-
tures using similar designs, is necessary for researchers interested to say something about the 
motion system of their groups of subjects, or to explain changes in excitatory/inhibitory ef-
fects. After one understands how the model is built from the experimental design and the un-
derlying neurocomputational assumptions, it is easier to interpret, and avoid misinterpreta-
tions of, the duration thresholds. This points also to some the difficulties to directly interpret 
duration thresholds changes between conditions where inhibition or excitation is manipulated 
(e.g. pharmacologically or between different groups of participants), as now it appears that 
results are variable across studies (e.g. Ip and Bridge (2022); Murray and Norton (2023)).
In the following, I reanalyse the modelling foundations of this simple experimental design, 
and demonstrate that it allows to extract information about the putative excitatory and inhibit-
ory processes that shape motion perception in the spatial and contrast domains. First, I recall 
the psychophysics methods that the modelling must explain. Second, I develop the correct 
model for predicting motion perception and I make the demonstrations: (1) that such experi-
mental measures and modelling approach cannot dissociate two low-level neuronal models of 
inhibitory effects, “divisive inhibition” and “subtractive inhibition”, because both give exactly 
the same mathematical prediction for thresholds, (2) that such data can be used for quantitat-
ive inference through fitting of excitatory and inhibitory components, and (3) some important 
consequences concerning what one can claim about low-level models from this design. Fur-
thermore, tests showed impracticability of the current model to quantitatively explain data ob-
tained with grating stimuli.
Results
Psychophysics
Definition of the psychometric function in this design
In this design observers are presented with a single moving stimulus whose contrast, size, 
presentation duration and direction of motion is varied across trials. The idea is to extract the 
duration threshold for various stimulus sizes and contrasts. Thus, observers are generally in-
structed (or learn it during the training before data collection) that (1) on each trial only one of 
two opposite motion directions can appear (e.g. left- or rightward directions; Fig.1a,b), (2) on 
some trials the motion may appear so weak, or totally noisy, that it is not clearly perceived 
and they may need to guess its direction, and (3) they had to report the direction of motion 
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they thought the presented stimulus had on the trial. These are necessary conditions for meas-
uring the psychometric function in this design, and additionally researchers may, or may not, 
add more randomness from observer’s point of view by measuring thresholds for different 
contrasts and sizes of the stimulus within the same block. This design is a common “one-stim-
ulus  presentation  two-alternatives  forced  choice”,  let’s  call  it  here  1stim2AFC  (Morgan, 
Watamaniuk and McKee (2000) call it Method of Single Stimulus;Kingdom and Prins (2009) 
call it 1AFC), that can be used for either measuring discrimination thresholds or measuring 
misperception effects (e.g. motion repulsion,Tzvetanov and Womelsdorf (2008); Tzvetanov 
(2012); e.g. tilt illusion, Westheimer (1990); Kapadia, Westheimer and Gilbert (2000)).
Here,  the  experimentalist  is  interested  in  the  discrimination  thresholds  of  the  observers, 
defined as the necessary duration time of the stimulus for discriminating at some predefined 
level of correctness (let’s say 84%) the direction of motion of the stimulus. It is defined with 
respect to the midpoint of the psychometric function. The duration of the stimulus is varied 
between long durations (persons clearly see the motion direction) and short durations (persons 
have hard time deciding about the direction). The psychometric function spans the two dimen-
sions of stimulus duration (continuous) and direction (binary). Therefore, the resulting data 
must be analysed as a single psychometric function spanning the full range of left-to-right-
ward motions (sign of the stimulus) of different durations (intensity of the stimulus). If we as-
sign negative/positive as leftward/rightward motions, absolute intensity as the duration, and 
percent “rightward” responses as the y-variable one obtains a single psychometric function 
spanning the full range of 0 to 100% of proportion responses. This definition clearly allows to 
define also the biases that can appear in this 1stim2AFC design, biases that can be due to re-
sponse bias in insecure trials (decision to respond with always the same key when not sure; 
for an explicitly voluntary shift of midpoint see Morgan, Dillenburger, Raphael and Solomon 
(2012)) or perceptual biases (persons really see something different from “0”). The discrimin-
ation threshold is thus x(p=84%)-x(p=50%). To extract the thresholds one must take care of 
the possible biases in at least one of two ways: either through the data analysis procedure de-
scribed above by fitting a full psychometric function with midpoint and slope (e.g. a logistic 
of cumulative Gaussian psychometric functions), or either at the experimental methods level 
by providing feedback to the observers about their response correctness on each trial (e.g.  
Tadin and Lappin (2005)). This data analysis is important when one has to make model-to-
data adjustment, since threshold is related to inverse of the slope of the function.
From these analyses, the threshold data can be used directly to infer something about changes 
of inhibition and excitation in the visual motion system of the observers. This last point will  
appear clearly once the model is established and linked to the psychometric function.
About the labels spatial suppression and facilitation
Some literature reports present data obtained from this design by computing a “Size Index” 
(SI)  variable  to  indicate  changes  in  spatial  suppression  and  facilitation.  This  variable  is 
defined as the difference of log-thresholds for the smallest and a larger size conditions at a 
given contrast level (or vice versa). In order for this composite variable to be representative of 
the concepts of suppression and facilitation it means that changes of thresholds between a 
small and larger size automatically labels the change as due to only suppression or only sum-
mation. This happens in such experiments (Fig.1a-c) when: (1) at very low contrasts inhibi-
tion is very weak and thus the results are mainly influenced by spatial summation instantiated 
by excitatory mechanisms, therefore one should expect a decreasing threshold as a function of 
stimulus size (see Figure 1c, c=9%); and (2) at very high contrast inhibition is predominant 
and thus the results are mainly influenced by suppression, therefore one should expect an in-
creasing threshold as a function of size (see Figure 1c, c=92%, but see the two data points for 
the smallest size). Many psychophysical data do not comply with these rules, which can be 
seen on a plot of stimulus size versus log-threshold as some “U” shape (Fig.1c, Fig.2), indic-



T.Tzvetanov  Suppression and facilitation of motion perception 5/17

ating that both excitatory and inhibitory mechanisms act simultaneously in setting observers 
perceptual thresholds for motion. It is thus re-emphasised that one should directly present and 
interpret the threshold data. This will appear clearly once the model is presented and how it 
predicts the data.
Modelling
A note on normalization of neuronal activity
Here, before presenting the exact model, I want to comment on the issue of the “divisive nor-
malization”  computational  principle/framework that  is  sometimes  advocated  (Reynolds  & 
Heeger, 2009; Carandini & Heeger,  2012). It  is an important point that concerns how we 
model perception based on our understanding of neural computations.
How does normalisation appear? Let’s look at a general neuronal network with excitatory and 
inhibitory nodes, respectively noted ye and yi. The activity of the excitatory node can be writ-
ten (similar equation for inhibitory one):

(1)
Here,  F() is some function that describes how the nodes are connected and influence each 
other (through some weights, “firing rate”/”transducer” function, and the inputs to each node 
Ie and Ii)  (Ermentrout, 1998). One general result for neuronal networks is that after a short 
time of activity the network stabilises itself on a “steady state” (but it could be also a pure os-
cillatory activity, for a simple introduction to the topic, see Wilson (2005)). What this means 
is that the activity of a neuron has an initial strong dynamics that typically shows oscillation 
activity just after input onset (e.g. a burst of firing), and then rapidly stabilises on some steady 
state  activity  (for  model  examples,  e.g.  Piëch,  Li,  Reeke  and  Gilbert  (2013),  or  Wilson 
(2005)). This steady state activity can (rare) or cannot (in general) be computed in a simple 
analytical manner, depending on the exact functional form of the above network equations 
(the function  F()). This stable point is sometimes considered as a computational principle/
framework.
From the above short presentation, it comes natural that neuronal activity stabilisation, aka 
normalisation,  sometimes  appearing  as  “divisive  normalization”,  accounts  for  the  neuro-
physiological results, but it does so due to the exact functional form of the equations (trans-
ducer, excitatory and inhibitory effects...) that the modeller decided to put in it for matching 
the model to the data. They are carefully considered based on prior knowledge, especially 
neurophysiological but also behavioural reports. The following two examples of neuronal net-
works will give different views on the issue.
The first example is a V1-layer 4 cell from the model proposed by  Grossberg and Raizada 
(2000) (their  equations  17-18)  for  explaining  contrast  and  attentional  effects  observed in 
neurophysiology of V1. The activity yijk of these V1-layer 4 cells at equilibrium is:

(2)

where Cijk are processed LGN inputs that are modulated by layer 6 cells activities (xijk) organ-
ised in an excitatory-centre (η+xijk) and inhibitory-surround (W+

pqrijkmpqr) structure, this later be-
ing transmitted through a layer 4 inhibitory network activities  mpqr (see their equation 19). 
Leaving aside further considerations about their model, this example shows how nominator 
and denominator include excitatory and inhibitory effects from various origins. It should be 
noted that these other feedback activities are themselves function of layer 4’s activities and 
other V1 layers, thus making the exact computation not analytically straightforward and ne-
cessitating numerical simulations.
The second example is a model of centre-surround interactions in motion processing taken 
from  Kim and Wilson (1997) (their  equation  6).  The time dependent  activity,  Cθ,  of  one 
neuron in a centre population sensitive to direction of motion θ is:
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(3)

that gives at equilibrium the result:

(4)

where S() is a simple transducer (S(x)=x if x>0, else 0), EC,θ is the preprocessed pattern motion 
input to the centre at direction θ, and Ak are the activities of spatially surround neurons that 
themselves undergo excitation and inhibition in a similar manner (the remaining factors are 
network connection weights, see their tables 1 and 2). In this example the stabilized activities 
of the neurons are a simple function of input and subtraction of the inhibitory parts coming 
from the other cells. The normalisation property here comes from the facts that the input EC,θ 

is itself limited between a minimum and a maximum, there are only inhibitory interactions, 
and the transducer does not allow for negative activities. In this case too, because of the inter-
twined interactions through all spatial and motion direction lateral connections, the computa-
tion of the stable activities were obtained through numerical simulations.
What did we see from these examples? First, that the exact relation for the neuronal activity at 
equilibrium can be widely different depending on the exact functional network and connectiv-
ities that are assumed by the modeller. The exact terms in the denominator and nominator de-
pend on the network structure the researchers are interested in, based on preliminary know-
ledge coming from neurophysiology or from behavioural results hinting to a particular struc-
ture.
General background for the modelling
Now we can turn to the modelling of the behavioural results in this simple experimental lay-
out. First let’s recall the factors of interest in such studies, {size,  contrast,  duration} of the 
stimulus, and the background hypothesis, that it is the excitatory-centre inhibitory-surround 
receptive field organisation in area MT/hMT+, which has a typical structure such that similar-
to-centre strong motions in the surround reduce the activity due to centre stimulus presenta-
tion (Born & Bradley, 2005), that are a direct reason of the perceptual results obtained with 
motion stimuli.
In predicting psychophysical performance, the models are generally split into two independ-
ent stages, the low-level neuronal activities and the high-level decision stage. When combined 
they must predict the psychometric functions for each combination of size and contrast. The 
low-level activities are fed to the decision stage that only does one computation – to predict  
the dependent variable, here percent “rightward” responses.
An important point must be clarified concerning this experimental design and its modelling: 
the independent variable of the psychometric function is stimulus duration (tstim). Because of 
this, there is a very strong assumption in the modelling that is made: the neuronal activity, R, 
of the motion tuned neurons are a direct measure of the duration of the stimulus, analogously 
to stimulus contrast. That is, there is some monotonic relation between stimulus duration and 
R, the low-level model of neuronal firing rate. This point is a necessary condition for being 
able to model the psychometric function that is assumed monotonically increasing with stimu-
lus duration. Let’s assume that it has a classic saturating behaviour defined by a hyperbolic ra-
tio equation (Albrecht & Hamilton, 1982) in the time domain:

(5)
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with  n,t50>0. This equation states that for an infinitely long presentation of the stimulus the 
neuronal activity is finite. Furthermore, here it is assumed that this component is multiplicat-
ive of the “interaction” components.
Concerning the decision stage model, the two most common, and currently largely advertised 
and used, models will be considered. The first one is the classic Signal Detection Theory 
(SDT) (Green & Swets, 1966; Macmillan & Creelman, 2005) applied on neuronal activities 
(e.g.  Britten, Shadlen, Newsome and Movshon (1992)). The second one is the “Drift-Diffu-
sion Model” (DDM) (Link, 1975; Ratcliff, 1978; Luce, 1986; Link, 1992; Smith, 2000; Smith 
& Ratcliff, 2004; Huk & Shadlen, 2005; Palmer, Huk & Shadlen, 2005; Ratcliff & McKoon, 
2008; Forstmann, Ratcliff & Wagenmakers, 2016).
The correct model for D. Tadin’s design
We take the low-level processing stage of the model to be represented by a population of 
neurons coding the two possible motions with opposite directions, whose activities  R’s de-
pend on all independent variables of stimulus contrast (c), size (s), and duration (tstim). Here, 
two low-level models, subtractive inhibition (e.g.  Tadin and Lappin (2005)) and divisive in-
hibition (e.g. Betts et al. (2012); Schallmo et al. (2018)), and both decision models (SDT and 
DDM) are considered, giving as model equation:

(6)

with N(M) representing a normal distribution with mean M and unit variance, and R+ and R- 

representing the activity of neurons coding right- and leftward motion directions, respectively; 
E() and  I() are the excitatory and inhibitory drives;  R0 is a “spontaneous firing rate” of the 
neurons (no input:  c=0, or s=0, or tstim=0); S() is the simple transducer S(x)=x if  x>0, else 0; 
“+” sign in the psychometric function is defined as the rightward motions; because the experi-
mental design is a 1stim2AFC task with only two possible motion directions, SDT’s predic-
tion is based on the difference of activities of the two motion coding populations, and Var(R) 
is assumed equal to R (Fano factor of one); for the same reason the drift rate μ in the DDM is 
taken as the difference between the activities of neurons with opposite motion directions.
Important note: in the above Equation 6, activities Rs of the motion tuned neurons may rep-
resent the equilibrium state values for the given stimulus input parameters, as discussed in 
section  A note on normalization of neuronal activity, or more generally a mean activity 
across  some  time  window of  post-stimulus  presentation;  starting  from equation  6 model 
presentation can be considered as following the tradition of “pattern analyzers”  (Graham, 
2011), where it is usual to directly use static mathematical models with predefined pattern 
sensitive inputs.
What remains to be defined are the excitatory and inhibitory drives E() and I(). For the mo-
ment we keep a general formulation. Because we assumed that neuronal response to stimulus 
duration, Rdur(tstim), is independently pooled from responses to contrast and size, and that it has 
the same modulation on both components, we can write:

(7)
To obtain the duration threshold for tstim, from Equation 6 we can write:

(8)
where  F≡F(c,s,tstim)  is the general non-specific function of the model. Then, using the SDT 
model and the definition of threshold as mean differences equal to one standard deviation, we 
define for a rightward motion input to the model F+≡F+R0 and F-=R0, then:

. (9)
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After simplification it gives the second order equation and its solution:
(10)

In this last equation the negative solution is not biologically meaningful and thus discarded. A 
similar to the last equation is obtained in the case of the DDM by defining threshold of tstim 

when P(tstim)=0.84. Last, with few more mathematical operations one finds for each low-level 
model considered here that (assuming denominator>0):

(11)

The constants CDecision are dependent on the decision stage models of psychometric functions 
as follows:

(12)
These mathematical constants are obtained from the full model assumptions and derivations, 
together with what is defined as threshold for percent responses on the psychometric function 
(here 84%). Concerning the decision criteria, in SDT case the observer decision criterion is: 
on a given trial if R+-R->0 then give response “+”, else response “-”; in the case of the DDM 
the decision criterion is which of the two boundaries is reached (if “+A” then give response 
“+”, if “-A” give response “-”; for further details see the DDM articles and reviews cited 
earlier).
Making the last step and computing the duration threshold of the theoretical observer, by us-
ing equations 5 and 11, one obtains for subtractive inhibition:

(13)
and for divisive inhibition:

(14)
The correct  general  equations  for  modelling  the  psychometric  functions  of  proportion re-
sponses as a function of stimulus parameters are given in equations 6, and from considerations 
about experimental threshold and model parametrisation leads to equations 13-14.
I must re-emphasize that these last equations are the correct model derivations, contrary to 
some published equations with an unsubstantiated decision stage model, and thus final equa-
tion (Tzvetanov, 2018).
Comparing predictions of the two low-level models
Now that the model derivations have been laid down, we can analyse whether these equations 
make interesting inferences about a particular model, or point to changes in thresholds as a 
function of excitatory or inhibitory strengths. Because the decision stage of the models make 
predictions that differ only in the constant  CDecision, from now on, any application of a full 
model will be done with SDT. Furthermore, without loss of generality, we fix in the divisive 
inhibition model σ=1 (amplitude rescaling of E() and I() in Equation 6).
The two models give the predictions of duration threshold with equations 13-14. Interestingly, 
the condition CSDT=1, which happens when R0=0, and assuming that Rinh for both divisive and 
subtractive models are the same as well as for  Rexc, gives exactly the same final prediction 
from both models. It is independent from the particular functional form of the excitatory and 
inhibitory drives. That is, despite the very different initial model assumptions (Equations 6), 
one finds that the final prediction of threshold variation as a function of stimulus size and con-
trast are equal.
When R0>0, the exact difference between the two predicted thresholds depends on all three 
variables of excitatory, inhibitory and spontaneous firing rates. Nevertheless, even when R0>0, 
one  can  see  that  if  the  two  models  differ  only  in  the  inhibitory  responses  Rinh,  when 
Rinh(Sub)=CSDTRinh(Div)  both  models  still  give  exactly  the  same  prediction  of  thresholds 
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through a simple amplitude scaling of the inhibitory drives. Therefore, if the functions for ex-
citatory and inhibitory effects in the two low-level models are chosen to be of the same math-
ematical form, then the two models can predict exactly the same thresholds by a proper res-
caling of inhibitory amplitude.
To conclude, selecting either of the low-level models in Equation 6 is irrelevant for the final 
predictions. Consequently, it is the mathematical forms of the excitatory and inhibitory drives 
that predict the perceptual thresholds and this simple experimental design cannot dissociate 
between low-level models of divisive inhibition and subtractive inhibition.
On the necessity of centre excitatory tuning width to vary with contrast
Here is analysed the question of what kind of excitatory and inhibitory drives can, or can not, 
predict some observations in the behavioural results. One noteworthy point from Equations 
11-14 is that they allow simple and interesting inferences, inferences that, to the best know-
ledge of the author, for the particular design of D. Tadin, were missing until now.
(i) Independence of contrast and size effects can not predict behavioural results: simple case
If we make the assumption of independence of stimulus contrast  and size effects on each 
drive, Rexc(c,s)=Rc,exc(c)Rs,exc(s) (similar equation for inhibition), and that inhibitory contrast re-
sponse  function,  Rc,inh(c),  is  a  scaled  version  of  the  excitatory  one,  that  is, 
Rc,inh(c)=kRc,exc(c)≡kRc(c), for all models (from equ.11) one obtains:

(15)
That is, because of the monotonic relation for each function on both sides of the above equa-
tion  (both  Rdur(tstim)  and  R(c)  are  monotonically  increasing  with  their  variable),  duration 
thresholds are inversely related to contrast for any size of the stimulus. In fact, the behavioural 
results for small stimulus sizes follow this relation (see Figure 1), but not for large stimulus 
sizes. Thus, independent effects of stimulus contrast and size cannot predict the psychophys-
ical observations of inverted relation between duration thresholds and contrast at large stimu-
lus sizes (an effect present for various stimulus types). We can discard this possibility as in-
compatible with behavioural evidence. This result is a nice counterpart of the neurophysiolo-
gical  findings  in  low-level  visual  processing  systems,  that  stimulus  contrast  and size  are 
somehow strongly intertwined in neuronal responses of areas V1 and MT (Sceniak, Ringach, 
Hawken & Shapley, 1999; Cavanaugh, Bair & Movshon, 2002; Tsui & Pack, 2011).
(ii) Independent contrast and size effects in the model: different, non-scaled, contrast tuning 
of excitatory and inhibitory components
Here is further analysed the condition of independent effect of contrast and size. Now it is as-
sumed that Rc,inh(c)≠kRc,exc(c), for example a simple shift of the inhibitory contrast response to-
ward higher contrasts, and we assume that the components describing contrast responses are 
normalised such that their responses at c=1 is equal to one.
Then we can predict the inverted effect of contrast on duration thresholds as a function of 
stimulus size. The behavioural data show a very strong variation with contrast of the “min-
imum” (or dip) of the duration threshold as a function of stimulus size. In the data of Tadin 
and Lappin (2005) this minimum changes from ~2-3 degrees at c=9% down to ~0.5-0.6 de-
grees at contrasts 42% and 92% (see Figure 1c), a factor change of ~3-6. To demonstrate that 
this change is hardly predicted with independent contrast and size effects, we take for the size 
functions the error functions:

(16)

Because the dip of the effect happens when the response  R(c,s) reaches a maximum on the 
size dimension, we can compute the stimulus size at which the dip appears, sdip, which gives:

(17)
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From this result, it is possible to find the necessary ratio of excitatory to inhibitory low-con-
trast responses for observing a given dip change as a function of the ratio of high-contrast re-
sponses. By using the ratio between size dips at low and high contrasts, rdip=sdip(lc)/sdip(hc) (lc 
– low contrast; hc – high contrast), it is found that:

(18)

If we take the best case of Rc,inh(hc)=Rc,exc(hc), e.g. at contrast of one the normalised contrast 
coding components are equal, and ae=ai (maximum surround inhibition), then we have:

 (19)

That is, the ratio of excitatory-to-inhibitory low-contrast responses is a function of the ratio 
inhibitory-to-excitatory size tunings to the power of squared  rdip !  This model can predict 
factor of dip changes of ~3–6 only if the inhibitory responses at low contrasts are essentially 
zero. This would correspond to a strongly expansive inhibitory contrast response function at 
intermediate to high contrasts.
To conclude, the model of low-level responses cannot have independent contrast and size ef-
fects, as argued by  Tadin and Lappin (2005) from their fitting results, and reported neuro-
physiologically for the V1 visual system (Sceniak et al., 1999; Cavanaugh et al., 2002).
(iii) Necessity of centre excitatory tuning width to vary with contrast
One can further analyse which single component, excitatory or inhibitory, influences the most 
the position of the dip. We can use Equation 17 (still valid when size tuning is contrast de-
pendent) and rewrite it as:

(20)

where  ks=σi/σe is  the ratio  of  inhibitory-to-excitatory sizes.  From this  equation it  is  much 
easier to see that, at fixed ratio ks, the dip position is linearly related to σe, while at fixed σe it 
is much slowly changing with σi. Thus, the behavioural data of duration thresholds showing 
large changes of the dip position can only be explained if excitatory centre tuning width is 
contrast dependent.
Application of the model
Until now, it was possible to make model analyses based on general considerations about the 
functions and observed data. Because the model predicts exact thresholds, and the deduced fi-
nal equations 13-14 can be fit to the data, now we have to choose specific mathematical forms 
for the different components. By using Tadin & Lappin’s (2005) low-level model, based on 
prior knowledge, and writing the full equation of the model, we have:

(21)

where {ae,ai} are the absolute response amplitudes of the excitatory and inhibitory compon-
ents, the middle, complex-looking, ratio of contrasts in  Rexc() and Rinh() is the classic hyper-
bolic ratio for contrast response functions(Albrecht & Hamilton, 1982) but rewritten such that 
at c=1 its response is 1 and at c=c1/2 its response is 1/2, and the last part is the error function as 
a function of size (for the inhibitory part) and size and contrast (for the excitatory part) (Tadin 
& Lappin, 2005). In the above equations it is assumed that the pure contrast responses for 
both excitatory and inhibitory drives have the same exponent  p but different  half-amplitude 
constants {c1/2,e, c1/2,i}. The size function, erf(), assumes that both receptive field components 
have a circular Gaussian shape and the space information is simply pooled across the stimu-
lated area (stimulus centred on the receptive field). The model contains a total of 12 paramet-
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ers: {t50, n, CDecision, ae, ai, p, c1/2,e,  c1/2,i, σe, σi, m, k}. Without loss of generality, n and ae are set 
to 1, and parameters {CDecision, ai} are interpreted as proportional to the excitatory amplitude ae. 
This leaves a total of 10 free parameters.
(i) Example of model fit
A demonstration of fit to the data of  Tadin and Lappin (2005) is carried. There are enough 
data points (n=32) on a sufficiently large range of contrasts and sizes for constraining all 10 
parameters.  Fit  results  are:  {t50=197,  CDecision=0.051,  ai=0.876,  p=0.75,  c1/2,e=0.0044, 
c1/2,i=0.081,  σe=2.5,  σi=3.6,  m=7.78,  k=0.305} (see continuous curves in Figure  1c and com-
pare to the data). Although some parameters seem to have stronger influence on a single input 
dimension (e.g. σi on size only), it is the 3D data, Duration Threshold vs {Contrast, Size}, that 
constrain all parameters simultaneously through the final non-linear model of Equation  21. 
Some interesting quantitative points can be derived from the final parameters: (1) inhibitory 
amplitude is quite strong, nearly 90% of the excitatory amplitude, which is a nice counterpart 
of neurophysiological results showing that short duration motion stimuli seem to preferen-
tially  stimulate  neurons  with  strong surround inhibition  (Churan,  Khawaja,  Tsui  & Pack, 
2008) ; (2) the constant  CDecision=0.051 gives, if  ae=100,  R0~10 which is about 10% of  ae, a 
rather common spontaneous firing rate of neurons; (3) the excitatory half-amplitude constant 
c1/2,e  is low, an interesting counterpart of neurophysiological observations for similar centre-
surround designs showing low semi-saturation constants (Tsui & Pack, 2011) ; (4) the power 
of the contrast response function is very low (p=0.75), which was also reported to be the case 
in neuronal fits of size tuning data of MT (Tsui & Pack, 2011).
In summary, the correct computational model fit to the behavioural data provides quantitative 
parameters  that  globally match expectations  about  parameter  values gathered from neuro-
physiological studies. Thus, one can apply the model on behavioural data to infer putative 
changes of inhibitory or excitatory mechanisms under experimental manipulations.
(ii) Manipulating individual observer’s level of inhibition
What should we expect as an outcome if inhibition within a person is manipulated or is natur-
ally different between two groups of populations? In the model the effects of the inhibitory 
component are instantiated through three model functions, one of amplitude, one of contrast, 
and one of size, with their respective parameters {ai, c1/2,i, σi}. The effect of enhanced inhibi-
tion can affect all three functions. Thus, there are three simple ways to obtain stronger inhibi-
tion: an increase in amplitude ai, a decrease in contrast half-amplitude constant c1/2,i such that 
inhibition is activated faster at lower contrasts, and a decrease in tuning width σi such that in-
hibition is activated earlier in spatial domain. Three simple examples are depicted in Figure 
2a-c.  As one can see, amplitude increase slows very strongly thresholds at  large stimulus 
sizes, inhibitory size decrease affects thresholds for small to medium size stimuli, and half-
amplitude constant (c1/2,i) decrease affects medium-to-high changes thresholds at medium-to-
large size stimuli. One important result is that all three changes increase duration thresholds.  
This can easily be understood by referring to equations 13-14, where one can see that increas-
ing inhibition (Rinh(c,s)) decreases the denominator which in turn increases the overall bracket. 
That is, while the exact threshold variation is dependent on the combined changes of inhibit-
ory parameters, increase in inhibition makes overall thresholds higher.
(iii) Measures of spatial suppression and summation with sine gratings do not conform to the 
model
The data from the RDKs of Tadin and Lappin (2005) presented in Figure 1c are well fit by the 
model. In an attempt to explain also other data, it was found that the model has difficulties in 
fitting  them.  These  data  were  obtained with  moving sine  grating  stimuli,  that  were  seen 
through Gaussian envelopes (Gabor patches). The fitting was unsuccessful in matching the 
model to the data. When the 10 parameters were left free the final best fit gave biologically 
not plausible values; even with these best parameters, the fit was still difficult to reconcile 
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with the data. The reason of this discrepancy can be seen in Figure 2d-f. Panels (d-f) replot the 
data from three studies that used moving sine gratings at different contrasts and sizes. As it 
can be seen, the grating data has a particular behaviour: at low contrasts (~3%) the thresholds 
have the typical decrease with increasing stimulus size; at slightly higher contrasts (4.2-5.5%) 
the  data  show  a  U-shape  with  increasing  stimulus  size;  from  contrasts  above  10%  the 
thresholds exhibit mainly monotonic increasing behaviour with possible plateau effect at very 
high contrasts (panel (f)). Panel (g) presents the model predictions. It can be seen that the 
model shows a typical U-shape of thresholds vs. stimulus size for all but the lowest contrasts 
of 2.8-5.5%, where it is very weak. One can use Equation 20 to see that at sufficiently high 
contrasts one has approximately:

(22)
with K approximately constant (ks increases with c because σe decreases with c, and the ratio 
of contrast functions slowly decreases toward 1, which makes the bracket in Equation 20 to 
increase very slowly with increasing contrast, in opposite direction of sdip variation). Thus, one 
has the choices: (i) to change the function relating excitatory centre size and contrast such that 
at high contrasts it drops much rapidly as in the data, or instead (ii) suppose that the valid fit  
in Figure 1c for RDK stimuli (Fig.1a) hints to model inadequacy (equ.21) for explaining res-
ults with grating type of stimuli. (one can also see the papers of Tadin & Lappin, 2005 and 
Betts et al., 2012, for different contrast and size low-level models, though the threshold equa-
tion is wrong).

Figure 2 Effects on thresholds when manipulating inhibition (a-c) and duration thresholds data from re -
ports  using  sine  grating  type  of  stimuli  (d-f).  (a-c)  Model  prediction  for  parameters  { t50=400,  CDe-

cision=0.05,  ai=0.5,  σe=2.5,  σi=4,  p=0.75,  c1/2,e=0.005,  c1/2,i=0.08,  m=8,  k=0.3} (continuous curves) and 
change of ai=0.9 (a), σi=3 (b), and c1/2,i=0.02 (c); depicted are changes for stimulus contrasts of 2.8 and 
46 for ease of visualisation;  (d) Gabor patches results from Figure 1 in Tadin et al. (2003), (e) Gabor  
patches results for  young observers from figure 2 in  Betts,  Taylor,  Sekuler and Bennett  (2005),  (f) 
Gabor patches results for young observers from Figure 1 in Betts, Sekuler and Bennett (2009) and (g) 
model  (Equation  21)  prediction  for  parameters  {t50=400,  CDecision=0.05,  ai=0.9,  p=0.75,  c1/2,e=0.005, 
c1/2,i=0.08, σe=2.5, σi=4, m=8, k=0.3}. In (g) contrasts are printed on the rightmost end of each curve.
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Conclusion from modelling
From the above modelling presentation a small summary is made. First, the computational 
model predicting the duration thresholds for this simple experimental design of motion per-
ception is easy to obtain. From careful considerations about its basic assumptions and func-
tional form of the neuronal activities, it was shown that two competing models of neuronal 
activities,  i.e.  divisive  inhibition and  subtractive  inhibition,  cannot  be  dissociated  in  this 
design. Instead, it is the exact mathematical form of the excitatory and inhibitory drives that 
defines the shape of suppressive and facilitative effects on duration thresholds as a function of 
size and contrast. Second, the computational model was shown to provide quantitative estim-
ates of parameters that globally matched reported neurophysiological counterparts, and issues 
related to interpreting changes in measures were highlighted.
Discussion
This work analysed the spatial summation and suppression effects that appears in human per-
ception of visual motion, specifically in the very simple stimulus design of D. Tadin (Tadin et 
al., 2003). It was prompted from a missing correct model derivation and application. There-
fore, this study presented the model for predicting the perceptual thresholds in the experi-
mental design and made multiple inferences from it that were presented in the relevant parts. 
Here are discussed some points about psychophysics and modelling that were not  touched 
upon.
When testing computational models of perception, we match the model prediction to the be-
havioural measures obtained in a particular experimental design through the use of the psy-
chometric function (PF). Its exact definition depends on the experimental design. In the 1-
stimulus-2-Alternatives-Forced-Choice design analysed here, it was argued that the PF should 
be defined as a function of motion duration and direction, thus representing a typical PF for 
“discrimination” (discriminating between two possible motion directions) that can be defined 
in the full range of percent responses (0% to 100%). The current work allowed to model the 
PF by considering the inputs and outputs that the model should incorporate and predict. It 
provided the general model equation, where the low-level model responses are presented to-
gether with the decision stage levels, that led to predict the perceptual thresholds. The model 
approach in this work is based on “static models”, or “pattern analyzers” (Graham, 2011). It 
approximates the responses of the neuronal populations to the inputs in specific ways by as-
suming that all neuronal interactions lead to simple “static” functional forms.
First, the major independent variable stimulus duration was modelled as activating neurons in-
dependently from the two other variables of stimulus contrast and size. The results show that  
it is a sufficient assumption. Furthermore, it was hypothesized that the exact way this variable 
affects neuronal responses is to modulate independently both excitatory and inhibitory drives. 
On the contrary, one can hypothesize that the effect is to modulate the combined response of 
excitatory and inhibitory components. While the “subtractive inhibition” model is not affected 
by  this  difference,  the  “divisive  inhibition”  model  gives  different  predictions  (not  shown 
here).
Second, the model incorporates the “spontaneous firing rate” of the neurons, R0, as the min-
imum possible activity. Nevertheless, spontaneous activity of the neurons are known to be 
lower for surround-suppressed cells  in comparison to non-suppressed cells  (Churan et  al., 
2008). This hints to the possibility that, when a moving stimulus is presented to them, the 
activity of the neurons sensitive to opposite motion directions is in fact lower than R0, an ef-
fect  already  reported  (Snowden,  Treue,  Erickson  &  Andersen,  1991;  Britten,  Shadlen, 
Newsome & Movshon, 1993) and successfully modelled  (Simoncelli & Heeger, 1998), and 
that it may vary with stimulus size and contrast. The model might, or not, be improved by in-
cluding such an effect.
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Third, it is known that the neuronal responses have contrast and size tuning such that at least  
one of the drives, excitatory or inhibitory, has intertwined contrast and size response func-
tions. In the current work, assuming a mathematical form for the size tuning drive, it was ar-
gued that the spatial spread of the excitatory drive should change with contrast variations. It is 
possible that instead, with different equations and analyses, one can describe behavioural res-
ults by using the contrast tuning components to change with size variations. Such a possibility 
was used by  Tsui and Pack (2011) for modelling their  neurophysiological results and one 
might successfully apply such a model also to the behavioural results, though the current au-
thor has not tested it and remains doubtful.
Fourth, if one manipulates neuronal connections with drug intake for example or compares 
populations with putative differences in connectivities  (Schallmo et al., 2018; Perani et al., 
2021; Song et al., 2021; Ip & Bridge, 2022)  the question naturally arises of how it should be 
considered in the model. Here, it was argued only through the change of the inhibitory drive 
model. Since the model approach is based on “static” models, one cannot discard the argu-
ment that all the components of the model of “steady state” activity are modified. This is so 
because in changing connection weights of one type (excitatory or inhibitory) in the system 
affects the global equilibrium, and this later part is modelled, not the real weights.
Last, because the experimental design analysed here simultaneously measures the stimulus 
duration with spatial and contrast domain characteristics of motion perception, the model ne-
cessarily must incorporate all these factors in its excitatory and inhibitory drives, which natur-
ally leads to high multidimensional parameter space (here 10 parameters) for predicting even 
such simple data measures. The consequence is that, unless there is prior knowledge, the ex-
perimental measures must be carefully designed and carried in order to have data that can cor-
rectly constrain all parameters, or at minimum unambiguously give effects associated mainly 
to inhibition (e.g. very high contrasts) or excitation (e.g. very low contrasts).
While the overall modelling and argumentation was based on the knowledge of motion per-
ception,  one should not find it  too hard to apply or extend the general part  of the model 
(eqs.6-14 and equ.21) to other basic features, whose neurophysiology was extensively studied 
during the last 50 years, as for example in V1 for orientation or spatial frequency.
This work showed that we are very successful in providing simple and elegant modelling of 
behavioural results, results that demonstrate interesting perceptual phenomena that we associ-
ate  to  neurophysiological  counterparts.  Our  modelling  must  be  carefully  considered  and 
weighted with respect to prior knowledge. When neurophysiological, computational and be-
havioural results are combined in appropriate conditions for comparisons, we do gain import-
ant insights and knowledge about a given neurophysiological system and how it affects per-
ception. In the case of suppression and facilitation of motion perception in humans, our under-
standing of how the percept is created and modulated has strong grounds from which we can 
make interesting inferences and, importantly, allow us to go toward more application oriented 
studies.
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