References
Abad, D., Albaina, A., Aguirre, M., Laza-Martínez, A., Uriarte, I.,
Iriarte, A., Villate, F., & Estonba, A. (2016). Is metabarcoding
suitable for estuarine plankton monitoring? A comparative study with
microscopy. Marine Biology , 163 (7), 149.
https://doi.org/10.1007/s00227-016-2920-0
Alldredge, A. L. (1984). The Quantitative Significance of Gelatinous
Zooplankton as Pelagic Consumers. In M. J. R. Fasham (Éd.), Flows
of Energy and Materials in Marine Ecosystems (p. 407‑433). Springer US.
https://doi.org/10.1007/978-1-4757-0387-0_16
Andersen, V., & Sardou, J. (1992). The diel migrations and vertical
distributions of zooplankton and micronekton in the Northwestern
Mediterranean Sea. 1. Euphausiids, mysids, decapods and fishes.Journal of Plankton Research , 14 (8), 1129‑1154.
https://doi.org/10.1093/plankt/14.8.1129
Andersen, V., Sardou, J., & Nival, P. (1992). The diel migrations and
vertical distributions of zooplankton and micronekton in the
Northwestern Mediterranean Sea. 2. Siphonophores, hydromedusae and
pyrosomids. Journal of Plankton Research , 14 (8),
1155‑1169. https://doi.org/10.1093/plankt/14.8.1155
Anderson, M. J. (2001). Permutation tests for univariate or multivariate
analysis of variance and regression. Canadian Journal of Fisheries
and Aquatic Sciences , 58 (3), 626‑639.
https://doi.org/10.1139/f01-004
Angel. (1983). A review of the progress of research on halocyprid and
other oceanic planktonic ostracods 1972-1982. Applications of
Ostracoda. , 529‑548.
Barberán, A., Bates, S. T., Casamayor, E. O., & Fierer, N. (2012).
Using network analysis to explore co-occurrence patterns in soil
microbial communities. The ISME Journal , 6 (2), Art. 2.
https://doi.org/10.1038/ismej.2011.119
Barton, A. D., Pershing, A. J., Litchman, E., Record, N. R., Edwards, K.
F., Finkel, Z. V., Kiørboe, T., & Ward, B. A. (2013). The biogeography
of marine plankton traits. Ecology Letters , 16 (4),
522‑534. https://doi.org/10.1111/ele.12063
Bellisario, B., Camisa, F., Abbattista, C., & Cimmaruta, R. (2019). A
network approach to identify bioregions in the distribution of
Mediterranean amphipods associated with Posidonia oceanica meadows.PeerJ , 7 , e6786. https://doi.org/10.7717/peerj.6786
Berry, D., & Widder, S. (2014). Deciphering microbial interactions and
detecting keystone species with co-occurrence networks. Frontiers
in Microbiology , 5 , 219.
https://doi.org/10.3389/fmicb.2014.00219
Bérubé, D., & Jébrak, M. (1999). High precision boundary fractal
analysis for shape characterization. Computers and Geosciences ,25 , 1059‑1071. https://doi.org/10.1016/S0098-3004(99)00067-9
Biard, T., Stemmann, L., Picheral, M., Mayot, N., Vandromme, P., Hauss,
H., Gorsky, G., Guidi, L., Kiko, R., & Not, F. (2016). In situ imaging
reveals the biomass of giant protists in the global ocean.Nature , 532 (7600), Art. 7600.
https://doi.org/10.1038/nature17652
Blanco-Bercial, L. (2020). Metabarcoding Analyses and Seasonality of the
Zooplankton Community at BATS. Frontiers in Marine Science ,7 . https://doi.org/10.3389/fmars.2020.00173
Bray, J. R., & Curtis, J. T. (1957). An Ordination of the Upland Forest
Communities of Southern Wisconsin. Ecological Monographs ,27 (4), 325‑349. https://doi.org/10.2307/1942268
Brinton, E. (1962). The distribution of Pacific euphausiids.
https://escholarship.org/uc/item/6db5n157
Brisbin, M., Brunner, O. D., Grossmann, M. M., & Mitarai, S. (2020).
Paired high-throughput, in situ imaging and high-throughput sequencing
illuminate acantharian abundance and vertical distribution. Limnology
and Oceanography, 65(12), 2953‑2965. https://doi.org/10.1002/lno.11567
Brun, P., Payne, M. R., & Kiørboe, T. (2017). A trait database for
marine copepods. Earth System Science Data , 9 (1), 99‑113.
https://doi.org/10.5194/essd-9-99-2017
Brüsin, M., Svensson, P. A., & Hylander, S. (2016). Individual changes
in zooplankton pigmentation in relation to ultraviolet radiation and
predator cues. Limnology and Oceanography , 61 (4),
1337‑1344. https://doi.org/10.1002/lno.10303
Bucklin, A., Peijnenburg, K., Kosobokova, K., O’Brien, T.,
Blanco-Bercial, L., Cornils, A., Falkenhaug, T., Hopcroft, R., Hosia,
A., Laakmann, S., Li, C., Martell, L., Questel, J., Wall-Palmer, D.,
Minxiao, W., Wiebe, P., & Weydmann, A. (2021). Toward a global
reference database of COI barcodes for marine zooplankton. Marine
Biology , 168 . https://doi.org/10.1007/s00227-021-03887-y
Bucklin, A., Yeh, H. D., Questel, J. M., Richardson, D. E., Reese, B.,
Copley, N. J., & Wiebe, P. H. (2019). Time-series metabarcoding
analysis of zooplankton diversity of the NW Atlantic continental shelf.ICES Journal of Marine Science , 76 (4), 1162‑1176.
https://doi.org/10.1093/icesjms/fsz021
Castellani, C., & Edwards, M. (2017). Marine Plankton : A
practical guide to ecology, methodology, and taxonomy . Oxford
University Press.
Cattell, R. B. (1966). The Scree Test For The Number Of Factors.Multivariate Behavioral Research , 1 (2), 245‑276.
https://doi.org/10.1207/s15327906mbr0102_10
Charrad, M., Ghazzali, N., Boiteau, V., & Niknafs, A. (2014).
NbClust : An R Package for Determining the Relevant Number of Clusters
in a Data Set. Journal of Statistical Software , 61 , 1‑36.
https://doi.org/10.18637/jss.v061.i06
Chen, T., Zhang, Y., Song, S., Liu, Y., Sun, X., & Li, C. (2021).
Diversity and seasonal variation of marine phytoplankton in Jiaozhou
Bay, China revealed by morphological observation and metabarcoding.Journal of Oceanology and Limnology , 40 .
https://doi.org/10.1007/s00343-021-0457-7
Chust, G., Vogt, M., Benedetti, F., Nakov, T., Villéger, S., Aubert, A.,
Vallina, S. M., Righetti, D., Not, F., Biard, T., Bittner, L.,
Benoiston, A.-S., Guidi, L., Villarino, E., Gaborit, C., Cornils, A.,
Buttay, L., Irisson, J.-O., Chiarello, M., … Ayata, S.-D. (2017).
Mare Incognitum : A Glimpse into Future Plankton Diversity and Ecology
Research. Frontiers in Marine Science , 4 .
https://www.frontiersin.org/article/10.3389/fmars.2017.00068
Clarke, K. R. (1993). Non-parametric multivariate analyses of changes in
community structure. Australian Journal of Ecology , 18 (1),
117‑143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x
Cordier, T., Forster, D., Dufresne, Y., Martins, C. I. M., Stoeck, T.,
& Pawlowski, J. (2018). Supervised machine learning outperforms
taxonomy-based environmental DNA metabarcoding applied to biomonitoring.Molecular Ecology Resources , 18 (6), 1381‑1391.
https://doi.org/10.1111/1755-0998.12926
Cowen, R., & Guigand, C. (2008). In situ Ichthyoplankton Imaging
System(ISIIS) : System design and preliminary results. Limnology
and Oceanography: Methods , 6 .
https://doi.org/10.4319/lom.2008.6.126
Da Silva, O. (2021). Structure de l’écosystème planctonique : Apport
des données à haut débit de séquençage et d’imagerie [Thesis, Sorbonne
université]. In Http://www.theses.fr .
http://www.theses.fr/2021SORUS183
David James and Kurt Hornik. (2020). chron : Chronological
Objects which Can Handle Dates and Times .
https://CRAN.R-project.org/package=chron
Deevey, G. B. (1971). The Annual Cycle in Quantity and Composition of
the Zooplankton of the Sargasso Sea Off Bermuda. I. the Upper 500 M1.Limnology and Oceanography , 16 (2), 219‑240.
https://doi.org/10.4319/lo.1971.16.2.0219
Deevey, G. B., & Brooks, A. L. (1977). Copepods of the Sargasso Sea off
Bermuda : Species Composition, and Vertical and Seasonal Distribution
Between the Surface and 2000 M. Bulletin of Marine Science ,27 (2), 256‑291.
de Vera, A., & Seapy, R. R. (2006). Atlanta selvagensis, a new species
of heteropod molluscfrom the Northeastern Atlantic Ocean(Gastropoda :
Carinarioidea). Vieraea Folia Scientiarum Biologicarum
Canariensium , 34 (Vieraea 34), 45‑54.
https://doi.org/10.31939/vieraea.2006.34.06
Djurhuus, A., Pitz, K., Sawaya, N. A., Rojas-Márquez, J., Michaud, B.,
Montes, E., Muller-Karger, F., & Breitbart, M. (2018). Evaluation of
marine zooplankton community structure through environmental DNA
metabarcoding. Limnology and Oceanography: Methods , 16 (4),
209‑221.
Dufrêne, M., Legendre, P., 1997. Species Assemblages and Indicator
Species:the Need for a Flexible Asymmetrical Approach. Ecol. Monogr. 67,
345–366.
https://doi.org/10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2
Durkin, C. A., Cetinić, I., Estapa, M., Ljubešić, Z., Mucko, M., Neeley,
A., & Omand, M. (2022). Tracing the path of carbon export in the ocean
though DNA sequencing of individual sinking particles. The ISME
Journal , 1‑11. https://doi.org/10.1038/s41396-022-01239-2
Edgar, R. C. (2016). UNOISE2 : Improved error-correction for
Illumina 16S and ITS amplicon sequencing (p. 081257). bioRxiv.
https://doi.org/10.1101/081257
Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., & Knight, R.
(2011). UCHIME improves sensitivity and speed of chimera detection.Bioinformatics , 27 (16), 2194‑2200.
https://doi.org/10.1093/bioinformatics/btr381
Ershova, E. A., Wangensteen, O. S., Descoteaux, R., Barth-Jensen, C., &
Præbel, K. (2021). Metabarcoding as a quantitative tool for estimating
biodiversity and relative biomass of marine zooplankton. ICES
Journal of Marine Science , 78 (9), 3342‑3355.
https://doi.org/10.1093/icesjms/fsab171
Fonseca, V. G., Carvalho, G. R., Nichols, B., Quince, C., Johnson, H.
F., Neill, S. P., Lambshead, J. D., Thomas, W. K., Power, D. M., &
Creer, S. (2014). Metagenetic analysis of patterns of distribution and
diversity of marine meiobenthic eukaryotes. Global Ecology and
Biogeography , 23 (11), 1293‑1302.
https://doi.org/10.1111/geb.12223
Fonseca, V. G., Carvalho, G. R., Sung, W., Johnson, H. F., Power, D. M.,
Neill, S. P., Packer, M., Blaxter, M. L., Lambshead, P. J. D., Thomas,
W. K., & Creer, S. (2010). Second-generation environmental sequencing
unmasks marine metazoan biodiversity. Nature Communications ,1 (1), Art. 1. https://doi.org/10.1038/ncomms1095
Gabor Csardi & Tamas Nepusz. (2006). The igraph software package
for complex network research [R]. https://igraph.org
Goetze, E. (2011). Population Differentiation in the Open Sea :
Insights from the Pelagic Copepod Pleuromamma xiphias. Integrative
and Comparative Biology , 51 (4), 580‑597.
https://doi.org/10.1093/icb/icr104
González, H. E., & Smetacek, V. (1994). The possible role of the
cyclopoid copepod Oithona in retarding vertical flux of zooplankton
faecal material. Marine Ecology-progress Series - MAR ECOL-PROGR
SER , 113 , 233‑246. https://doi.org/10.3354/meps113233
Gorsky, G., Ohman, M. D., Picheral, M., Gasparini, S., Stemmann, L.,
Romagnan, J.-B., Cawood, A., Pesant, S., García-Comas, C., & Prejger,
F. (2010). Digital zooplankton image analysis using the ZooScan
integrated system. Journal of Plankton Research , 32 (3),
285‑303. https://doi.org/10.1093/plankt/fbp124
Harrell Jr, F. E., & Dupon, C. (contributed several functions and
maintains latex. (2022). Hmisc : Harrell Miscellaneous (4.7-0).
https://CRAN.R-project.org/package=Hmisc
Harvey, J. B. J., Johnson, S. B., Fisher, J. L., Peterson, W. T., &
Vrijenhoek, R. C. (2017). Comparison of morphological and next
generation DNA sequencing methods for assessing zooplankton assemblages.Journal of Experimental Marine Biology and Ecology , 487 ,
113‑126. https://doi.org/10.1016/j.jembe.2016.12.002
Hays, G. C., Proctor, C. A., John, A. W. G., & Warner, A. J. (1994).
Interspecific differences in the diel vertical migration of marine
copepods : The implications of size, color, and morphology.Limnology and Oceanography , 39 (7), 1621‑1629.
https://doi.org/10.4319/lo.1994.39.7.1621
Hebert, P. D. N., Ratnasingham, S., & de Waard, J. R. (2003). Barcoding
animal life : Cytochrome c oxidase subunit 1 divergences among closely
related species. Proceedings of the Royal Society of London.
Series B: Biological Sciences , 270 (suppl_1), S96‑S99.
https://doi.org/10.1098/rsbl.2003.0025
Holm, S. (1979). A Simple Sequentially Rejective Multiple Test
Procedure. Scandinavian Journal of Statistics , 6 (2),
65‑70.
Huo, S., Li, X., Xi, B., Zhang, H., Ma, C., & He, Z. (2020). Combining
morphological and metabarcoding approaches reveals the freshwater
eukaryotic phytoplankton community. Environmental Sciences
Europe , 32 (1), 37. https://doi.org/10.1186/s12302-020-00321-w
Ibarbalz, F. M., Henry, N., Brandão, M. C., Martini, S., Busseni, G.,
Byrne, H., Coelho, L. P., Endo, H., Gasol, J. M., Gregory, A. C., Mahé,
F., Rigonato, J., Royo-Llonch, M., Salazar, G., Sanz-Sáez, I., Scalco,
E., Soviadan, D., Zayed, A. A., Zingone, A., … Zinger, L. (2019).
Global Trends in Marine Plankton Diversity across Kingdoms of Life.Cell , 179 (5), 1084-1097.e21.
https://doi.org/10.1016/j.cell.2019.10.008
Irisson, J.-O., Ayata, S.-D., Lindsay, D. J., Karp-Boss, L., &
Stemmann, L. (2022). Machine Learning for the Study of Plankton and
Marine Snow from Images. Annual Review of Marine Science ,14 (1), 277‑301.
https://doi.org/10.1146/annurev-marine-041921-013023
Ivory, J. A., Steinberg, D. K., & Latour, R. J. (2019). Diel, seasonal,
and interannual patterns in mesozooplankton abundance in the Sargasso
Sea. ICES Journal of Marine Science , 76 (1), 217‑231.
https://doi.org/10.1093/icesjms/fsy117
Johnsen, S. (2014). Hide and seek in the open sea : Pelagic camouflage
and visual countermeasures. Annual Review of Marine Science ,6 , 369‑392. https://doi.org/10.1146/annurev-marine-010213-135018
Johnsen, S., & Widder, E. A. (1998). Transparency and Visibility of
Gelatinous Zooplankton from the Northwestern Atlantic and Gulf of
Mexico. Biological Bulletin , 195 (3), 337‑348.
https://doi.org/10.2307/1543145
Kaeriyama, H., & Ikeda, T. (2002). Vertical distribution and
population structure of the three dominant planktonic ostracods
(Discoconchoecia pseudodiscophora, Orthoconchoecia haddoni and
Metaconchoecia skogsbergi) in the Oyashio region, western North
Pacific . 9.
Kassambara, A. (2020). ggpubr : « ggplot2 » Based Publication
Ready Plots (0.4.0). https://CRAN.R-project.org/package=ggpubr
Kassambara, A. (2021). rstatix : Pipe-Friendly Framework for
Basic Statistical Tests (0.7.0).
https://CRAN.R-project.org/package=rstatix
Kelly, T. B., Davison, P. C., Goericke, R., Landry, M. R., Ohman, M. D.,
& Stukel, M. R. (2019). The Importance of Mesozooplankton Diel Vertical
Migration for Sustaining a Mesopelagic Food Web. Frontiers in
Marine Science , 6 . https://doi.org/10.3389/fmars.2019.00508
Kiørboe, T. (1997). Population regulation and role of mesozooplankton in
shaping marine pelagic food webs. Hydrobiologia , 363 (1),
13‑27. https://doi.org/10.1023/A:1003173721751
Kiørboe, T. (2013). Zooplankton body composition. Limnology and
Oceanography , 58 (5), 1843‑1850.
https://doi.org/10.4319/lo.2013.58.5.1843
Kiørboe, T., Andersen, A., Langlois, V. J., & Jakobsen, H. H. (2010).
Unsteady motion : Escape jumps in planktonic copepods, their kinematics
and energetics. Journal of The Royal Society Interface ,7 (52), 1591‑1602. https://doi.org/10.1098/rsif.2010.0176
Lamb, P. D., Hunter, E., Pinnegar, J. K., Creer, S., Davies, R. G., &
Taylor, M. I. (2019). How quantitative is metabarcoding : A
meta-analytical approach. Molecular Ecology , 28 (2),
420‑430. https://doi.org/10.1111/mec.14920
Lê, S., Josse, J., & Husson, F. (2008). FactoMineR : An R Package for
Multivariate Analysis. Journal of Statistical Software ,25 , 1‑18. https://doi.org/10.18637/jss.v025.i01
Legendre, P., & Gallagher, E. D. (2001). Ecologically meaningful
transformations for ordination of species data. Oecologia ,129 (2), 271‑280. https://doi.org/10.1007/s004420100716
Legendre, P., & Legendre, L. (2012). Chapter 9—Ordination in reduced
space. In P. Legendre & L. Legendre (Éds.), Developments in
Environmental Modelling (Vol. 24, p. 425‑520). Elsevier.
https://doi.org/10.1016/B978-0-444-53868-0.50009-5
Lejzerowicz, F., Gooday, A. J., Barrenechea Angeles, I., Cordier, T.,
Morard, R., Apothéloz-Perret-Gentil, L., Lins, L., Menot, L., Brandt,
A., Levin, L. A., Martinez Arbizu, P., Smith, C. R., & Pawlowski, J.
(2021). Eukaryotic Biodiversity and Spatial Patterns in the
Clarion-Clipperton Zone and Other Abyssal Regions : Insights From
Sediment DNA and RNA Metabarcoding. Frontiers in Marine Science ,0 . https://doi.org/10.3389/fmars.2021.671033
Levitus, S. (1982). Climatological Atlas of the World Ocean . U.S.
Department of Commerce, National Oceanic and Atmospheric Administration.
Litchman, E., Ohman, M. D., & Kiørboe, T. (2013). Trait-based
approaches to zooplankton communities. Journal of Plankton
Research , 35 (3), 473‑484. https://doi.org/10.1093/plankt/fbt019
Lobón, C.M., Bouquet, J.-M., Reeve, M., Novac, A., Acuña, J.L.,
Thompson, E.M., Troedsson, C., 2013. Response of the pelagic tunicate
appendicularian, Oikopleura dioica to controlled simulations of a strong
bloom condition: A bottom-up perspective. Limnol. Oceanogr. 58,
215–226. https://doi.org/10.4319/lo.2013.58.1.0215
Lochhead, J. H., 1968. The feeding and swimming of Conchoecia
(Crustacea, Ostracoda). Biol. Bull. 134:456 – 464.
https://doi.org/10.2307/1539863
Lomas, M., Steinberg, D. K., T, D., Carlson, C., Nelson, N., Condon, R.,
& Bates, N. (2010). Increased ocean carbon export in the Sargasso Sea
linked to climate variability is countered by its enhanced mesopelagic
attenuation. Biogeosciences , 7 .
Lomas, M. W., Bates, N. R., Johnson, R. J., Knap, A. H., Steinberg, D.
K., & Carlson, C. A. (2013). Two decades and counting : 24-years of
sustained open ocean biogeochemical measurements in the Sargasso Sea.Deep Sea Research Part II: Topical Studies in Oceanography ,93 , 16‑32. https://doi.org/10.1016/j.dsr2.2013.01.008
Lüskow, F., Neitzel, P., Miller, M. J., Marohn, L., Wysujack, K.,
Freese, M., Pohlmann, J.-D., & Hanel, R. (2019). Distribution and
abundance of net-captured calycophoran siphonophores and other
gelatinous zooplankton in the Sargasso Sea European eel spawning area.Marine Biodiversity , 49 (5), 2333‑2349.
https://doi.org/10.1007/s12526-019-00971-x
Maas, A. E., Gossner, H., Smith, M. J., & Blanco-Bercial, L. (2021).
Use of optical imaging datasets to assess biogeochemical contributions
of the mesozooplankton. Journal of Plankton Research ,43 (3), 475‑491. https://doi.org/10.1093/plankt/fbab037
MacNeil, L., Desai, D. K., Costa, M., & LaRoche, J. (2022). Combining
multi-marker metabarcoding and digital holography to describe eukaryotic
plankton across the Newfoundland Shelf. Scientific Reports ,12 (1), Art. 1. https://doi.org/10.1038/s41598-022-17313-w
Madin, L. P., Horgan, E. F., & Steinberg, D. K. (2001). Zooplankton at
the Bermuda Atlantic Time-series Study (BATS) station : Diel, seasonal
and interannual variation in biomass, 1994–1998. Deep Sea
Research Part II: Topical Studies in Oceanography , 48 (8),
2063‑2082. https://doi.org/10.1016/S0967-0645(00)00171-5
Martini, S., Larras, F., Boyé, A., Faure, E., Aberle, N., Archambault,
P., Bacouillard, L., Beisner, B. E., Bittner, L., Castella, E., Danger,
M., Gauthier, O., Karp‐Boss, L., Lombard, F., Maps, F., Stemmann, L.,
Thiébaut, E., Usseglio‐Polatera, P., Vogt, M., … Ayata, S.-D.
(2021). Functional trait-based approaches as a common framework for
aquatic ecologists. Limnology and Oceanography , 66 (3),
965‑994. https://doi.org/10.1002/lno.11655
Matthews, S. A., Goetze, E., & Ohman, M. D. (2021). Recommendations for
interpreting zooplankton metabarcoding and integrating molecular methods
with morphological analyses. ICES Journal of Marine Science ,78 (9), 3387‑3396. https://doi.org/10.1093/icesjms/fsab107
McHardy, R. A., & Bary, B. McK. (1965). Diurnal and Seasonal Changes in
Distribution of Two Planktonic Ostracods, Conchoecia elegans and
Conchoecia alata minor. Journal of the Fisheries Research Board of
Canada , 22 (3), 823‑840. https://doi.org/10.1139/f65-072
Mifsud, C. (2001). A mysterious, living, ‘giant’ Gymnosomata
species near the Maltese Islands (Gastropoda, Opisthobranchia) .65 , 57‑60.
Monferrer, N., Biard, T., Sandin, M. M., Lombard, F., Picheral, M.,
Elineau, A., Guidi, L., Leynaert, A., Tréguer, P. J., & Not, F. (2022).
Siliceous Rhizaria abundances and diversity in the Mediterranean Sea
assessed by combined imaging and metabarcoding approaches.Frontiers in Marine Science , 9 .
https://www.frontiersin.org/articles/10.3389/fmars.2022.895995
Motoda, S. (1959). DEVICES OF SIMPLE PLANKTON APPARATUS . 40.
Murtagh, F., & Legendre, P. (2014). Ward’s Hierarchical
Agglomerative Clustering Method : Which Algorithms Implement Ward’s
Criterion ? | SpringerLink .
https://link.springer.com/article/10.1007/s00357-014-9161-z
Neuwirth, E. (2022). RColorBrewer : ColorBrewer Palettes(1.1-3). https://CRAN.R-project.org/package=RColorBrewer
Newman, M. E. J. (2006). Modularity and community structure in networks.Proceedings of the National Academy of Sciences , 103 (23),
8577‑8582. https://doi.org/10.1073/pnas.0601602103
Oksanen, J., Kindt, R., Legendre, P., Hara, B., Simpson, G., Solymos,
P., Henry, M., Stevens, H., Maintainer, H., & Oksanen@oulu, jari.
(2009). The vegan Package .
Orenstein, E. C., Ayata, S.-D., Maps, F., Becker, É. C., Benedetti, F.,
Biard, T., de Garidel-Thoron, T., Ellen, J. S., Ferrario, F., Giering,
S. L. C., Guy-Haim, T., Hoebeke, L., Iversen, M. H., Kiørboe, T.,
Lalonde, J.-F., Lana, A., Laviale, M., Lombard, F., Lorimer, T.,
… Irisson, J.-O. (2022). Machine learning techniques to
characterize functional traits of plankton from image data.Limnology and Oceanography , 67 (8), 1647‑1669.
https://doi.org/10.1002/lno.12101
Paffenhöfer, G.-A., Mazzocchi, M. G., & Tzeng, M. W. (2006). Living on
the edge : Feeding of subtropical open ocean copepods. Marine
Ecology , 27 (2), 99‑108.
https://doi.org/10.1111/j.1439-0485.2006.00086.x
Picheral, M., Colin, S., & Irisson, J. O. (2017). EcoTaxa, a tool for
the taxonomic classification of images. URL Httpecotaxa Obs-Vlfr
Fr .
Picheral, M., Guidi, L., Stemmann, L., Karl, D. M., Iddaoud, G., &
Gorsky, G. (2010). The Underwater Vision Profiler 5 : An advanced
instrument for high spatial resolution studies of particle size spectra
and zooplankton. Limnology And Oceanography-Methods , 8 ,
462‑473. https://doi.org/10.4319/lom.2010.8.462
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P.,
Peplies, J., & Glöckner, F. O. (2013). The SILVA ribosomal RNA gene
database project : Improved data processing and web-based tools.Nucleic Acids Research , 41 (D1), D590‑D596.
https://doi.org/10.1093/nar/gks1219
Quéré, C. L., Harrison, S. P., Colin Prentice, I., Buitenhuis, E. T.,
Aumont, O., Bopp, L., Claustre, H., Cotrim Da Cunha, L., Geider, R.,
Giraud, X., Klaas, C., Kohfeld, K. E., Legendre, L., Manizza, M., Platt,
T., Rivkin, R. B., Sathyendranath, S., Uitz, J., Watson, A. J., &
Wolf-Gladrow, D. (2005). Ecosystem dynamics based on plankton functional
types for global ocean biogeochemistry models. Global Change
Biology , 11 (11), 2016‑2040.
https://doi.org/10.1111/j.1365-2486.2005.1004.x
Rey, A., Corell, J., & Rodriguez-Ezpeleta, N. (2020).Metabarcoding to Study Zooplankton Diversity (p. 252‑263).
https://doi.org/10.1201/9781351021821-14
Roe, H. S. J., James, P. T., & Thurston, M. H. (1984). The diel
migrations and distributions within a mesopelagic community in the North
East Atlantic. 6. Medusae, ctenophores, amphipods and euphausiids.Progress in Oceanography , 13 (3), 425‑460.
https://doi.org/10.1016/0079-6611(84)90015-6
Romagnan, J.-B., Aldamman, L., Gasparini, S., Nival, P., Aubert, A.,
Jamet, J. L., & Stemmann, L. (2016). High frequency mesozooplankton
monitoring : Can imaging systems and automated sample analysis help us
describe and interpret changes in zooplankton community composition and
size structure — An example from a coastal site. Journal Of
Marine Systems , 162 , 18‑28.
https://doi.org/10.1016/j.jmarsys.2016.03.013
Rombouts, I., Beaugrand, G., Ibanez, F., Gasparini, S., Chiba, S., &
Legendre, L. (2010). A multivariate approach to large-scale variation in
marine planktonic copepod diversity and its environmental correlates.Limnology and Oceanography , 55 (5), 2219‑2229.
https://doi.org/10.4319/lo.2010.55.5.2219
Sampei, M., Forest, A., Sasaki, H. et al. Attenuation of the vertical
flux of copepod fecal pellets under Arctic sea ice: evidence for an
active detrital food web in winter. Polar Biol 32, 225–232 (2009).
https://doi.org/10.1007/s00300-008-0523-z
Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M.,
Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H.,
Robinson, C. J., Sahl, J. W., Stres, B., Thallinger, G. G., Van Horn, D.
J., & Weber, C. F. (2009). Introducing mothur : Open-Source,
Platform-Independent, Community-Supported Software for Describing and
Comparing Microbial Communities. Applied and Environmental
Microbiology , 75 (23), 7537‑7541.
https://doi.org/10.1128/AEM.01541-09
Schnetzer, A., & Steinberg, D. (2002). Active transport of
particulate organic carbon and nitrogen by vertically migrating
zooplankton in the Sargasso Sea . https://doi.org/10.3354/MEPS234071
Sha, Y., Zhang, H., Lee, M., Björnerås, C., Škerlep, M., Gollnisch, R.,
Herzog, S. D., Ekelund Ugge, G., Vinterstare, J., Hu, N., Pärssinen, V.,
Hulthén, K., Nilsson, P. A., Rengefors, K., Brönmark, C., Langerhans, R.
B., & Hansson, L.-A. (2021). Diel vertical migration of copepods and
its environmental drivers in subtropical Bahamian blue holes.Aquatic Ecology , 55 (4), 1157‑1169.
https://doi.org/10.1007/s10452-020-09807-4
Slowikowski, K., Schep, A., Hughes, S., Dang, T. K., Lukauskas, S.,
Irisson, J.-O., Kamvar, Z. N., Ryan, T., Christophe, D., Hiroaki, Y.,
Gramme, P., Abdol, A. M., Barrett, M., Cannoodt, R., Krassowski, M.,
Chirico, M., & Aphalo, P. (2021). ggrepel : Automatically
Position Non-Overlapping Text Labels with « ggplot2 » (0.9.1).
https://CRAN.R-project.org/package=ggrepel
Spearman, C. (1904). The proof and measurement of association between
two things. The American Journal of Psychology , 15 (1),
72‑101. https://doi.org/10.2307/1412159
Stamieszkin, K., Pershing, A. J., Record, N. R., Pilskaln, C. H., Dam,
H. G., & Feinberg, L. R. (2015). Size as the master trait in modeled
copepod fecal pellet carbon flux. Limnology and Oceanography ,60 (6), 2090‑2107. https://doi.org/10.1002/lno.10156
Steinberg, D. K., Carlson, C. A., Bates, N. R., Goldthwait, S. A.,
Madin, L. P., & Michaels, A. F. (2000). Zooplankton vertical migration
and the active transport of dissolved organic and inorganic carbon in
the Sargasso Sea. Deep Sea Research Part I: Oceanographic Research
Papers , 47 (1), 137‑158.
https://doi.org/10.1016/S0967-0637(99)00052-7
Steinberg, D. K., Carlson, C. A., Bates, N. R., Johnson, R. J.,
Michaels, A. F., & Knap, A. H. (2001). Overview of the US JGOFS Bermuda
Atlantic Time-series Study (BATS) : A decade-scale look at ocean
biology and biogeochemistry. Deep Sea Research Part II: Topical
Studies in Oceanography , 48 (8), 1405‑1447.
https://doi.org/10.1016/S0967-0645(00)00148-X
Steinberg, D. K., & Landry, M. R. (2017). Zooplankton and the Ocean
Carbon Cycle. Annual Review of Marine Science , 9 (1),
413‑444. https://doi.org/10.1146/annurev-marine-010814-015924
Steinberg, D. K., Lomas, M. W., & Cope, J. S. (2012). Long-term
increase in mesozooplankton biomass in the Sargasso Sea : Linkage to
climate and implications for food web dynamics and biogeochemical
cycling. Global Biogeochemical Cycles , 26 (1).
https://doi.org/10.1029/2010GB004026
Steinberg, D. K., Van Mooy, B. A. S., Buesseler, K. O., Boyd, P. W.,
Kobari, T., & Karl, D. M. (2008). Bacterial vs. Zooplankton control of
sinking particle flux in the ocean’s twilight zone. Limnology and
Oceanography , 53 (4), 1327‑1338.
https://doi.org/10.4319/lo.2008.53.4.1327
Stone, J. P., & Steinberg, D. K. (2016). Salp contributions to vertical
carbon flux in the Sargasso Sea. Deep Sea Research Part I:
Oceanographic Research Papers , 113 , 90‑100.
https://doi.org/10.1016/j.dsr.2016.04.007
Strathmann, R. R. (2006). Versatile ciliary behaviour in capture of
particles by the bryozoan cyphonautes larva. Acta Zoologica ,87 (1), 83‑89. https://doi.org/10.1111/j.1463-6395.2006.00224.x
Svensen, C., & Nejstgaard, J. C. (2003). Is sedimentation of copepod
faecal pellets determined by cyclopoids? Evidence from enclosed
ecosystems. Journal of Plankton Research , 25 (8), 917‑926.
Tarrant, A. M., McNamara-Bordewick, N., Blanco-Bercial, L., Miccoli, A.,
& Maas, A. E. (2021). Diel metabolic patterns in a migratory oceanic
copepod. Journal of Experimental Marine Biology and Ecology, 545,
151643. https://doi.org/10.1016/j.jembe.2021.151643
Ursella, L., Cardin, V., Batistić, M., Garić, R., & Gačić, M. (2018).
Evidence of zooplankton vertical migration from continuous Southern
Adriatic buoy current-meter records. Progress in Oceanography ,167 , 78‑96. https://doi.org/10.1016/j.pocean.2018.07.004
Uye, S., & Kaname, K. (1994). Relations between fecal pellet volume and
body size for major zooplankters of the Inland Sea of Japan.Journal of Oceanography , 50 , 43‑49.
https://doi.org/10.1007/BF02233855
Vilgrain, L., Maps, F., Basedow, S., Trudnowska, E., Madoui, M.-A.,
Niehoff, B., & Ayata, S.-D. (2022). Copepods’ true colors :
Astaxanthin pigmentation as an indicator of fitness. Ecosphere .
Vilgrain, L., Maps, F., Picheral, M., Babin, M., Aubry, C., Irisson,
J.-O., & Ayata, S.-D. (2021). Trait-based approach using in situ
copepod images reveals contrasting ecological patterns across an Arctic
ice melt zone. Limnology and Oceanography , 66 (4),
1155‑1167. https://doi.org/10.1002/lno.11672
Violle, C., Navas, M.-L., Vile, D., Kazakou, E., Fortunel, C., Hummel,
I., & Garnier, E. (2007). Let the concept of trait be functional!Oikos , 116 (5), 882‑892.
https://doi.org/10.1111/j.0030-1299.2007.15559.x
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L., François,
R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen,
T., Miller, E., Bache, S., Müller, K., Ooms, J., Robinson, D., Seidel,
D., Spinu, V., … Yutani, H. (2019). Welcome to the Tidyverse.Journal of Open Source Software , 4 (43), 1686.
https://doi.org/10.21105/joss.01686
Wickham, H., Chang, W., Henry, L., Pedersen, T. L., Takahashi, K.,
Wilke, C., Woo, K., Yutani, H., Dunnington, D., & RStudio. (2021).ggplot2 : Create Elegant Data Visualisations Using the Grammar of
Graphics (3.3.5). https://CRAN.R-project.org/package=ggplot2
Wilke, C. O. (2020). cowplot : Streamlined Plot Theme and Plot
Annotations for « ggplot2 » (1.1.1).
https://CRAN.R-project.org/package=cowplot
[dataset] Perhirin, M.; Gossner, H.; Godfrey, J.; Johnson, R. J.;
Blanco-Bercial, L.; Ayata, S-D. (publication year): Environmental CTD
data at time series station BATS from March-2016 till May-2017. PANGAEA,
https://doi.org/10.1594/PANGAEA.960033
[dataset] Perhirin, M.; Gossner, H.; Godfrey, J.; Johnson, R. J.;
Blanco-Bercial, L.; Ayata, S-D. (publication year): Total flux,
particulate carbon and nitrogen from surface-tethered sediment traps at
time series station BATS from March-2016 till May-2017. PANGAEA,
https://doi.org/10.1594/PANGAEA.960038