REFERENCE
Jang, M.H., Joo, G.J., & Lucas, M.C. (2006). Diet of introduced largemouth bass in Korean rivers and potential interactions with native fishes. Ecology Freshwater Fish , 15, 315–320. https://doi.org/10.1111/j.1600-0633.2006.00161.x
Vitule, Jean R. S., Occhi, Thiago V. T., Kang, Bin., Matsuzaki, Shin-Ichiro., Bezerra, Luis Artur., Daga, Vanessa S., Faria, Larissa., Frehse, Fabrício de A., Walter, Felipe., & Padial, André A. (2019). Intra-country introductions unraveling global hotspots of alien fish species. Biodiversity & Conservation , 28, 3037–3043. doi: 10.1007/s10531-019-01815-7.
McGeoch, M., & Jetz, W. (2019). Measure and reduce the harm caused by biological invasions. One Earth , 1, 171–174. doi: 10.1016/j.oneear.2019.10.003
Padial, A. A., Vitule, J. R. S., & Olden, J. D. (2020). Preface: aquatic homogenocene—understanding the era of biological re-shuffling in aquatic ecosystems. Hydrobiologia , 847, 3705–3709. doi: 10.1007/s10750-020-04413-9.
Taylor .(2002). Identification of non-native freshwater fishes established in Europe and assessment of their potential threats to the biological diversity Document. Environmental Science .
Cambray, J. A. (2003). Impact on indigenous species biodiversity caused by the globalisation of alien recreational freshwater fisheries. Hydrobiologia , 500(1), 217-230. https://doi.org/10.1023/A:1024648719995
Ricciardi, A., & Kipp, R. (2008). Predicting the number of ecologically harmful species in an aquatic system. Diversity and Distributions , 14, 374–380. https://doi.org/10.1111/j.1472-4642.2007.00451.x
Mills ,E., Casselman, J., & Dermott, R .(2003). Lake Ontario: food web dynamics in a changing ecosystem (1970- 2000). Canadian Journal of Fisheries and Aquatic Sciences , 60, 471–490. https://doi.org/10.1139/f03-033
Leprieur, F., Beauchard, O., Blanchet, S., Oberdorff, T., & Brosse, S. (2008). Fish invasions in the world’s river systems: when natural processes are blurred by human activities. PLoS Biology , 6:e28. doi: 10.1371/journal.pbio.0060028.
Holčík, J.,& Razavi, B. A. (1992). On some new or little known freshwater fishes from the Iranian coast of the Caspian Sea. Folia Zoologica , 41, 271-280.
Kiabi, B. H., Abdoli, A., & Naderi, M. (1999). Status of the fish fauna in the South Caspian Basin of Iran. Zoology in the Middle East , 18(1), 57–65. https://doi.org/10.1080/09397140.1999.10637782
Abdoli, A. ( 2000). The Inland Water Fishes of Iran. Iranian Museum of Nature and Wildlife, Tehran. 378 pp. (in Farsi).
Jolodar, M. N. & Abdoli, A. (2004). Fish Spe-cies Atlas of South Caspian Sea Basin (Iranian Waters). Iranian Fisheries Research Organization , Teheran.110 pp. In Farsi and English.
Coad, B. W. (2010). Freshwater fishes of iran. Available at: http:// www.briancoad.com, (accessed on 16 January 2010).
Mustafayev, N. J., Ibrahimov, S. R., & Levin, B. A. (2015). Korean sharpbelly Hemiculter leucisculus (Basilewsky, 1855)(Cypriniformes, Cyprinidae) is a new species of Azerbaijan fauna. Russian journal of biological invasions , 6(4), 252-259. https://doi.org/10.1134/S2075111715040049
Nitta, M., Kawai, K., & Nagasawa, K. (2017). First Japanese record of the sharpbelly Hemiculter leucisculus (Basilewsky, 1855)(Cypriniformes: Cyprinidae) from Okayama Prefecture, western Honshu. Biogeography , 19, 17-20.
Rezamand., A, & Patimar,. R. (2017). Investigation of reproductive index of Hemiculter leucisculus (Basilewsky, 1855) in Gorganrood river. Utilization and Cultivation of Aquatics , 6(2), 59-67. doi: 10.22069/japu.2017.13266.1364.
Bagheri, S., Abbasi, K., Moradi, M., Mirzajani, A., & Ramin, M. (2016). Study on species diversity and abundance of fishes in the Persian Gulf Martyrs Lake, Chitgar-Tehran. Iranian Scientific Fisheris Iran , 25 (3), 15-24.
Khosravi, M., Abdoli, A., Ahmadzadeh, F., Saberi-Pirooz, R., Rylková, K., & Kiabi, BH. ( 2020). Toward a preliminary assessment of the diversity and origin of Cyprinid fish genus Carassius in Iran.Journal of Applied Ichthyology , 00, 1–9. https://doi.org/10.1111/jai.14039.
Chen, W., Zhong, Z., Dai, W., Fan, Q., & He, S. (2017). Phylogeographic structure, cryptic speciation and demographic history of the sharpbelly (Hemiculter leucisculus ), a freshwater habitat generalist from southern China. BMC evolutionary biology , 17(1), 1-13. https://doi.org/10.1186/s12862-017-1058-0
Esmaeili(a), H. R., Gholamifard, A., & Freyhof, J. (2011). Ichthyofauna of Zarivar Lake (Iran) with the first records of Hemiculter leucisculus and Alburnus hohenackeri in the Tigris drainage. Electronic Journal of Ichthyology , 7(1), 1-6.
Zareian, H., Esmaeili, H. R., Zamanian Nejad, R., & Vatandoust, S. (2015). Hemiculter leucisculus (Basilewsky, 1855) andAlburnus caeruleus Heckel, 1843: new data on their distributions in Iran. Caspian Journal Of Environmental Sciences , 13(1), 11-20.
Radkhah, A., & Eagderi, S. (2015). First record of saw-belly (Hemiculter leucisculus Basilewsky, 1855) from Zarinehrud River, Urmia Lake basin and its some biological characteristics. journal of aquatic ecology , 4 (4) :121-116.
Radkhah, A., Eagderi, S., & Mousavi-Sabet, H. (2016). First record of the exotic species Hemiculter leucisculus (Pisces: Cyprinidae) in southern Iran. Limnetica , 35(1), 175-178.
Mousavi-sabet, H., Heidari, A., & Salehi, M. (2019). Reproductive biology of the invasive sharpbelly, Hemiculter leucisculus(Basilewsky, 1855), from the southern Caspian Sea basin. Iranian Journal of Ichthyology , 6(1), 31-40. https://doi.org/10.22034/iji.v6i1.285
Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: A laboratory manual (2nd ed.). New York, NY: Cold Spring Harbor Laboratory Press.
Wang, L., Zhu, L., Tang, K., Liu, M., Xue, X., Wang, G., & Wang, Z. (2021). Population genetic structure of sharpbelly Hemiculter leucisculus (Basilesky, 1855) and morphological diversification along climate gradients in China. Ecology and evolution , 11(11), 6798-6813. https://doi.org/10.1002/ece3.7528
Lanfear, R., Frandsen, PB., Wright, AM., Senfeld, T., & Calcott, B. (2016). PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses.Molecular Biology and Evolution , 34, 772-773. https://doi.org/10.1093/molbev/msw260
Nguyen, L-T., H. A. Schmidt, A. von Haeseler, & B. Q. Minh. (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies, Molecular Biology and Evolution , 32, 268–274. https://doi.org/10.1093/molbev/msu300
Hoang, D.T., Chernomor, O., Von Haeseler, A., Minh, B.Q., & Vinh, L.S. (2018). UFBoot2: Improving the ultrafast bootstrap approximation.Molecular Biology and Evolution . 35, 518–522. https://doi.org/10.1093/molbev/msx281
Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics , 123(3), 585–595. https:// doi.org/10.1093/genet ics/123.3.585.
Fu, Y. X. (1997). Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection.Genetics , 147(2), 915–925. https://doi.org/10.1093/genet ics/147.2.915.
Huelsenbeck, J.P., & Ronquist, F.( 2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics , 17, 754–755. https://doi.org/10.1093/bioinformatics/17.8.754
Rambaut, A., & Drummond, A. J. (2009). Tracer: MCMC trace analysis tool, version 1.5. Retrieved from http://tree.bio.ed.ac.uk/softw are/tracer
Bandelt, HJ., Forster, P., & Röhl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution , 16(1):37-48. doi: 10.1093/oxfordjournals.molbev.a026036. PMID: 10331250.
Sanderson, E.W., Jaiteh, M., Levy, M.A., Redford, K.H., Wannebo, A.V., & Woolmer, G.(2002). The human footprint and the last of the wild: the human footprint is a global map of human influence on the land surface, which suggests that human beings are stewards of nature, whether we like it or not. AIBS (Am. Inst. Biol. Sci.) Bull, 52, 891e904. https://doi.org/10.1641/0006-3568(2002)052[0891:THFATL]2.0.CO;2
Warren, R., Van Der Wal, J., Price, J., Welbergen, JA., Atkinson, I., Ramirez-Villegas, J., Osborn, TJ., Jarvis, A., Shoo, LP., Williams, SE., & Lowe, J. (2013). Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss. Nature Climate Change , 3 (7), 678-682. https://doi.org/10.1038/nclimate1887
Hong, S., Jang, I., Kim, D., Kim, S., Park, H.S., & Lee, K. (2022). Predicting Potential Habitat Changes of Two Invasive Alien Fish Species with Climate Change at a Regional Scale. Sustainability ,14 , 6093. https://doi.org/10.3390/su14106093
Thuiller, W., Lafourcade, B., Engler, R., & Araújo, M.B. (2009). BIOMODea platform for ensemble forecasting of species distributions.Ecography , 32, 369e373. https://doi.org/10.1111/j.1600-0587.2008.05742.x
R Development Core Team. (2014). R: a Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna.
Thuiller, W., Georges, D., Engler, R., Breiner, F., Georges, M.D., & Thuiller, C.W. (2016). Package ‘biomod2’. https://cran.r-project.org/package¼biomod2.
Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology , 43, 1223e1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x
Zipkin, E.F., Grant, E.H.C. & Fagan, W.F. (2012). Evaluating the predictive abilities of community occupancy models using AUC while accounting for imperfect detection. Ecological Applications , 22, 1962e1972. https://doi.org/10.1890/11-1936.1
Carosi, A., Padula, R., Ghetti, L., & Lorenzoni, M. (2019). Endemic freshwater fish range shifts related to global climate changes: a long-term study provides some observational evidence for the Mediterranean Area. Water , 11(11):23-49. https://doi.org/10.3390/w11112349
Mamun, d., Kim, Sehyun., & Guk An, Kwang.(2018). Distribution pattern prediction of an invasive alien species largemouth bass using a maximum entropy model (MaxEnt) in the Korean peninsula. Journal of Asia-Pacific Biodiversity , 11(4), 516-524. https://doi.org/10.1016/j.japb.2018.09.007.
Hansen, G.J.A., Read, J.S., Hansen, J.F., & Winslow, L.A. (2017). Projected shifts in fish species dominance in Wisconsin lakes under climate change. Global Change Biology , 2017, 23, 1463–1476. https://doi.org/10.1111/gcb.13462
Kim, Z., Shim, T., Ki, S.J., An, K.-G., & Jung, J. (2022). Prediction of three-dimensional shift in the distribution of largemouth bass (Micropterus salmoides) under climate change in South Korea.Ecological Indicators , 137, 108731. https://doi.org/10.1016/j.ecolind.2022.108731
Abdoli., A. Valikhani., H. Nejat., N, & Khosravi, M. (2022). Non-native freshwater fishes of Iran (Identification, Impacts, Management), ISBN: 978-964-479-203-8.
Abdoli, A. (2016). Field guide of fishes of inland waters of Iran, ISBN: 978-600-8351 01-6.
Hong, S., Jang, I., Kim, D., Kim, S., Park, HS., & Lee, K. (2022). Predicting Potential Habitat Changes of Two Invasive Alien Fish Species with Climate Change at a Regional Scale. Sustainability , 14(10), 6093. https://doi.org/10.3390/su14106093.
rezamand, A. & Patimar, R. (2017). Investigation of Reproductive Index of Hemiculter leucisculus (Basilewsky, 1855) in Gorganrood river.Utilization and Cultivation of Aquatics , 6(2), 59-67. doi: 10.22069/japu.2017.13266.1364
Coad, B.W. (2020). Review of the East Asian minnows of Iran (Family Xenocyprididae). Iranian Journal of Ichthyology , 7(1) ,1-67.
Coad, B.W. & Hussain, N.A.(2007). First record of the exoticspecies Hemiculter leucisculus (Actinopterygii: Cyprinidae) in Iraq. Zoology in the Middle East , 40 (1), 107- 109. https://doi.org/10.1080/09397140.2007.10638212
Johnston, E.L., Piola, R.F., Clark, G.F. (2009). The Role of Propagule Pressure in Invasion Success. In: Rilov, G., Crooks, J.A. (eds) Biological Invasions in Marine Ecosystems. Ecological Studies, 204. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79236-9_7
Table 1. Molecular diversity indices based on Cyt b forH. leucisculus and its regional populations, including Number of sequences (N), the number of haplotypes (H), haplotype diversity (h), nucleotide diversity (π), and the number of polymorphic sites (S)