REFERENCES
  1. Geneva: World Health Organization, 2020. https://www .who .int/emergencies/ diseases/ novel –coronavirus-2019/ situation -reports/).coronavirus. J. Virol. 94, e00127-20 (2020). Coronavirus disease (COVID-2019) situation reports.
  2. Corman, V.M., Muth, D., Niemeyer, D., Drosten, C. Hosts and sources of endemic human coronaviruses. Adv Virus Res 2018; 100: 163–188.
  3. European Centre for Disease Prevention and Control, (2015). Severe acute respiratory syndrome (SARS). Annual Epidemiological report for 2015. https://www.ecdc.europa.eu/sites/portal/files/documents/AER_for_2015-SARS.pdf
  4. Yang, D., Leibowitz, J.L. The structure and functions of coronavirus genomic 30 and 5 ends. Virus Res 2015;206: 120–133. (doi:10.1016/j.virusres. 2015.02.025)
  5. Lee, I.T., Nakayama, T., Wu, C.T., Goltsev, Y., Jiang, S., Gall, P.A., Liao, C.K., Shih, L.C., Sch\eurourch, C.M., et al. ACE2 localizes to the respiratory cilia and is not increased by ACE inhibitors or ARBs. Nat. Commun 2020;.11: 5453.
  6. Hou, Y.J., Okuda, K., Edwards, C.E., Martinez, D.R., Asakura, T., Dinnon, K.H., 3rd Kato, T., Lee, R.E., et al. SARS-CoV-2 Reverse Genetics Reveals a Variable Infection Gradient in the Respiratory Tract. Cell 2020; 182: 429–446.e14.
  7. Aydogdu, M.O., Altun, E., Chung, E., Ren, G., Homer-Vanniasinkam, S., Chen, B., Edirisinghe, M. Surface interactions and viability of coronaviruses. J R Soc Interface 2021; 18:20200798. doi: 10.1098/rsif.2020.0798.
  8. Miners, S., Kehoe, P.G., Love, S. Cognitive impact of COVID-19: looking beyond the short term. Alzheimers Res Ther 2020:2:170. doi: 10.1186/s13195-020-00744-w.
  9. Mullol, J., Alobid, I., Mariño-Sánchez, F., Izquierdo-Domínguez, A., Marin, C., Klimek, L., Wang, D., and Liu, Z. The Loss of Smell and Taste in the COVID-19 Outbreak: a Tale of Many Countries. Curr Allergy Asthma Rep. 2020;10: 61. 2020. doi: 10.1007/s11882-020-00961-1.
  10. Siddiqui, A.F., Saadia, S., Ejaz, T., and Mushtaq, Z. COVID-19 encephalopathy: an unusual presentation with new-onset seizure causing convulsive status epilepticus. Lancet Neurol. 2020; 9: 767–783.
  11. Ellul, M.A., Benjamin, L., Singh, B., Lant, S., Michael, B.D., Easton, A., Kneen, R., Defres, S., et al. Neurological associations of COVID-19. Lancet Neurol 2020;9:767-783. doi: 10.1016/S1474-4422(20)30221-0.
  12. Goërtz, Y.M.J., Van Herck, M., Delbressine, J.M., Vaes, A.W., Meys, R., Machado, F.V.C., Houben-Wilke, S., Burtin, C., et al. Persistent symptoms 3 months after a SARS-CoV-2 infection: the post-COVID-19 syndrome?. Open Res. 2020;4.
  13. Huang, C., Huang, L., Wang, Y., Li, X., Ren, L., Gu, X., Kang, L., Guo, L., et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet 2021;10270:220-232. doi: 10.1016/S0140-6736(20)32656-8.
  14. Simões, J.L.B., Sobierai, L.D., Leal, I.F., Dos Santos, M.V.R., Coiado, J.V., Bagatini, M.D. Action of the Purinergic and Cholinergic Anti-inflammatory Pathways on Oxidative Stress in Patients with Alzheimer’s Disease in the Context of the COVID-19 Pandemic. Neuroscience 2022;S0306-4522(22)00615-7.
  15. Wu, Y., Xu, X., Chen, Z., Duan, J., Hashimoto, K., Yang, L., Liu, C., Yang, C. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav. Immun. 2020;87:18–22.
  16. Fan, C., Wu, Y., Rui, X., Yang, Y., Ling, C., Liu, S., Liu, S., Wang, Y. Animal models for COVID-19: advances, gaps and perspectives. Signal Transduct Target Ther. 2022;7: 220. doi: 10.1038/s41392-022-01087-8
  17. Shou, S., Liu, M., Yang, Y., Kang, N., Song, Y., Tan, D., Liu, N., Wang, F., Liu, J., Xie, J. Animal Models for COVID-19: Hamsters, Mouse, Ferret, Mink, Tree Shrew, and Non-human Primates. Front. Microbiol. 2021;12:626553. https://doi.org/10.3389/fmicb.2021.626553.
  18. Meinhardt, J., Radke, J., Dittmayer, C., Franz, J., Thomas, C., Mothes, R., Laue, M., Schneider, J., et al. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat Neurosci 2021;2:168-175. doi: 10.1038/s41593-020-00758-5.
  19. Politi, L.S., Salsano, E., Grimaldi, M. Magnetic Resonance Imaging Alteration of the Brain in a Patient With Coronavirus Disease 2019 (COVID-19) and Anosmia. JAMA Neurol. 2020;77:1028–1029.
  20. Mao, X.Y., Jinefg, W.L. The COVID-19 Pandemic: Consideration for Brain Infection. Neuroscience Perspective 2020;437:130-131.
  21. Mao, A., Yang, Y., Meng, Y., Xia, Q., Jin, S., Qiu, W.. Understanding the condition of disease prevention and control workforce by disciplines, duties, and work stress during the COVID-19 pandemic: A case from Beijing disease prevention and control system. Front Public Health 2022;10:861712. doi: 10.3389/fpubh.2022.861712. eCollection 2022.
  22. Dao, T.L., Hoang, V.T., Gautret, P. Recurrence of SARS-CoV-2 viral RNA in recovered COVID-19 patients: a narrative review. Eur J Clin Microbiol Infect Dis. 2021;1:13-25. doi: 10.1007/s10096-020-04088-z.
  23. Edén, A., Grahn, A., Bremell, D., Aghvanyan, A., Bathala, P., Fuchs, D., Gostner, J., Hagberg, L., et al.. Viral Antigen and Inflammatory Biomarkers in Cerebrospinal Fluid in Patients With COVID-19 Infection and Neurologic Symptoms Compared With Control Participants Without Infection or Neurologic Symptoms. JAMA Netw Open 2022;5:e2213253. doi: 10.1001/jamanetworkopen.2022.13253.
  24. Bellon, M., Schweblin, C., Lambeng, N., et al. Cerebrospinal fluid features in SARS-CoV-2 RT-PCR positive patients. Clin Infect Dis 2020;8: ciaa1165.
  25. Lewis, A., Frontera, J., Placantonakis, D.G., et al. Cerebrospinal fluid in COVID-19: a systematic review of the literature. J Neurol Sc 2021;421: 117316.
  26. Viszlayová, D., Sojka, M., Dobrodenková, S., Szabó, S., Bilec, O., Turzová, M., Ďurina, J., Baloghová, B., et al. SARS-CoV-2 RNA in the Cerebrospinal Fluid of a Patient with Long COVID. Ther Adv Infect Dis. 2021;8:20499361211048572. doi: 10.1177/20499361211048572.
  27. Matschke, J., Lütgehetmann, M., Hagel, C., Sperhake, J.P., Schröder, A.S., Edler, C., Mushumba, H., Fitzek, A., et al. Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol. 2020;11:919-929. doi: 10.1016/S1474-4422(20)30308-2.
  28. Chiricosta, L., Gugliandolo, A., Mazzon, E. SARS-CoV-2 Exacerbates Beta-Amyloid Neurotoxicity, Inflammation and Oxidative Stress in Alzheimer’s Disease Patients. Int J Mol Sci. 2021;22:13603. doi: 10.3390/ijms222413603.
  29. Thakur, T., Miller, E.H., Glendinning, M.D., Al-Dalahmah, O., Banu, M.A., Boehme, A.K., Boubour, A.L., Bruce, S.S., et al. COVID-19 neuropathology at Columbia University Irving Medical Center/New York Presbyterian Hospital. Brain 2021;144: 2696–2708. doi: 10.1093/brain/awab148.
  30. Heneka, M.T., Golenbock, D., Latz, E., Morgan, D., Brown, R. Immediate and long-term consequences of COVID-19 infections for the development of neurological disease. Alzheimers Res Ther. 2020;12:69. doi: 10.1186/s13195-020-00640-3.
  31. Wang, M.Y., Zhao, R., Gao, L.J., Gao, X.F., Wang, D.P. and Cao, J.M. Severe Acute Respiratory Syndrome Coronavirus 2: Host-Pathogen Interactions and Cellular Signaling. SARS-CoV-2: Structure, Biology, and Structure-Based Therapeutics Development. Front. Cell. Infect. Microbiol. 2020;10: 2020https://doi.org/10.3389/fcimb.2020.587269
  32. Rahman, M.A., Islam, K., Rahman, S., Alamin, M. Neurobiochemical Cross-talk Between COVID-19 and Alzheimer’s Disease. Mol. Neurobiol. 2021;58: 1017–1023.
  33. Ding, Q., Shults, N.V., Gychka, S.G., Harris, B.T., Suzuki, Y.J. Protein Expression of Angiotensin-Converting Enzyme 2 (ACE2) is Upregulated in Brains with Alzheimer’s Disease. Int. J. Mol. Sci. 2021;22:1687.
  34. Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020;579: 270–273.
  35. Wan, Y., Shang, J., Graham, R., Baric, R.S. & Li, F. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS. J Virol 2020;94:e00127-20. doi: 10.1128/JVI.00127-20.
  36. Li, W., et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003;426: 450–454.
  37. Li, F., Li, W., Farzan, M. & Harrison, S.C. (2005). Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science 309: 1864–1868.
  38. Li, F. (2016). Structure, function, and evolution of coronavirus spike proteins. Annu. Rev. Virol. 3:237–261
  39. Benton, D.J., Wrobel, A.G., Xu, P., Roustan, C., Martin, S.R., Rosenthal, P.B., Skehel, J.J., Gamblin, S.J. Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion. Nature 2020;588:327-330. doi: 10.1038/s41586-020-2772-0.
  40. Shang, J. et al. Cell entry mechanisms of SARS- CoV-2.Proc. Natl Acad. Sci. USA 2020;117:11727–11734.
  41. Wrapp, D., et al. Cryo- EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020;367: 1260–1263.
  42. Pozdnyakova, N., Krisanova, N., Pastukhov, A., Tarasenko, A., Dudarenko, M., Chernykh, A., Pashenko, A., Ryabukhin, S., Tolstanova, G., Volochnyuk, D., Borisova, T. Neuromodulation by selective angiotensin-converting enzyme 2 inhibitors. Neuroscience 2022; 498:155-173. doi: 10.1016/j.neuroscience.2022.07.003.
  43. Camacho, R.C., Alabed, S., Zhou, H., Chang, S.L. Meta-analysis on the Changes of Amyloid Precursor Protein Expression Following SARS-CoV-2 Infection. J Neuroimmune Pharmacol. 2021;4:756-769. doi: 10.1007/s11481-021-10012-9.
  44. Lippi, A., Domingues, R., Setz, C., Outeiro, T.F., Krisko, A. SARS-CoV-2: At the Crossroad Between Aging and Neurodegeneration. Mov Disord. 2020;5:716-720. doi: 10.1002/mds.28084.
  45. Gordon, D.E., Jang, G.M., Bouhaddou, M., Xu, J., Obernier, K., O’Meara, M.J., Guo, J.Z., Swaney, D.L., et al. A SARS-CoV-2-human protein-protein interaction map reveals drug targets and potential drug-repurposing. bioRxiv 2020; 03.22.002386. doi: 10.1101/2020.03.22.002386.
  46. Vosoughi, A., Sadigh-Eteghad, S., Ghorbani, M., Shahmorad, S., Farhoudi, M., Rafi, M.A., Omidi, Y. Mathematical Models to Shed Light on Amyloid-Beta and Tau Protein Dependent Pathologies in Alzheimer’s Disease. Neuroscience 2020;424:45-57. doi: 10.1016/j.neuroscience.2019.09.017.
  47. Bourgade, K., Dupuis, G., Frost, E.H., Fülöp, T. Anti-Viral Properties of Amyloid-β Peptides. J Alzheimers Dis. 2016;54:859-878. doi: 10.3233/JAD-160517.
  48. Fulop, T., Witkowski, J.M., Larbi, A., Khalil, A., Herbein, G., Frost, E.H. Does HIV infection contribute to increased beta-amyloid synthesis and plaque formation leading to neurodegeneration and Alzheimer’s disease?. J Neurovirol. 2019;25:634-647. doi: 10.1007/s13365-019-00732-3.
  49. Kumar, D., Choi, S.H., Washicosky, K.J., Eimer, W.A., Tucker, S., Ghofrani, S., Lefkowitz, A., McColl, G., et al. Amyloid-β peptide protects against microbial infection in mouse and worm models of Alzheimer’s disease. Sci Transl Med 2016;8:340ra72. doi: 10.1126/scitranslmed.aaf1059.
  50. Allnutt, M.A., Johnson, K., Bennett, D.A., Connor, S.M., Troncoso, J.C., Pletnikova, O., Albert, M.S., Resnick, S.M., Scholz, S.W., De Jager, P.L., et al. Human Herpesvirus 6 Detection in Alzheimer’s Disease Cases and Controls across Multiple Cohorts. Neuron 2020;105: 1027–1035.
  51. Eimer, W.A., Vijaya Kumar, D.K., Navalpur Shanmugam, N.K., Rodriguez, A.S., Mitchell, T., Washicosky, K.J., György, B., Breakefield, X.O., et al. Alzheimer’s Disease-Associated β-Amyloid Is Rapidly Seeded by Herpesviridae to Protect against Brain Infection. Neuron 2018; 99: 56–63.
  52. Tsu-An, J., Tien, C.F., Yu, G., Shen, S., Lee, Y., Hsu, P., Wang, Y., Chao, P., et al. The Effects of Aβ1-42 Binding to the SARS-CoV-2 Spike Protein S1 Subunit and Angiotensin-Converting Enzyme 2. Int J Mol Sci. 2021;15:8226. doi: 10.3390/ijms22158226.
  53. Zhou, H., Lu, S., Chen, J., Wei, N., Wang, D., Lyu, H., Shi, C., & Hu, S.). The landscape of cognitive function in recovered COVID-19 patients. Journal of Psychiatric Research 2020;129: 98–102.
  54. van der Kant, R., & Goldstein, L.S.B.. Cellular functions of the amyloid precursor protein from development to dementia. Developmental Cell 2015;32: 502–515.
  55. Cribbs, D.H., Azizeh, B.Y., Cotman, C.W., and LaFerla, F.M.. Fibril Formation and Neurotoxicity by a Herpes Simplex Virus Glycoprotein B Fragment with Homology to the Alzheimer’s Aβ Peptide. Biochemistry 2000;39:5988-94. doi: 10.1021/bi000029f.
  56. Idrees, D., Kumar, V. SARS-CoV-2 spike protein interactions with amyloidogenic proteins: Potential clues to neurodegeneration. Biochem Biophys Res Commun. 2021; 554:94-98. doi: 10.1016/j.bbrc.2021.03.100.
  57. Hsu, J.T., Tien, C.F., Yu, G.Y., Shen, S., Lee, Y.H., Hsu, P.C., Wang, Y., Chao, P.K., et al. The Effects of Aβ1-42 Binding to the SARS-CoV-2 Spike Protein S1 Subunit and Angiotensin-Converting Enzyme 2. Int J Mol Sci. 2021; 22:8226. doi: 10.3390/ijms22158226.
  58. Idrees, D., Kumar, V., Tavassoly, O., Safavi, F., Tavassoly, I. Seeding brain protein aggregation by SARSCoV-2 as a possible long-term complication of COVID-19 infection. ACS Chem. Neurosci. 2020; 11:3704e3706,https://doi.org/10.1021/acschemneuro. 0c00676
  59. Sun, B., Tang, N., Peluso, M.J., Iyer, N.S., Torres, L., Donatelli, J.L., Munter, S.E., Nixon C.C., et al. Characterization and Biomarker Analyses of Post-COVID-19 Complications and Neurological Manifestations. Cells. 2021;10:386. doi: 10.3390/cells10020386.
  60. Wojtowicz, W.M., Farzan, M., Joyal, J.L., Carter, K., Babcock, G.J., Israel, D.I., Sodroski, J., Mirzabekov, T. Stimulation of enveloped virus infection by beta-amyloid fibrils. The Journal of Biological Chemistry, 2002;277:35019-35024