References
Allen, P. A., & Allen, J. R. (2013). Basin Analysis: Principles and Application to Petroleum Play Assessment (3rd Edition). Wiley-Blackwell. https://www.wiley.com/en-us/ Basin+Analysis%3A+Principles+and+Application+to+Petroleum+Play+Assessment%2C+3rd+E dition-p-9780470673775
Austin, N. J., & Evans, B. (2007). Paleowattmeters: A scaling relation for dynamically recrystallized grain size. Geology, 35(4), 343–346. https://doi.org/10.1130/G23244A.1
Basile, C., Mascle, J., Popoff, M., Bouillin, J. P., & Mascle, G. (1993). The Ivory Coast-Ghana transform margin: A marginal ridge structure deduced from seismic data. Tectonophysics, 222(1), 1–19. https://doi.org/10.1016/0040-1951(93)90186-N
Basile, C., Mascle, J., & Guiraud, R. (2005). Phanerozoic geological evolution of the Equatorial Atlantic domain. Journal of African Earth Sciences43(1-3), 275-282.
Biari, Y., Klingelhoefer, F., Franke, D., Funck, T., Loncke, L., Sibuet, J.-C., Basile, C., Austin, J. A., Rigoti, C. A., Sahabi, M., Benabdellouahed, M., & Roest, W. R. (2021). Structure and evolution of the Atlantic passive margins: a review of existing rifting models from wide-angle seismic data and kinematic reconstruction. Marine and Petroleum Geology, 126(January), 104898. https://doi.org/10.1016/j.marpetgeo.2021.104898
Bickert, M., Cannat, M., Tommasi, A., Jammes, S., & Lavier, L. (2021). Strain Localization in the Root of Detachment Faults at a Melt-Starved Mid-Ocean Ridge: A Microstructural Study of Abyssal Peridotites From the Southwest Indian Ridge. Geochemistry, Geophysics, Geosystems, 22(5). https://doi.org/10.1029/2020GC009434
Bickert, M., Lavier, L., & Cannat, M. (2020). How do detachment faults form at ultraslow mid- ocean ridges in a thick axial lithosphere? Earth and Planetary Science Letters, 533, 116048. https://doi.org/10.1016/j.epsl.2019.116048
Blackman, D. K., Ildefonse, B., John, B. E., Ohara, Y., Miller, D. J., Abe, N., Abratis, M., Andal, E. S., Andreani, M., Awaji, S., Beard, J. S., Brunelli, D., Charney, A. B., Christie, D. M., Collins, J., Delacour, A. G., Delius, H., Drouin, M., Einaudi, F., … Zhao, X. (2011). Drilling constraints on lithospheric accretion and evolution at Atlantis Massif, Mid-Atlantic Ridge 30N. Journal of Geophysical Research: Solid Earth, 116(7), 1–25. https://doi.org/10.1029/2010JB007931
Boillot, G., Recq, M., Winterer, E. L., Meyer, A. W., Applegate, J., Baltuck, M., Bergen, J. A., Comas, M. C., Davies, T. A., Dunham, K., Evans, C. A., Girardeau, J., Goldberg, G., Haggerty, J., Jansa, L. F., Johnson, J. A., Kasahara, J., Loreau, J. P., Luna-Sierra, E., … Williamson, M. (1987). Tectonic denudation of the upper mantle along passive margins: a model based on drilling results (ODP leg 103, western Galicia margin, Spain). Tectonophysics, 132(4), 335–342. https://doi.org/10.1016/0040-1951(87)90352-0
Bronner, A., Sauter, D., Manatschal, G., Péron-Pinvidic, G., & Munschy, M. (2011). Magmatic breakup as an explanation for magnetic anomalies at magma-poor rifted margins. Nature Geoscience, 4(8), 549–553. https://doi.org/10.1038/ngeo1201
Buck, W. R. (2006). The role of magma in the development of the Afro-Arabian Rift System. Geological Society Special Publication, 259, 43–54. https://doi.org/10.1144/ GSL.SP.2006.259.01.05
Cann, J. R. (1970). New Model for the Structure of the Ocean Crust. Nature 1970 226:5249, 226(5249), 928–930. https://doi.org/10.1038/226928a0
Cann, J. R., Blackman, D. K., Smith, D. K., McAllister, E., Janssen, B., Mello, S., Avgerinos, E., Pascoe, A. R., & Escartin, J. (1997). Corrugated slip surfaces formed at ridge–transform intersections on the Mid-Atlantic Ridge. Nature, 385(6614), 329–332. https://doi.org/ 10.1038/385329a0
Cho, H. E., Hammi, Y., Bowman, A. L., Karato, S., Baumgardner, J. R., & Horstemeyer, M. F. (2019). A unified static and dynamic recrystallization Internal State Variable (ISV) constitutive model coupled with grain size evolution for metals and mineral aggregates. International Journal of Plasticity, 112, 123–157. https://doi.org/10.1016/j.ijplas.2018.08.009
Clerc, C., Ringenbach, J. C., Jolivet, L., & Ballard, J. F. (2018). Rifted margins: Ductile deformation, boudinage, continentward-dipping normal faults and the role of the weak lower crust. Gondwana Research, 53, 20–40. https://doi.org/10.1016/J.GR.2017.04.030
Davis, G. H. (1983). Shear-zone model for the origin of metamorphic core complexes. Geology, 11(6), 342. https://doi.org/10.1130/0091-7613(1983)11<342:SMFTOO>2.0.CO;2
Davis, J. K., & Lavier, L. L. (2017). Influences on the development of volcanic and magma-poor morphologies during passive continental rifting. Geosphere, 13(5), 1524–1540. https://doi.org/ 10.1130/GES01538.1
Davis, M., & Kusznir, N. (2016). 4. Depth-Dependent Lithospheric Stretching at Rifted Continental Margins. Rheology and Deformation of the Lithosphere at Continental Margins, 92–137. https://doi.org/10.7312/karn12738-005
de Bresser, J., ter Heege, J., & Spiers, C. (2001). Grain size reduction by dynamic recrystallization: can it result in major rheological weakening? International Journal of Earth Sciences, 90(1), 28–45. https://doi.org/10.1007/s005310000149
Detournay, Christine., & Hart, R. D. (Roger D. (1999). FLAC and numerical modeling in geomechanics : proceedings of the International FLAC Symposium on Numerical Modeling in Geomechanics, Minneapolis, Minnesota, USA, 1-3 September 1999. Balkema.
Dilek, Y. (2003). Ophiolite concept and its evolution. In Ophiolite concept and the evolution of geological thought. Geological Society of America. https://doi.org/10.1130/0-8137-2373-6.1
Escartín, J., Hirth, G., & Evans, B. (2001). Strength of slightly serpentinized peridotites: Implications for the tectonics of oceanic lithosphere. Geology, 29(11), 1023. https://doi.org/ 10.1130/0091-7613(2001)029<1023:SOSSPI>2.0.CO;2
Franke, D. (2013). Rifting, lithosphere breakup and volcanism: Comparison of magma-poor and volcanic rifted margins. Marine and Petroleum Geology, 43, 63–87. https://doi.org/10.1016/ J.MARPETGEO.2012.11.003
Fricke, H. C., Wickham, S. M., & O’neil, J. R. (1992). Contributions to Mineralogy and Petrology Oxygen and hydrogen isotope evidence for meteoric water infiltration during mylonitization and uplift in the Ruby Mountains-East Humboldt Range core complex, Nevada. In Contrib Mineral Petrol (Vol. 111).
Geoffroy, L., Burov, E. B., & Werner, P. (2015). Volcanic passive margins: Another way to break up continents. Scientific Reports, 5. https://doi.org/10.1038/srep14828
Gillard, M., Autin, J., Karpoff, A.-M., Manatschal, G., Munschy, M., Sauter, D., & Schaming, M. (2013). Unravelling the process of continental breakup: a case study of the Australia-Antarctica conjugate margins. In Geophysical Research Abstracts (Vol. 15).
Gillard, M., Tugend, J., Müntener, O., Manatschal, G., Karner, G. D., Autin, J., Sauter, D., Figueredo, P. H., & Ulrich, M. (2019). The role of serpentinization and magmatism in the formation of decoupling interfaces at magma-poor rifted margins. Earth-Science Reviews, 196, 102882. https://doi.org/10.1016/j.earscirev.2019.102882
Gómez-Romeu, J., Kusznir, N., Ducoux, M., Jammes, S., Ball, P., Calassou, S., & Masini, E. (2022). Formation of SDRs-Ocean transition at magma-rich rifted margins: Significance of a mantle seismic reflector at the western Demerara margin. Tectonophysics845, 229624.
Hansen, L. N., Zimmerman, M. E., Dillman, A. M., & Kohlstedt, D. L. (2012). Strain localization in olivine aggregates at high temperature: A laboratory comparison of constant- strain-rate and constant-stress boundary conditions. Earth and Planetary Science Letters, 333– 334, 134–145. https://doi.org/10.1016/J.EPSL.2012.04.016
Harding, J. L., Van Avendonk, H. J. A., Hayman, N. W., Grevemeyer, I., Peirce, C., & Dannowski, A. (2017). Magmatic-tectonic conditions for hydrothermal venting on an ultraslow- spread oceanic core complex. Geology, 45(9), 839–842. https://doi.org/10.1130/G39045.1
Harkin, C., Kusznir, N., Tugend, J., Manatschal, G., & McDermott, K. (2019). Evaluating magmatic additions at a magma-poor rifted margin: An East Indian case study. Geophysical Journal International, 217(1), 25–40. https://doi.org/10.1093/gji/ggz007
Hayman, N. W., Grindlay, N. R., Perfit, M. R., Mann, P., Leroy, S., & de Lépinay, B. M. (2011). Oceanic core complex development at the ultraslow spreading Mid-Cayman Spreading Center. Geochemistry, Geophysics, Geosystems, 12(3), n/a-n/a. https://doi.org/10.1029/2010GC003240
Hess, H. H. (1962). History of Ocean Basins. Petrologic Studies, 599–620. https://doi.org/ 10.1130/PETROLOGIC.1962.599
Hirschmann, M. M., Tenner, T., Aubaud, C., & Withers, A. C. (2009). Dehydration melting of nominally anhydrous mantle: The primacy of partitioning. Physics of the Earth and Planetary Interiors, 176(1–2), 54–68. https://doi.org/10.1016/j.pepi.2009.04.001
Hirth, G., & Kohlstedt, D. (2003). Rheology of the upper mantle and the mantle wedge: A view from the experimentalists. In Geophysical Monograph Series (Vol. 138, pp. 83–105). https:// doi.org/10.1029/138GM06
Huismans, R., & Beaumont, C. (2011). Depth-dependent extension, two-stage breakup and cratonic underplating at rifted margins. Nature, 473(7345), 74–78. https://doi.org/10.1038/ nature09988
Huismans, R. S., & Beaumont, C. (2008). Complex rifted continental margins explained by dynamical models of depth-dependent lithospheric extension. Geology, 36(2), 163–166. https:// doi.org/10.1130/G24231A.1
Huismans, R. S., & Beaumont, C. (2014). Rifted continental margins: The case for depth- dependent extension. Earth and Planetary Science Letters, 407, 148–162. https://doi.org/ 10.1016/j.epsl.2014.09.032
Jonas, J. J., & Poliak, E. I. (2003). The Critical Strain for Dynamic Recrystallization in Rolling Mills. Materials Science Forum, 426–432(1), 57–66. https://doi.org/10.4028/ WWW.SCIENTIFIC.NET/MSF.426-432.57
Kaczmarek, M. A., & Müntener, O. (2008). Juxtaposition of melt impregnation and high- temperature shear zones in the upper mantle; field and petrological constraints from the lanzo peridotite (Northern Italy). Journal of Petrology, 49(12), 2187–2220. https://doi.org/10.1093/ PETROLOGY/EGN065
Kaczmarek, M.-A., & Müntener, O. (2005). Exhumation of mantle lithosphere: Field relations, and interaction processes between magmatism and deformation (field trip to the northern Lanzo peridotite). Ofioliti, 30(2), 125–134. https://doi.org/10.4454/ofioliti.v30i2.246
Kaczmarek, M.-A., & Müntener, O. (2010). The variability of peridotite composition across a mantle shear zone (Lanzo massif, Italy): interplay of melt focusing and deformation. Contributions to Mineralogy and Petrology, 160(5), 663–679. https://doi.org/10.1007/s00410-010-0500-8
Katz, R. F., Spiegelman, M., & Langmuir, C. H. (2003). A new parameterization of hydrous mantle melting. Geochemistry, Geophysics, Geosystems, 4(9), n/a-n/a. https://doi.org/ 10.1029/2002GC000433
Kelemen, P. B., Shimizu, N., & Salters, V. (1995). Extraction of mid-ocean-ridge basalt from the upwelling mantle.pdf. Nature, 375, 747–753.
KUSZNIR, N. J., HUNSDALE, R., & ROBERTS, A. M. (2005). Timing and magnitude of depth-dependent lithosphere stretching on the southern Lofoten and northern Vøring continental margins offshore mid-Norway: implications for subsidence and hydrocarbon maturation at volcanic rifted margins. Geological Society, London, Petroleum Geology Conference Series, 6(1), 767–783. https://doi.org/10.1144/0060767
Kusznir, N. J., & Karner, G. D. (2007). Continental lithospheric thinning and breakup in response to upwelling divergent mantle flow: application to the Woodlark, Newfoundland and Iberia margins. Geological Society, London, Special Publications, 282(1), 389–419. https:// doi.org/10.1144/sp282.16
Labails, C., Olivet, J. L., Aslanian, D., & Roest, W. R. (2010). An alternative early opening scenario for the Central Atlantic Ocean. Earth and Planetary Science Letters297(3-4), 355-368.
Langmuir, C., & Forsyth, D. W. (2007). Mantle Melting Beneath Mid-Ocean Ridges. Oceanography. https://dash.harvard.edu/handle/1/3685824
Lavier, L. L., Ball, P. J., Manatschal, G., Heumann, M. J., MacDonald, J., Matt, V. J., & Schneider, C. (2019). Controls on the Thermomechanical Evolution of Hyperextended Lithosphere at Magma-Poor Rifted Margins: The Example of Espirito Santo and the Kwanza Basins. Geochemistry, Geophysics, Geosystems, 20(11), 5148–5176. https://doi.org/ 10.1029/2019GC008580
Lavier, L. L., Buck, W. R., & Poliakov, A. N. B. (2000). Factors controlling normal fault offset in an ideal brittle layer. Journal of Geophysical Research: Solid Earth, 105(B10), 23431–23442. https://doi.org/10.1029/2000jb900108
Lavier, L. L., & Manatschal, G. (2006). A mechanism to thin the continental lithosphere at magma-poor margins. Nature, 440(7082), 324–328. https://doi.org/10.1038/nature04608
Liang, Y., Schiemenz, A., Hesse, M. A., Parmentier, E. M., & Hesthaven, J. S. (2010). High- porosity channels for melt migration in the mantle: Top is the dunite and bottom is the harzburgite and lherzolite. Geophysical Research Letters, 37(15), n/a-n/a. https://doi.org/ 10.1029/2010GL044162
Lindenfeld, M., & Rümpker, G. (2011). Detection of mantle earthquakes beneath the East African Rift. Geophys. J. Int, 186, 1–5. https://doi.org/10.1111/j.1365-246X.2011.05048.x
Liu, Z., & Buck, W. R. (2021). Magmatic sill formation during dike opening. Geology, 50(4), 407–411. https://doi.org/10.1130/G49400.1
Macdonald, K. C. (2001). Mid-ocean Ridge Tectonics, Volcanism And Geomorphology. In Encyclopedia of Ocean Sciences (pp. 1798–1813). Elsevier. https://doi.org/10.1006/ rwos.2001.0094
Manatschal, G. (2004). New models for evolution of magma-poor rifted margins based on a review of data and concepts from West Iberia and the Alps. International Journal of Earth Sciences, 93(3), 432–466. https://doi.org/10.1007/s00531-004-0394-7
Manatschal, G., Müntener, O., Lavier, L. L., Minshull, T. A., & Péron-Pinvidic, G. (2007). Observations from the Alpine Tethys and Iberia–Newfoundland margins pertinent to the interpretation of continental breakup. Geological Society, London, Special Publications, 282(1), 291–324. https://doi.org/10.1144/SP282.14
Manatschal, G., & Nievergelt, P. (1997). A continent-ocean transition recorded in the Err and Platta nappes (Eastern Switzerland). Eclogae Geologicae Helvetiae, 90(1), 3–27.
Manatschal, G., Sauter, D., Karpoff, A. M., Masini, E., Mohn, G., & Lagabrielle, Y. (2011). The Chenaillet Ophiolite in the French/Italian Alps: An ancient analogue for an Oceanic Core Complex? Lithos, 124(3–4), 169–184. https://doi.org/10.1016/J.LITHOS.2010.10.017
Mascle, J., & Blarez, E. (1987). Evidence for transform margin evolution from the Ivory Coast– Ghana continental margin. Nature, 326(6111), 378–381. https://doi.org/10.1038/326378a0
McCarthy, A., Falloon, T. J., Sauermilch, I., Whittaker, J. M., Niida, K., & Green, D. H. (2020). Revisiting the Australian‐Antarctic Ocean‐Continent Transition Zone Using Petrological and Geophysical Characterization of Exhumed Subcontinental Mantle. Geochemistry, Geophysics, Geosystems, 21(7). https://doi.org/10.1029/2020GC009040
McIntosh, K., van Avendonk, H., Lavier, L., Lester, W. R., Eakin, D., Wu, F., Liu, C. S., & Lee, C. S. (2013). Inversion of a hyper-extended rifted margin in the Southern Central Range of Taiwan. Geology, 41(8), 871–874. https://doi.org/10.1130/G34402.1
Moulin, M., Aslanian, D., & Unternehr, P. (2010). A new starting point for the South and Equatorial Atlantic Ocean. Earth-Science Reviews98(1-2), 1-37.
Müntener, O., & Piccardo, G. B. (2003). Melt migration in ophiolitic peridotites: the message from Alpine-Apennine peridotites and implications for embryonic ocean basins. Geological Society, London, Special Publications, 218(1), 69–89. https://doi.org/10.1144/ GSL.SP.2003.218.01.05
Nicolas, A. (1989). Generation of Oceanic Crust (pp. 253–285). Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2374-4_11
Nirrengarten, M., Manatschal, G., Tugend, J., Kusznir, N. J., & Sauter, D. (2017). Nature and origin of the J-magnetic anomaly offshore Iberia–Newfoundland: implications for plate reconstructions. Terra Nova, 29(1), 20–28. https://doi.org/10.1111/ter.12240
Nirrengarten, M., Manatschal, G., Tugend, J., Kusznir, N., & Sauter, D. (2018). Kinematic Evolution of the Southern North Atlantic: Implications for the Formation of Hyperextended Rift Systems. Tectonics, 37(1), 89–118. https://doi.org/10.1002/2017TC004495
Pedrera, A., García-Senz, J., Ayala, C., Ruiz-Constán, A., Rodríguez-Fernández, L. R., Robador, A., & González Menéndez, L. (2017). Reconstruction of the Exhumed Mantle Across the North Iberian Margin by Crustal-Scale 3-D Gravity Inversion and Geological Cross Section. Tectonics, 36(12), 3155–3177. https://doi.org/10.1002/2017TC004716
Pérez-Gussinyé, M., & Reston, T. J. (2001). Rheological evolution during extension at nonvolcanic rifted margins: Onset of serpentinization and development of detachments leading to continental breakup. Journal of Geophysical Research: Solid Earth, 106(B3), 3961–3975. https://doi.org/10.1029/2000JB900325
Peron-Pinvidic, G., Manatschal, G., & Osmundsen, P. T. (2013). Structural comparison of archetypal Atlantic rifted margins: A review of observations and concepts. In Marine and Petroleum Geology (Vol. 43, pp. 21–47). Elsevier. https://doi.org/10.1016/ j.marpetgeo.2013.02.002
Piccardo, G. B., Zanetti, A., & Müntener, O. (2007). Melt/peridotite interaction in the Southern Lanzo peridotite: Field, textural and geochemical evidence. Lithos, 94(1–4), 181–209. https:// doi.org/10.1016/j.lithos.2006.07.002
Platt, J. P., Behr, W. M., & Cooper, F. J. (2015). Metamorphic core complexes: windows into the mechanics and rheology of the crust. Journal of the Geological Society, 172(1), 9–27. https://doi.org/10.1144/jgs2014-036
Poliak, E. I., & Jonas, J. J. (1996). A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization. Acta Materialia, 44(1), 127–136. https://doi.org/10.1016/1359-6454(95)00146-7
Poliakov, A. N. B., Cundall, P. A., Podladchikov, Y. Y., & Lyakhovsky, V. A. (1993). An explicit inertial method for the simulation of viscoelastic flow: an evaluation of elastic effects on diapiric flow in two- and three- layers models. Flow and Creep in the Solar System: Observations, Modeling and Theory, 1991, 175–195. https://doi.org/10.1007/978-94-015-8206-3_12
Puchkov, V. N. (2009). The evolution of the Uralian orogen. Geological Society, London, Special Publications, 327(1), 161–195. https://doi.org/10.1144/SP327.9
Reston, T. (2018). Flipping detachments: The kinematics of ultraslow spreading ridges. Earth and Planetary Science Letters, 503, 144–157. https://doi.org/10.1016/j.epsl.2018.09.032
Ros, E., Pérez-Gussinyé, M., Araújo, M., Thoaldo Romeiro, M., Andrés-Martínez, M., & Morgan, J. P. (2017). Lower Crustal Strength Controls on Melting and Serpentinization at Magma-Poor Margins: Potential Implications for the South Atlantic. Geochemistry, Geophysics, Geosystems, 18(12), 4538–4557. https://doi.org/10.1002/2017GC007212
Royden, L., & Keen, C. E. (1980). Rifting process and thermal evolution of the continental margin of Eastern Canada determined from subsidence curves. Earth and Planetary Science Letters, 51(2), 343–361. https://doi.org/10.1016/0012-821X(80)90216-2
Ruh, J. B., Tokle, L., & Behr, W. M. (2022). Grain-size-evolution controls on lithospheric weakening during continental rifting. Nature Geoscience, 15(7), 585–590. https://doi.org/ 10.1038/s41561-022-00964-9
Ryan, W. B. F., Carbotte, S. M., Coplan, J. O., O’Hara, S., Melkonian, A., Arko, R., Weissel, R. A., Ferrini, V., Goodwillie, A., Nitsche, F., Bonczkowski, J., & Zemsky, R. (2009). Global multi- resolution topography synthesis. Geochemistry, Geophysics, Geosystems. https://doi.org/ 10.1029/2008GC002332
Sakai, T., Belyakov, A., Kaibyshev, R., Miura, H., & Jonas, J. J. (2014). Dynamic and post- dynamic recrystallization under hot, cold and severe plastic deformation conditions. Progress in Materials Science, 60(1), 130–207. https://doi.org/10.1016/J.PMATSCI.2013.09.002
Schaltegger, U., Desmurs, L., Manatschal, G., Muntener, O., Meier, M., Frank, M., & Bernoulli, D. (2002). The transition from rifting to sea-floor spreading within a magma-poor rifted margin: field and isotopic constraints. Terra Nova, 14(3), 156–162. https://doi.org/10.1046/j.1365-3121.2002.00406.x
Schmeling, H. (2010). Dynamic models of continental rifting with melt generation. Tectonophysics, 480(1–4), 33–47. https://doi.org/10.1016/j.tecto.2009.09.005
Searle, R. (2013). Mid-Ocean Ridges. Cambridge University Press. https://doi.org/10.1017/ CBO9781139084260
Seymour, N. M., Strickland, E. D., Singleton, J. S., Stockli, D. F., & Wong, M. S. (2018). Laramide subduction and metamorphism of the Orocopia Schist, northern Plomosa Mountains, west-central Arizona: Insights from zircon U-Pb geochronology. Geology, 46(10), 847–850. https://doi.org/10.1130/G45059.1
Shuck, B. D., Van Avendonk, H. J. A., & Bécel, A. (2019). The role of mantle melts in the transition from rifting to seafloor spreading offshore eastern North America. Earth and Planetary Science Letters, 525, 115756. https://doi.org/10.1016/j.epsl.2019.115756
Skelton, A., Whitmarsh, R., Arghe, F., Crill, P., & Koyi, H. (2005). Constraining the rate and extent of mantle serpentinization from seismic and petrological data: implications for chemosynthesis and tectonic processes. Geofluids, 5(3), 153–164. https://doi.org/10.1111/ j.1468-8123.2005.00111.x
Spadea, P., Zanetti, A., & Vannucci, R. (2003). Mineral chemistry of ultramafic massifs in the Southern Uralides orogenic belt (Russia) and the petrogenesis of the Lower Palaeozoic ophiolites of the Uralian Ocean. Geological Society, London, Special Publications, 218(1), 567–596. https://doi.org/10.1144/GSL.SP.2003.218.01.29
Speciale, P. A., Behr, W. M., Hirth, G., & Tokle, L. (2020). Rates of Olivine Grain Growth During Dynamic Recrystallization and Postdeformation Annealing. Journal of Geophysical Research: Solid Earth, 125(11). https://doi.org/10.1029/2020JB020415
Strickland, E. D., Singleton, J. S., & Haxel, G. B. (2018). Orocopia Schist in the northern Plomosa Mountains, west-central Arizona: A Laramide subduction complex exhumed in a Miocene metamorphic core complex. Lithosphere, 10(6), 723–742. https://doi.org/10.1130/ L742.1
Svartman Dias, A. E., Hayman, N. W., & Lavier, L. L. (2016). Thinning factor distributions viewed through numerical models of continental extension. Tectonics, 35(12), 3050–3069. https://doi.org/10.1002/2016TC004266
Svartman Dias, A. E., Lavier, L. L., & Hayman, N. W. (2015). Conjugate rifted margins width and asymmetry: The interplay between lithospheric strength and thermomechanical processes. Journal of Geophysical Research: Solid Earth, 120(12), 8672–8700. https://doi.org/ 10.1002/2015JB012074
Theunissen, T., & Huismans, R. S. (2022). Mantle exhumation at magma-poor rifted margins controlled by frictional shear zones. Nature Communications, 13(1), 1634. https://doi.org/ 10.1038/s41467-022-29058-1
Tucholke, B. E., Lin, J., & Kleinrock, M. C. (1998). Megamullions and mullion structure defining oceanic metamorphic core complexes on the Mid-Atlantic Ridge. Journal of Geophysical Research: Solid Earth, 103(5), 9857–9866. https://doi.org/10.1029/98jb00167
Tugend, J., Gillard, M., Manatschal, G., Nirrengarten, M., Harkin, C., Epin, M.-E., Sauter, D., Autin, J., Kusznir, N., & McDermott, K. (2018). Reappraisal of the magma-rich versus magma- poor rifted margin archetypes. Geological Society, London, Special Publications, SP476.9. https://doi.org/10.1144/sp476.9
Tullis, J., & Yund, R. A. (1985). Dynamic recrystallization of feldspar: A mechanism for ductile shear zone formation. Geology, 13(4), 238. https://doi.org 10.1130/0091-7613(1985)13<238:DROFAM>2.0.CO;2
van Avendonk, H. J. A., Holbrook, W. S., Nunes, G. T., Shillington, D. J., Tucholke, B. E., Louden, K. E., Larsen, H. C., & Hopper, J. R. (2006). Seismic velocity structure of the rifted margin of the eastern Grand Banks of Newfoundland, Canada. Journal of Geophysical Research: Solid Earth, 111(11). https://doi.org/10.1029/2005JB004156
van Avendonk, H. J. A., Lavier, L. L., Shillington, D. J., & Manatschal, G. (2009). Extension of continental crust at the margin of the eastern Grand Banks, Newfoundland. Tectonophysics, 468(1–4), 131–148. https://doi.org/10.1016/j.tecto.2008.05.030
Van der Wal, D., Chopra, P., Drury, M., & Gerald, J. F. (1993). Relationships between dynamically recrystallized grain size and deformation conditions in experimentally deformed olivine rocks. Geophysical Research Letters, 20(14), 1479–1482. https://doi.org/ 10.1029/93GL01382
Vieira Duarte, J. F., Kaczmarek, M. A., Vonlanthen, P., Putlitz, B., & Müntener, O. (2020). Hydration of a mantle shear zone beyond serpentine stability: a possible link to microseismicity along ultraslow spreading ridges?. Journal of Geophysical Research: Solid Earth, 125(10), e2020JB019509.
Warren, J. M., & Hirth, G. (2006). Grain size sensitive deformation mechanisms in naturally deformed peridotites. Earth and Planetary Science Letters, 248(1–2), 438–450. https://doi.org/10.1016/J.EPSL.2006.06.006
Whitmarsh, R. B., Manatschal, G., & Minshull, T. A. (2001). Evolution of magma-poor continental margins from rifting to seafloor spreading. Nature, 413(6852), 150–154. https:// doi.org/10.1038/35093085
Zhao, M., Qiu, X., Li, J., Sauter, D., Ruan, A., Chen, J., Cannat, M., Singh, S., Zhang, J., Wu, Z., & Niu, X. (2013). Three-dimensional seismic structure of the Dragon Flag oceanic core complex at the ultraslow spreading Southwest Indian Ridge (49°39′E). Geochemistry, Geophysics, Geosystems, 14(10), 4544–4563. https://doi.org/10.1002/ggge.20264