References:
(1) Prasad, U.; Prakash, J.; K. Gupta, S.; Zuniga, J.; Mao, Y.; Azeredo, B.; Nadar Mada Kannan, A. Enhanced Photoelectrochemical Water Splitting with Er- and W-Codoped Bismuth Vanadate with WO3 Heterojunction-Based Two-Dimensional Photoelectrode. ACS Appl. Mater. & Interfaces 2019 , 11 , 19029–19039.
(2) Prasad, U.; Young, J. L.; Johnson, J. C.; McGott, D. L.; Gu, H.; Garfunkel, E.; Kannan, A. M. Enhancing Interfacial Charge Transfer in a WO 3 /BiVO 4 Photoanode Heterojunction through Gallium and Tungsten Co-Doping and a Sulfur Modified Bi2O3 Interfacial Layer . J. Mater. Chem. A 2021 , 9 , 16137–16149.
(3) Prasad, U. BiVO4-Based Photoanodes for Photoelectrochemical Water Splitting. ACS Symp. Ser. 2020 , 1364 , 137–167.
(4) Vignarooban, K.; Chu, X.; Chimatapu, K.; Ganeshram, P.; Pollat, S.; Johnson, N. G.; Razdan, A.; Pelley, D. S.; Kannan, A. M. State of Health Determination of Sealed Lead Acid Batteries under Various Operating Conditions. Sustain. Energy Technol. Assessments 2016 ,18 , 134–139.
(5) Vaidya, R.; Selvan, V.; Badami, P.; Knoop, K.; Kannan, A. M. Plug-In Hybrid Vehicle and Second-Life Applications of Lithium-Ion Batteries at Elevated Temperature. Batter. Supercaps 2018 , 1 , 75–82.
(6) May, G. J.; Davidson, A.; Monahov, B. Lead Batteries for Utility Energy Storage: A Review. J. Energy Storage 2018 ,15 , 145–157.
(7) Sun, Z.; Cao, H.; Zhang, X.; Lin, X.; Zheng, W.; Cao, G.; Sun, Y.; Zhang, Y. Spent Lead-Acid Battery Recycling in China – A Review and Sustainable Analyses on Mass Flow of Lead. Waste Manag.2017 , 64 , 190–201.
(8) Zakiyya, H.; Distya, Y. D.; Ellen, R. A Review of Spent Lead-Acid Battery Recycling Technology in Indonesia: Comparison and Recommendation of Environment-Friendly Process. IOP Conf. Ser. Mater. Sci. Eng.2018 , 288 .
(9) Saravanan, M.; Ganesan, M.; Ambalavanan, S. A Modified Lead-Acid Negative Electrode for High-Rate Partial-State-of-Charge Applications.J. Electrochem. Soc. 2012 , 159 , A452–A458.
(10) Křivík, P.; Vaculík, S.; Bača, P.; Kazelle, J. Determination of State of Charge of Lead-Acid Battery by EIS. J. Energy Storage2019 , 21 , 581–585.
(11) Pavlov, D. The Lead‐Acid Battery Lead Dioxide Active Mass: A Gel‐Crystal System with Proton and Electron Conductivity. J. Electrochem. Soc. 1992 , 139 , 3075–3080.
(12) Doerffel, D.; Sharkh, S. A. A Critical Review of Using the Peukert Equation for Determining the Remaining Capacity of Lead-Acid and Lithium-Ion Batteries. J. Power Sources 2006 ,155 , 395–400.
(13) Moseley, P. T.; Rand, D. A. J.; Davidson, A.; Monahov, B. Understanding the Functions of Carbon in the Negative Active-Mass of the Lead–Acid Battery: A Review of Progress. J. Energy Storage2018 , 19 , 272–290.
(14) Li, M.; Yang, J.; Liang, S.; Hou, H.; Hu, J.; Liu, B.; Kumar, R. V. Review on Clean Recovery of Discarded/Spent Lead-Acid Battery and Trends of Recycled Products. J. Power Sources 2019 , 436 , 226853.
(15) Zou, C.; Zhang, L.; Hu, X.; Wang, Z.; Wik, T.; Pecht, M. A Review of Fractional-Order Techniques Applied to Lithium-Ion Batteries, Lead-Acid Batteries, and Supercapacitors. J. Power Sources2018 , 390 , 286–296.
(16) Zguris, G. C. A Review of Physical Properties of Separators for Valve-Regulated Lead/Acid Batteries. J. Power Sources1996 , 59 , 131–135.
(17) Singh, A.; Karandikar, P. B. A Broad Review on Desulfation of Lead-Acid Battery for Electric Hybrid Vehicle. Microsystem Technologies . 2017, pp 2263–2273.
(18) Dürr, M.; Cruden, A.; Gair, S.; McDonald, J. R. Dynamic Model of a Lead Acid Battery for Use in a Domestic Fuel Cell System. J. Power Sources 2006 , 161 , 1400–1411.
(19) Hariprakash, B.; Mane, A. U.; Martha, S. K.; Gaffoor, S. A.; Shivashankar, S. A.; Shukla, A. K. A Low-Cost, High Energy-Density Lead/Acid Battery. Electrochem. Solid-State Lett. 2004 ,7 .
(20) Kwiecien, M.; Badeda, J.; Huck, M.; Komut, K.; Duman, D.; Sauer, D. U. Determination of SoH of Lead-Acid Batteries by Electrochemical Impedance Spectroscopy. Appl. Sci. 2018 , 8 , 1–23.
(21) De Marco, R.; Jones, J. Changes in Positive Lead/Acid Battery Plates during Charge/Discharge Cycling. J. Appl. Electrochem.2000 , 30 , 77–83.
(22) Pavlov, D.; Petkova, G.; Dimitrov, M.; Shiomi, M.; Tsubota, M. Influence of Fast Charge on the Life Cycle of Positive Lead-Acid Battery Plates. J. Power Sources 2000 , 87 , 39–56.
(23) Zhang, B.; Zhong, J.; Li, W.; Dai, Z.; Zhang, B.; Cheng, Z. Transformation of Inert PbSO4 Deposit on the Negative Electrode of a Lead-Acid Battery into Its Active State. J. Power Sources2010 , 195 , 4338–4343.
(24) Pavlov, D.; Kirchev, A.; Stoycheva, M.; Monahov, B. Influence of H2SO4 Concentration on the Mechanism of the Processes and on the Electrochemical Activity of the Pb/PbO 2/PbSO4 Electrode. J. Power Sources 2004 , 137 , 288–308.
(25) Pavlov, D. Suppression of Premature Capacity Loss by Methods Based on the Gel-Crystal Concept of the PbO2 Electrode. J. Power Sources 1993 , 46 , 171–190.