Acknowledgement
We thank the members of the Liu laboratory for critical review of this manuscript. We also thank Dr. Jiazhang Qiu from Jilin University for the useful discussion on Legionella kinase effectors. Due to time constraint as well as space limitation, we apologize to those colleagues whose work was not discussed or cited in this paper. The work in our group was financially supported by grants from National Key Research and Development Program of China (2022YFA1304500), the Natural Science Foundation of China (22174003 and 21974002), Peking University Medicine Seed Fund for Interdisciplinary Research and the Fundamental Research Funds for the Central Universities.
ORCID
Jie Jin https://orcid.org/0000-0001-8641-8843
Jiaqi Fu https://orcid.org/0000-0003-0081-6133
Xiaoyun Liu https://orcid.org/0000-0001-7083-5263
REFERENCES
Alonso, A., Bottini, N., Bruckner, S., Rahmouni, S., Williams, S., Schoenberger, S.P. et al. (2004) Lck dephosphorylation at Tyr-394 and inhibition of T cell antigen receptor signaling by Yersiniaphosphatase YopH. Journal of Biological Chemistry, 279,4922-4928.https://doi.org/10.1074/jbc.M308978200.
Ashida, H., Kim, M. & Sasakawa, C. (2014) Exploitation of the host ubiquitin system by human bacterial pathogens. Nature Reviews Microbiology, 12 , 399-413.https://doi.org/10.1038/nrmicro3259.
Barz, C., Abahji, T.N., Trülzsch, K. & Heesemann, J. (2000) TheYersinia Ser/Thr protein kinase YpkA/YopO directly interacts with the small GTPases RhoA and Rac-1. FEBS Letters, 482, 139-143.https://doi.org/10.1016/s0014-5793(00)02045-7.
Bette-Bobillo, P., Giro, P., Sainte-Marie, J. & Vidal, M. (1998) Exoenzyme S from P. aeruginosa ADP-ribosylates rab4 and inhibits transferrin recycling in SLO-permeabilized reticulocytes.Biochemical and Biophysical Research Communications, 244 , 336-341.https://doi:.org/10.1006/bbrc.1998.8263.
Beyrakhova, K., Li, L., Xu, C., Gagarinova, A. & Cygler, M. (2018)Legionella pneumophila effector Lem4 is a membrane-associated protein tyrosine phosphatase. Journal of Biological Chemistry, 293, 13044-13058.https://doi.org/10.1074/jbc.RA118.003845.
Black, D.S. & Bliska, J.B. (1997) Identification of p130Cas as a substrate of Yersinia YopH (Yop51), a bacterial protein tyrosine phosphatase that translocates into mammalian cells and targets focal adhesions. The EMBO Journal, 16, 2730-2744.https://doi.org/10.1093/emboj/16.10.2730.
Black, M.H., Osinski, A., Park, G.J., Gradowski, M., Servage, K.A., Pawłowski, K. et al. (2021) A Legionella effector ADP-ribosyltransferase inactivates glutamate dehydrogenase.Journal of Biological Chemistry, 296, 100301.https://doi.org/10.1016/j.jbc.2021.100301.
Bliska, J.B., Guan, K.L., Dixon, J.E. & Falkow, S. (1991) Tyrosine phosphate hydrolysis of host proteins by an essential Yersiniavirulence determinant. Proceedings of the National Academy of Sciences of the United States of America, 88, 1187-1191.https://doi.org/10.1073/pnas.88.4.1187.
Cassel, D. & Pfeuffer, T. (1978) Mechanism of cholera toxin action: covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system. Proceedings of the National Academy of Sciences of the United States of America, 75, 2669-2673.https://doi.org/10.1073/pnas.75.6.2669.
Chambers, K.A. & Scheck, R.A. (2020) Bacterial virulence mediated by orthogonal post-translational modification. Nature Chemical Biology, 16, 1043-1051.https://doi.org/10.1038/s41589-020-0638-2.
Choi, H.W., Brooking-Dixon, R., Neupane, S., Lee, C-J. Miao, E.A., Staats, H.F. et al. (2013) Salmonella typhimurium impedes innate immunity with a mast-cell-suppressing protein tyrosine phosphatase, SptP. Immunity, 39, 1108-1120.https://doi.org/10.1016/j.immuni.2013.11.009.
Choudhary, C., Kumar, C., Gnad, F., Nielsen, M.L. Rehman, M., Walther, T.C. et al. (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science, 325, 834-840.https://doi.org/10.1126/science.1175371.
Dukuzumuremyi, J.M., Rosqvist, R., Hallberg, B., Akerström, B., Wolf-Watz, H. & Schesser, K. (2000) The Yersinia protein kinase A is a host factor inducible RhoA/Rac-binding virulence factor.Journal of Biological Chemistry, 275, 35281-35290.https://doi.org/10.1074/jbc.M003009200.
Fu, J., Zhou, M., Gritsenko, M.A., Nakayasu, E.S., Song, L. & Luo, Z.Q. (2022) Legionella pneumophila modulates host energy metabolism by ADP-ribosylation of ADP/ATP translocases. Elife, 11 , e73611.https://doi.org/10.7554/eLife.73611.
Galyov, E.E., Håkansson, S., Forsberg, A. & Wolf-Watz, H. (1993) A secreted protein kinase of Yersinia pseudotuberculosis is an indispensable virulence determinant. Nature, 361, 730-732.https://doi.org/10.1038/361730a0.
Gao, X., Wan, F., Mateo, K., Callegari, E., Wang, D., Deng, W. et al. (2009) Bacterial effector binding to ribosomal protein s3 subverts NF-κB function. PLoS Pathogens, 5, e1000708.https://doi.org/10.1371/journal.ppat.1000708.
Ge, J., Xu, H., Li, T., Zhou, Y., Zhang, Z., Li, S. et al. (2009) ALegionella type IV effector activates the NF-κB pathway by phosphorylating the IκB family of inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 106,13725-13730.https://doi.org/10.1073/pnas.0907200106.
Gerke, C., Falkow, S. & Chien, Y-H. (2005) The adaptor molecules LAT and SLP-76 are specifically targeted by Yersinia to inhibit T cell activation. Journal of Experimental Medicine, 201, 361-371.https://doi.org/10.1084/jem.20041120.
Gonçalves, I.G., Simões, L.C. & Simões, M. (2021) Legionella pneumophila . Trends in Microbiology, 29 , 860-861.https://doi.org/10.1016/j.tim.2021.04.005.
Grishin, A.M., Beyrakhova, K.A. & Cygler, M. (2015) Structural insight into effector proteins of gram-negative bacterial pathogens that modulate the phosphoproteome of their host. Protein Science, 24 , 604-620.https://doi.org/10.1002/pro.2636.
Heggie, A., Cerny, O. & Holden, D.W. (2021) SteC and the intracellularSalmonella -induced F-actin meshwork. Cellular Microbiology, 23, e13315.https://doi.org/10.1111/cmi.13315.
Hemrajani, C., Berger, C.N., Robinson, K.S., Marchès, O., Mousnier, A. & Frankel, G. (2010) NleH effectors interact with Bax inhibitor-1 to block apoptosis during enteropathogenic Escherichia coliinfection. Proceedings of the National Academy of Sciences of the United States of America, 107, 3129-3134.https://doi.org/10.1073/pnas.0911609106.
Hendriks, I.A., Larsen, S.C. & Nielsen, M.L. (2019) An advanced strategy for comprehensive profiling of ADP-ribosylation sites using mass spectrometry-based proteomics. Molecular & Cellular Proteomics, 18 , 1010-1026.https://doi.org/10.1074/mcp.TIR119.001315.
Hervet, E., Charpentier, X., Vianney, A., Lazzaroni, J-C., Gilbert, C., Atlan, D. et al. (2011) Protein kinase LegK2 is a type IV secretion system effector involved in endoplasmic reticulum recruitment and intracellular replication of Legionella pneumophila .Infection and Immunity, 79, 1936-1950.https://doi.org/10.1128/IAI.00805-10.
Honjo, T., Nishizuka, Y. & Hayaishi, O. (1968) Diphtheria toxin-dependent adenosine diphosphate ribosylation of aminoacyl transferase II and inhibition of protein synthesis. Journal of Biological Chemistry, 243, 3553-3555.https://doi.org/10.1016/S0021-9258(18)93347-8.
Hottiger, M.O., Hassa, P.O., Lüscher, B., Schüler, H. & Koch-Nolte, F. (2010) Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends in Biochemical Sciences, 35 , 208-219.https://doi.org/10.1016/j.tibs.2009.12.003.
Hou, Y., Zeng, H., Li, Z., Feng, N., Meng, F., Xu, Y. et al. (2023) Structural mechanisms of calmodulin activation of Shigellaeffector OspC3 to ADP-riboxanate caspase-4/11 and block pyroptosis.Nature Structural & Molecular Biology, online ahead of print.https://doi.org/10.1038/s41594-022-00888-3.
Hubber, A. & Roy, C.R. (2010) Modulation of host cell function byLegionella pneumophila type IV effectors. Annual Review of Cell and Developmental Biology, 26 , 261-283.https://doi.org/10.1146/annurev-cellbio-100109-104034.
Humphreys, D., Hume, P.J. & Koronakis, V. (2009) The Salmonellaeffector SptP dephosphorylates host AAA+ ATPase VCP to promote development of its intracellular replicative niche. Cell Host & Microbe, 5 , 225-233.https://doi.org/10.1016/j.chom.2009.01.010.
Huttlin, E.L., Jedrychowski, M.P., Elias, J.E., Goswami, T., Rad, R., Beausoleil, S.A. et al. (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell, 143 , 1174-1189.https://doi.org/10.1016/j.cell.2010.12.001.
Imami, K., Bhavsar, A. P., Yu, H., Brown, N. F., Rogers, L. D., Finlay, B. B. et al. (2013) Global impact of salmonella pathogenicity Island 2-secreted effectors on the host phosphoproteome. Molecular & Cellular Proteomics, 12, 1,632–1,643.https://doi.org/10.1074/mcp.M112.026161.
Isberg, R.R., O’Connor, T.J. & Heidtman, M. (2009) The Legionella pneumophila replication vacuole: making a cosy niche inside host cells.Nature Reviews Microbiology, 7 , 13-24.https://doi.org/10.1038/nrmicro1967.
Jennings, E., Thurston, T.L.M. & Holden, D.W. (2017) SalmonellaSPI-2 type III secretion system effectors: molecular mechanisms and physiological consequences. Cell Host & Microbe, 22 , 217-231.https://doi.org/10.1016/j.chom.2017.07.009.
Jennison, A.V. & Verma, N.K. (2004) Shigella flexneri infection: pathogenesis and vaccine development. FEMS Microbiology Reviews, 28 , 43-58.https://doi.org/10.1016/j.femsre.2003.07.002.
Juris, S.J., Rudolph, A.E., Huddler, D., Orth, K. & Dixon, J.E. (2000) A distinctive role for the Yersinia protein kinase: actin binding, kinase activation, and cytoskeleton disruption.Proceedings of the National Academy of Sciences of the United States of America, 97, 9431-9436.https://doi.org/10.1073/pnas.170281997.
Ke, Y., Tan, Y., Wei, N., Yang, F., Yang, H., Cao, S. et al. (2015)Yersinia protein kinase A phosphorylates vasodilator-stimulated phosphoprotein to modify the host cytoskeleton. Cellular Microbiology, 17, 473-485.https://doi.org/10.1111/cmi.12378.
Knodler, L.A. & Elfenbein, J.R. (2019) Salmonella enterica .Trends in Microbiology, 27 , 964-965.https://doi.org/10.1016/j.tim.2019.05.002.
Kubori, T., Lee, J., Kim, H., Yamazaki, K., Nishikawa, M., Kitao, T. et al. (2022) Reversible modification of mitochondrial ADP/ATP translocases by paired Legionella effector proteins. Proceedings of the National Academy of Sciences of the United States of America, 119,e2122872119.https://doi.org/10.1073/pnas.2122872119.
Lee, P-C. & Machner, M.P. (2018) The Legionella effector kinase LegK7 hijacks the host Hippo pathway to promote infection. Cell Host & Microbe, 24, 429-438.e6.https://doi.org/10.1016/j.chom.2018.08.004.
Li, Z., Liu, W., Fu, J., Cheng, S., Xu, Y., Wang, Z. et al. (2021) Shigella evades pyroptosis by arginine ADP-riboxanation of caspase-11.Nature, 599 , 290-295.https://doi.org/10.1038/s41586-021-04020-1.
Liu, Y., Zeng, H., Hou, Y., Li, Z., Li, L., Song, X. et al. (2022) Calmodulin binding activates Chromobacterium CopC effector to ADP-riboxanate host apoptotic caspases. mBio, 13, e0069022.https://doi.org/10.1128/mbio.00690-22.
Macek, B., Forchhammer, K., Hardouin, J., Weber-Ban, E., Grangeasse, C. & Mijakovic, I. (2019) Protein post-translational modifications in bacteria. Nature Reviews Microbiology, 17, 651-664.https://doi.org/10.1038/s41579-019-0243-0.
Mattock, E. & Blocker, A.J. (2017) How do the virulence factors ofShigella work together to cause disease? Frontiers in Cellular Infection Microbiology, 7, 64.https://doi.org/10.3389/fcimb.2017.00064.
Michard, C., Sperandio, D., Baïlo, N., Pizarro-Cerdá, J., LeClaire, L., Chadeau-Argaud, E. et al. (2015) The Legionella kinase LegK2 targets the ARP2/3 complex to inhibit actin nucleation on phagosomes and allow bacterial evasion of the late endocytic pathway. mBio, 6,e00354-15.https://doi.org/10.1128/mBio.00354-15.
Moss, S.M., Taylor, I.R., Ruggero, D., Gestwicki, J.E., Shokat, K.M. & Mukherjee, S. (2019) A Legionella pneumophila kinase phosphorylates the Hsp70 chaperone family to inhibit eukaryotic protein synthesis. Cell Host & Microbe, 25, 454-462.e6.https://doi.org/10.1016/j.chom.2019.01.006.
Muthuramalingam, M., Whittier, S.K., Picking, W.L. & Picking, W.D. (2021) The Shigella type III secretion system: an overview from top to bottom. Microorganisms, 9 , 451.https://doi.org/10.3390/microorganisms9020451.
Navarro, L., Koller, A., Nordfelth, R., Wolf-Watz, H., Taylor, S. & Dixon, J E. (2007) Identification of a molecular target for theYersinia protein kinase A. Molecular Cell, 26, 465-477.https://doi.org/10.1016/j.molcel.2007.04.025.
Nowak, K., Rosenthal, F., Karlberg, T., Bütepage, M., Thorsell, A.G., Dreier, B. et al. (2020) Engineering Af1521 improves ADP-ribose binding and identification of ADP-ribosylated proteins. Nature Communications, 11 , 5199.https://doi.org/10.1038/s41467-020-18981-w.
Odendall, C., Rolhion, N., Förster, A., Poh, J., Lamont, D., Liu, M. et al. (2012) The salmonella kinase SteC targets the MAP kinase MEK to regulate the host actin cytoskeleton. Cell Host & Microbe, 12, 657–668.https://doi.org/10.1016/j.chom.2012.09.011.
Olsen, J.V., Vermeulen, M., Santamaria, A., Kumar, C., Miller, A.L., Jensen, L.J. et al. (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis.Science Signaling, 3 , ra3.https://doi.org/10.1126/scisignal.2000475.
Palazzo, L., Mikoč, A. & Ahel, I. (2017) ADP-ribosylation: new facets of an ancient modification. The FEBS Journal, 284 , 2932-2946.https://doi.org/10.1111/febs.14078.
Peng, T., Tao, X., Xia, Z., Hu, S., Xue, J., Zhu, Q. et al. (2022) Pathogen hijacks programmed cell death signaling by arginine ADPR-deacylization of caspases. Molecular Cell, 82 , 1806-1820.https://doi.org/10.1016/j.molcel.2022.03.010.
Persson, C., Carballeira, N., Wolf-Watz, H. & Fällman, M. (1997) The PTPase YopH inhibits uptake of Yersinia , tyrosine phosphorylation of p130Cas and FAK, and the associated accumulation of these proteins in peripheral focal adhesions. The EMBO Journal, 16, 2307-2318.https://doi.org/10.1093/emboj/16.9.2307.
Pinotsis, N. & Waksman, G. (2017) Structure of the WipA protein reveals a novel tyrosine protein phosphatase effector from Legionella pneumophila . Journal of Biological Chemistry, 292, 9240-9251.https://doi.org/10.1074/jbc.M117.781948.
Poh, J., Odendall, C., Spanos, A., Boyle, C., Liu, M., Freemont, P. et al. (2008) SteC is a Salmonella kinase required for SPI-2-dependent F-actin remodelling. Cellular Microbiology, 10 , 20-30.https://doi.org/10.1111/j.1462-5822.2007.01010.x.
Pollock, G.L., Grishin, A.M., Giogha, C., Gan, J., Oates, C.V., McMillan, P.J. et al. (2022) Targeting of microvillus protein Eps8 by the NleH effector kinases from enteropathogenic E. coli.Proceedings of the National Academy of Sciences of the United States of America, 119, e2204332119.https://doi.org/10.1073/pnas.2204332119.
Prehna, G., Ivanov, M.I., Bliska, J.B. & Stebbins, C.E. (2006)Yersinia virulence depends on mimicry of host Rho-family nucleotide dissociation inhibitors. Cell, 126, 869-880.https://doi.org/10.1016/j.cell.2006.06.056.
Prevost, M.S., Pinotsis, N., Dumoux, M., Hayward, R.D. & Waksman, G. (2017) The Legionella effector WipB is a translocated Ser/Thr phosphatase that targets the host lysosomal nutrient sensing machinery.Scientific Reports, 7, 9450.https://doi.org/10.1038/s41598-017-10249-6.
Qiu, J. & Luo, Z. (2017) Legionella and Coxiellaeffectors: strength in diversity and activity. Nature Reviews Microbiology, 15, 591-605.https://doi.org/10.1038/nrmicro.2017.67.
Quaile, A.T., Stogios, P.J., Egorova, O., Evdokimova, E., Valleau, D., Nocek, B. et al. (2018) The Legionella pneumophila effector Ceg4 is a phosphotyrosine phosphatase that attenuates activation of eukaryotic MAPK pathways. Journal of Biological Chemistry, 293,3307-3320.https://doi.org/10.1074/jbc.M117.812727.
Rogers, L.D., Brown, N.F., Fang, Y., Pelech, S. & Foster, L.J. (2011) Phosphoproteomic analysis of Salmonella -infected cells identifies key kinase regulators and SopB-dependent host phosphorylation events.Science Signaling, 4 , rs9.https://doi.org/10.1126/scisignal.2001668.
Rolán, H.G., Durand, E.A. & Mecsas, J. (2013) IdentifyingYersinia YopH-targeted signal transduction pathways that impair neutrophil responses during in vivo murine infection. Cell Host & Microbe, 14, 306-317.https://doi.org/10.1016/j.chom.2013.08.013.
Royan, S.V., Jones, R.M., Koutsouris, A., Roxas, J.L., Falzari, K., Weflen, A.W. et al. (2010) Enteropathogenic E. coli non-LEE encoded effectors NleH1 and NleH2 attenuate NF-κB activation.Molecular Microbiology, 78, 1232-1245.https://doi.org/10.1111/j.1365-2958.2010.07400.x.
Schmutz, C., Ahrné, E., Kasper, C.A., Tschon, T., Sorg, I., Dreier, R.F. et al. (2013) Systems-level overview of host protein phosphorylation during Shigella flexneri infection revealed by phosphoproteomics.Molecular & Cellular Proteomics, 12 , 2952-2968.https://doi.org/10.1074/mcp.M113.029918.
Sreelatha, A., Nolan, C., Park, B.C., Pawłowski, K., Tomchick, D.R. & Tagliabracci, V.S. (2020) A Legionella effector kinase is activated by host inositol hexakisphosphate. Journal of Biological Chemistry, 295, 6214-6224.https://doi.org/10.1074/jbc.RA120.013067.
Stebbins, C.E. & Galán, J.E. (2000) Modulation of host signaling by a bacterial mimic: structure of the Salmonella effector SptP bound to Rac1. Molecular Cell, 6, 1449-1460.https://doi.org/10.1016/s1097-2765(00)00141-6.
Vareechon, C., Zmina, S.E., Karmakar, M., Pearlman, E. & Rietsch, A. (2017) Pseudomonas aeruginosa effector ExoS inhibits ROS production in human neutrophils. Cell Host & Microbe, 21 , 611-618.e5. https://doi.org/10.1016/j.chom.2017.04.001.
Villén, J., Beausoleil, S.A., Gerber, S.A. & Gygi, S.P. (2007) Large-scale phosphorylation analysis of mouse liver. Proceedings of the National Academy of Sciences of the United States of America, 104 , 1488-1493.https://doi.org/10.1073/pnas.0609836104.
Walch, P., Selkrig, J., Knodler, L.A., Rettel, M., Stein, F., Fernandez, K. et al. (2021) Global mapping of Salmonella enterica-host protein-protein interactions during infection. Cell Host & Microbe, 29, 1316-1332.e12.https://doi.org/10.1016/j.chom.2021.06.004.
Wan, F., Weaver, A., Gao, X., Bern, M., Hardwidge, P.R. & Lenardo, M.J. (2011) IKKβ phosphorylation regulates RPS3 nuclear translocation and NF-κB function during infection with Escherichia coli strain O157:H7. Nature Immunology, 12, 335-343.https://doi.org/10.1038/ni.2007.
Xu, G., Paige, J.S. & Jaffrey S.R. (2010) Global analysis of lysine ubiquitination by ubiquitin remnant immunoaffinity profiling.Nature Biotechnology, 28, 868-873.https://doi.org/10.1038/nbt.1654.
Xu, Y., Cheng, S., Zeng, H., Zhou, P., Ma, Y., Li, L. et al. (2022) ARF GTPases activate Salmonella effector SopF to ADP-ribosylate host V-ATPase and inhibit endomembrane damage-induced autophagy. Nature Structural & Molecular Biology, 29, 67-77.https://doi.org/10.1038/s41594-021-00710-6.
Xu, Y., Zhou, P., Cheng, S., Lu, Q., Nowak, K., Hopp, A.K. et al. (2019) A bacterial effector reveals the V-ATPase-ATG16L1 axis that initiates xenophagy. Cell, 178 , 552-566.e20.https://doi.org/10.1016/j.cell.2019.06.007.
Yan, F., Huang, C., Wang, X., Tan, J., Cheng, S., Wan, M. et al. (2020) Threonine ADP-ribosylation of ubiquitin by a bacterial effector family blocks host ubiquitination. Molecular Cell, 78 , 641-652.e9.https://doi.org10.1016/j.molcel.2020.03.016.
Zhang, Y., Fu, J., Liu, S., Wang, L., Qiu, J., van Schaik, E.J. et al. (2022) Coxiella burnetii inhibits host immunity by a protein phosphatase adapted from glycolysis. Proceedings of the National Academy of Sciences of the United States of America, 119, e2110877119.https://doi.org/10.1073/pnas.2110877119.