REFERENCE
Jang, M.H., Joo, G.J., & Lucas, M.C. (2006). Diet of introduced
largemouth bass in Korean rivers and potential interactions with native
fishes. Ecology Freshwater Fish , 15, 315–320.
https://doi.org/10.1111/j.1600-0633.2006.00161.x
Vitule, Jean R. S., Occhi, Thiago V. T., Kang, Bin., Matsuzaki,
Shin-Ichiro., Bezerra, Luis Artur., Daga, Vanessa S., Faria, Larissa.,
Frehse, Fabrício de A., Walter, Felipe., & Padial, André A. (2019).
Intra-country introductions unraveling global hotspots of alien fish
species. Biodiversity & Conservation , 28, 3037–3043. doi:
10.1007/s10531-019-01815-7.
McGeoch, M., & Jetz, W. (2019). Measure and reduce the harm caused by
biological invasions. One Earth , 1, 171–174. doi:
10.1016/j.oneear.2019.10.003
Padial, A. A., Vitule, J. R. S., & Olden, J. D. (2020). Preface:
aquatic homogenocene—understanding the era of biological re-shuffling
in aquatic ecosystems. Hydrobiologia , 847, 3705–3709. doi:
10.1007/s10750-020-04413-9.
Taylor .(2002). Identification of non-native freshwater fishes
established in Europe and assessment of their potential threats to the
biological diversity Document. Environmental Science .
Cambray, J. A. (2003). Impact on indigenous species biodiversity caused
by the globalisation of alien recreational freshwater
fisheries. Hydrobiologia , 500(1), 217-230.
https://doi.org/10.1023/A:1024648719995
Ricciardi, A., & Kipp, R. (2008). Predicting the number of ecologically
harmful species in an aquatic system. Diversity and
Distributions , 14, 374–380.
https://doi.org/10.1111/j.1472-4642.2007.00451.x
Mills ,E., Casselman, J., & Dermott, R .(2003). Lake Ontario: food web
dynamics in a changing ecosystem (1970- 2000). Canadian Journal of
Fisheries and Aquatic Sciences , 60, 471–490.
https://doi.org/10.1139/f03-033
Leprieur, F., Beauchard, O., Blanchet, S., Oberdorff, T., & Brosse, S.
(2008). Fish invasions in the world’s river systems: when natural
processes are blurred by human activities. PLoS Biology , 6:e28.
doi: 10.1371/journal.pbio.0060028.
Holčík, J.,& Razavi, B. A. (1992). On some new or little known
freshwater fishes from the Iranian coast of the Caspian Sea. Folia
Zoologica , 41, 271-280.
Kiabi, B. H., Abdoli, A., & Naderi, M. (1999). Status of the fish fauna
in the South Caspian Basin of Iran. Zoology in the Middle East ,
18(1), 57–65. https://doi.org/10.1080/09397140.1999.10637782
Abdoli, A. ( 2000). The Inland Water Fishes of Iran. Iranian Museum of
Nature and Wildlife, Tehran. 378 pp. (in Farsi).
Jolodar, M. N. & Abdoli, A. (2004). Fish Spe-cies Atlas of South
Caspian Sea Basin (Iranian Waters). Iranian Fisheries Research
Organization , Teheran.110 pp. In Farsi and English.
Coad, B. W. (2010). Freshwater fishes of iran. Available at: http://
www.briancoad.com, (accessed on 16 January 2010).
Mustafayev, N. J., Ibrahimov, S. R., & Levin, B. A. (2015). Korean
sharpbelly Hemiculter leucisculus (Basilewsky,
1855)(Cypriniformes, Cyprinidae) is a new species of Azerbaijan
fauna. Russian journal of biological invasions , 6(4), 252-259.
https://doi.org/10.1134/S2075111715040049
Nitta, M., Kawai, K., & Nagasawa, K. (2017). First Japanese record of
the sharpbelly Hemiculter leucisculus (Basilewsky,
1855)(Cypriniformes: Cyprinidae) from Okayama Prefecture, western
Honshu. Biogeography , 19, 17-20.
Rezamand., A, & Patimar,. R. (2017). Investigation of reproductive
index of Hemiculter leucisculus (Basilewsky, 1855) in Gorganrood
river. Utilization and Cultivation of Aquatics , 6(2), 59-67. doi:
10.22069/japu.2017.13266.1364.
Bagheri, S., Abbasi, K., Moradi, M., Mirzajani, A., & Ramin, M. (2016).
Study on species diversity and abundance of fishes in the Persian Gulf
Martyrs Lake, Chitgar-Tehran. Iranian Scientific Fisheris Iran ,
25 (3), 15-24.
Khosravi, M., Abdoli, A., Ahmadzadeh, F., Saberi-Pirooz, R., Rylková,
K., & Kiabi, BH. ( 2020). Toward a preliminary assessment of the
diversity and origin of Cyprinid fish genus Carassius in Iran.Journal of Applied Ichthyology , 00, 1–9.
https://doi.org/10.1111/jai.14039.
Chen, W., Zhong, Z., Dai, W., Fan, Q., & He, S. (2017). Phylogeographic
structure, cryptic speciation and demographic history of the sharpbelly
(Hemiculter leucisculus ), a freshwater habitat generalist from
southern China. BMC evolutionary biology , 17(1), 1-13.
https://doi.org/10.1186/s12862-017-1058-0
Esmaeili(a), H. R., Gholamifard, A., & Freyhof, J. (2011). Ichthyofauna
of Zarivar Lake (Iran) with the first records of Hemiculter
leucisculus and Alburnus hohenackeri in the Tigris
drainage. Electronic Journal of Ichthyology , 7(1), 1-6.
Zareian, H., Esmaeili, H. R., Zamanian Nejad, R., & Vatandoust, S.
(2015). Hemiculter leucisculus (Basilewsky, 1855) andAlburnus caeruleus Heckel, 1843: new data on their distributions
in Iran. Caspian Journal Of Environmental Sciences , 13(1), 11-20.
Radkhah, A., & Eagderi, S. (2015). First record of saw-belly
(Hemiculter leucisculus Basilewsky, 1855) from Zarinehrud River,
Urmia Lake basin and its some biological characteristics. journal
of aquatic ecology , 4 (4) :121-116.
Radkhah, A., Eagderi, S., & Mousavi-Sabet, H. (2016). First record of
the exotic species Hemiculter leucisculus (Pisces: Cyprinidae) in
southern Iran. Limnetica , 35(1), 175-178.
Mousavi-sabet, H., Heidari, A., & Salehi, M. (2019). Reproductive
biology of the invasive sharpbelly, Hemiculter leucisculus(Basilewsky, 1855), from the southern Caspian Sea basin. Iranian
Journal of Ichthyology , 6(1), 31-40.
https://doi.org/10.22034/iji.v6i1.285
Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning:
A laboratory manual (2nd ed.). New York, NY: Cold Spring Harbor
Laboratory Press.
Wang, L., Zhu, L., Tang, K., Liu, M., Xue, X., Wang, G., & Wang, Z.
(2021). Population genetic structure of sharpbelly Hemiculter
leucisculus (Basilesky, 1855) and morphological diversification along
climate gradients in China. Ecology and evolution , 11(11),
6798-6813. https://doi.org/10.1002/ece3.7528
Lanfear, R., Frandsen, PB., Wright, AM., Senfeld, T., & Calcott, B.
(2016). PartitionFinder 2: new methods for selecting partitioned models
of evolution for molecular and morphological phylogenetic analyses.Molecular Biology and Evolution , 34, 772-773.
https://doi.org/10.1093/molbev/msw260
Nguyen, L-T., H. A. Schmidt, A. von Haeseler, & B. Q. Minh. (2015).
IQ-TREE: A fast and effective stochastic algorithm for estimating
maximum likelihood phylogenies, Molecular Biology and Evolution ,
32, 268–274. https://doi.org/10.1093/molbev/msu300
Hoang, D.T., Chernomor, O., Von Haeseler, A., Minh, B.Q., & Vinh, L.S.
(2018). UFBoot2: Improving the ultrafast bootstrap approximation.Molecular Biology and Evolution . 35, 518–522.
https://doi.org/10.1093/molbev/msx281
Tajima, F. (1989). Statistical method for testing the neutral mutation
hypothesis by DNA polymorphism. Genetics , 123(3), 585–595.
https:// doi.org/10.1093/genet ics/123.3.585.
Fu, Y. X. (1997). Statistical tests of neutrality of mutations against
population growth, hitchhiking and background selection.Genetics , 147(2), 915–925.
https://doi.org/10.1093/genet
ics/147.2.915.
Huelsenbeck, J.P., & Ronquist, F.( 2001). MRBAYES: Bayesian inference
of phylogenetic trees. Bioinformatics , 17, 754–755.
https://doi.org/10.1093/bioinformatics/17.8.754
Rambaut, A., & Drummond, A. J. (2009). Tracer: MCMC trace analysis
tool, version 1.5. Retrieved from http://tree.bio.ed.ac.uk/softw
are/tracer
Bandelt, HJ., Forster, P., & Röhl, A. (1999). Median-joining networks
for inferring intraspecific phylogenies. Molecular Biology and
Evolution , 16(1):37-48. doi: 10.1093/oxfordjournals.molbev.a026036.
PMID: 10331250.
Sanderson, E.W., Jaiteh, M., Levy, M.A., Redford, K.H., Wannebo, A.V.,
& Woolmer, G.(2002). The human footprint and the last of the wild: the
human footprint is a global map of human influence on the land surface,
which suggests that human beings are stewards of nature, whether we like
it or not. AIBS (Am. Inst. Biol. Sci.) Bull, 52, 891e904.
https://doi.org/10.1641/0006-3568(2002)052[0891:THFATL]2.0.CO;2
Warren, R., Van Der Wal, J., Price, J., Welbergen, JA., Atkinson, I.,
Ramirez-Villegas, J., Osborn, TJ., Jarvis, A., Shoo, LP., Williams, SE.,
& Lowe, J. (2013). Quantifying the benefit of early climate change
mitigation in avoiding biodiversity loss. Nature Climate Change ,
3 (7), 678-682. https://doi.org/10.1038/nclimate1887
Hong, S., Jang, I., Kim, D., Kim, S., Park, H.S., & Lee, K. (2022).
Predicting Potential Habitat Changes of Two Invasive Alien Fish Species
with Climate Change at a Regional Scale. Sustainability ,14 , 6093. https://doi.org/10.3390/su14106093
Thuiller, W., Lafourcade, B., Engler, R., & Araújo, M.B. (2009).
BIOMODea platform for ensemble forecasting of species distributions.Ecography , 32, 369e373.
https://doi.org/10.1111/j.1600-0587.2008.05742.x
R Development Core Team. (2014). R: a Language and Environment for
Statistical Computing, R Foundation for Statistical Computing, Vienna.
Thuiller, W., Georges, D., Engler, R., Breiner, F., Georges, M.D., &
Thuiller, C.W. (2016). Package ‘biomod2’.
https://cran.r-project.org/package¼biomod2.
Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy of
species distribution models: prevalence, kappa and the true skill
statistic (TSS). Journal of Applied Ecology , 43, 1223e1232.
https://doi.org/10.1111/j.1365-2664.2006.01214.x
Zipkin, E.F., Grant, E.H.C. & Fagan, W.F. (2012). Evaluating the
predictive abilities of community occupancy models using AUC while
accounting for imperfect detection. Ecological Applications , 22,
1962e1972. https://doi.org/10.1890/11-1936.1
Carosi, A., Padula, R., Ghetti, L., & Lorenzoni, M. (2019). Endemic
freshwater fish range shifts related to global climate changes: a
long-term study provides some observational evidence for the
Mediterranean Area. Water , 11(11):23-49.
https://doi.org/10.3390/w11112349
Mamun, d., Kim, Sehyun., & Guk An, Kwang.(2018). Distribution pattern
prediction of an invasive alien species largemouth bass using a maximum
entropy model (MaxEnt) in the Korean peninsula. Journal of
Asia-Pacific Biodiversity , 11(4), 516-524.
https://doi.org/10.1016/j.japb.2018.09.007.
Hansen, G.J.A., Read, J.S., Hansen, J.F., & Winslow, L.A. (2017).
Projected shifts in fish species dominance in Wisconsin lakes under
climate change. Global Change Biology , 2017, 23, 1463–1476.
https://doi.org/10.1111/gcb.13462
Kim, Z., Shim, T., Ki, S.J., An, K.-G., & Jung, J. (2022). Prediction
of three-dimensional shift in the distribution of largemouth bass
(Micropterus salmoides) under climate change in South Korea.Ecological Indicators , 137, 108731.
https://doi.org/10.1016/j.ecolind.2022.108731
Abdoli., A. Valikhani., H. Nejat., N, & Khosravi, M. (2022). Non-native
freshwater fishes of Iran (Identification, Impacts, Management), ISBN:
978-964-479-203-8.
Abdoli, A. (2016). Field guide of fishes of inland waters of Iran, ISBN:
978-600-8351 01-6.
Hong, S., Jang, I., Kim, D., Kim, S., Park, HS., & Lee, K. (2022).
Predicting Potential Habitat Changes of Two Invasive Alien Fish Species
with Climate Change at a Regional Scale. Sustainability , 14(10),
6093. https://doi.org/10.3390/su14106093.
rezamand, A. & Patimar, R. (2017). Investigation of Reproductive Index
of Hemiculter leucisculus (Basilewsky, 1855) in Gorganrood river.Utilization and Cultivation of Aquatics , 6(2), 59-67. doi:
10.22069/japu.2017.13266.1364
Coad, B.W. (2020). Review of the East Asian minnows of Iran (Family
Xenocyprididae). Iranian Journal of Ichthyology , 7(1) ,1-67.
Coad, B.W. & Hussain, N.A.(2007). First record of the exoticspecies Hemiculter leucisculus (Actinopterygii: Cyprinidae) in
Iraq. Zoology in the Middle East , 40 (1), 107- 109.
https://doi.org/10.1080/09397140.2007.10638212
Johnston, E.L., Piola, R.F., Clark, G.F. (2009). The Role of Propagule
Pressure in Invasion Success. In: Rilov, G., Crooks, J.A. (eds)
Biological Invasions in Marine Ecosystems. Ecological Studies, 204.
Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-540-79236-9_7
Table 1. Molecular diversity indices based on Cyt b forH. leucisculus and its regional populations, including Number of
sequences (N), the number of haplotypes (H), haplotype diversity (h),
nucleotide diversity (π), and the number of polymorphic sites (S)