
Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

RESEARCH ARTICLE – TECHNOLOGY

Building the LLVM and GCC Translation Systems, with Amake

Jim Buffenbarger

Computer Science Department, Boise
State University, Idaho, USA

Correspondence
Jim Buffenbarger, Boise State
University. Email: buff@cs.boisestate.edu

Abstract

This paper describes the author’s exploratory experience of porting the build systems of

two large software distributions, the LLVM and GCC programming-language translation

systems, to the Amake build tool. Amake is an enhanced derivative of the very popular GNU

Make. Amake adds automatic language-independent dependency analysis and site-wide

heterogeneous target caching. Amake also supports GNU Make’s parallel-build capabilities.

This experience included (mostly) expected changes to both of these build systems, but

somewhat surprising changes to Amake’s design and implementation. A description of the

former changes is hoped to encourage developers to migrate their build systems to Amake.

The latter changes showcase Amake’s most recently added features.

KEYWORDS:

software engineering, maintenance, and tools; computer-aided software engineering

1 INTRODUCTION

Amake extends GNUMake 1 with automatic dependency analysis, multiuser target caching, and other valuable features. This paper describes two
case studies, showing how Amake can replace GNU Make to build LLVM 2 and GCC. 3 It also describes recent design and implementation changes
that were made to Amake, the need for which was discovered while trying to build these complex systems.

Amake has evolved, over many years. Previous papers describe foundational topics, and earlier stages of the project. 4,5,6
Amake has built other software systems. An early, pre-cache, version has built the Linux kernel. This version builds the Bash distribution. And,

of course, Amake builds itself. This paper shows that full-featured Amake can build complex, real-world systems, not just toy programs.
Amake currently extends version 4.3 of GNU Make. Porting Amake’s extensions to a new version of GNU Make is easy: Three function calls

are added to job.c, one to read.c, and five to remake.c. One member is added to the structure named dep, marking detected dependencies. Ten
members are added to the structure named file, for a variety of purposes. Amake’s source code is freely available. 7

1.1 Related Systems

Amake, likemany other build tools, is a derivative of the originalMake. 8 Following the tradition of login shells (ash – zsh), these derivatives are often
named by prefixing a letter of the alphabet. But Amake wasn’t named to be first in the phone book. Rather, its “A” is for “access,” due to its initial
deployment. Amakewas adopted at Hewlett-Packard’s Boise facility, circa 2007, 4 to build what HP calls “firmware” for personal-sized laser printers.
(Mainly, it’s software that rasterizes a file sent to the printer.) A preloaded shared library was used to detect certain kinds of filesystem access.
The name stuck. Amake is most closely related to three programming-language independent, dependency-analysis, target-caching tools: Bazel, 9
Clearmake, 10 and Vesta. 11 All of these are very powerful computer-aided software-engineering tools. Albeit, Amake provides only software-build
functionality, but it has advantages in that niche.

Clearmake is the build tool for the proprietary Clearcase configuration-management system. 12 Vesta is also a full-featured system, but open
source. Both have outstanding build tools, but they are coupled to integrated version-control systems, requiring special filesystems, implemented
as a customized kernel or loadable kernel module. Automatic dependency-analysis is performed only for versioned items (e.g., not /bin/gcc).

2 Jim Buffenbarger

Clearmake has nothing like Amake’s “top targets,” but Vesta does, with its “shipped derived objects.” A Clearmake build is controlled by an enhanced
dialect of makefile. A Vesta system model is specified in a very elegant domain-specific functional language.

Google’s Bazel (née Blaze) is a more recent arrival, at least to the public. Unlike with Clearmake and Vesta, I lack real-world industrial experience
with Bazel. However, the similarities between Amake and Bazel, at least in the target-cache arena, are striking. Both use “digests” (i.e., checksums).
Both also support configuring a server as a remote cache for build outputs (early external releases of Bazel did not support a cache). Both split
their cache into two parts. With Bazel: An “action cache” maps action hashes to action-result metadata. This is like Amake’s target-cache index
daemon (tid), in Figure 1. A “content-addressable store” of output files holds the rest. This is like Amake’s target-cache filesystem, in Figure 1. Bazel
supports many “backends” that can be used for a remote cache, such as nginx (a popular web server), bazel-remote (a bespoke HTTP server), and
Google Cloud Storage (a managed service).

As with Clearmake and Vesta, “Bazel does not track tools outside a workspace.” This is a glaring omission of a very important capability, by all
three systems. Furthermore: “Bazel tries very hard to ensure hermeticity by requiring the user to explicitly declare input files to any build rule.”
Thus, its automatic dependency analysis does not encompass discovery, only enforcement. Bazel does not yet support a feature like Amake’s “top
targets,” but proposes to “optimize the remote cache,” by fetching only “the final build artifacts.”

1.2 Outline

Section 2 presents build-system and Amake terminology, while Section 3 has additional Amake background needed for this paper. Section 4
discusses subtleties of top builds. Sections 5–7contain themain contributions, presenting two case studies: building the LLVMandGCCdistributions
with Amake. During this work, new requirements surfaced, leading to design and implementation changes. They were general in nature, part of
Amake’s evolution. Amake was not “customized” for LLVM or GCC. These changes are discussed, as well as build-process changes needed for LLVM
and GCC. These sections also give timing results, compared to GNU Make. Section 8 concludes the paper, with suggestions for future projects.
Appendix Adescribes a cache-maintenance tool, which was also a very valuable debugging aid. Appendix Bdocuments the two-server computing
environment used for most of this work.

2 TERMINOLOGY

A makefile specifies a software product’s build system, an implementation of its system model. The makefile’s rules specify build commands (e.g.,
compiler invocations) and file relationships (e.g., preprocessor inclusions). A file can be a target, a sibling, a dependency, or a combination of those.

A target is the file produced as the primary result of executing a rule’s sequence of build commands. GNU Make allows non-file targets, but
Amake’s extensions require a target to be a plain readable file (or a symlink to one), but not a directory (nor a symlink to one). A .PHONY target (e.g.,
clean) is ignored by Amake’s extensions, as well.

A sibling is a non-target file produced as a coincidence, or side effect, while executing a target’s build commands.
A derived file is a target or sibling.
A dependency is a file read, but not written, while executing a target’s build commands.
Like a target, a sibling or dependency must be a plain file (or a symlink to one), but not a directory (nor a symlink to one).
A sibling is distinguished from a dependency in that a sibling is written, but a dependency is only read, while executing a target’s commands.

A sibling produced while updating one target might also be a dependency of a different target. If a makefile explicitly lists such a dependency, an
improvement to that makefile would be to, instead, list the first target as the dependency. This is because a sibling cannot be updated directly, but
only during an update of its target.

A target may have multiple siblings and/or dependencies. However, a sibling must have exactly one target. That is, a sibling is created during the
build of exactly one target. A build system that can produce a single sibling (or target, for that matter) in two different ways is inherently inconsistent.
The distinction between sibling and dependency, and indeed between sibling and target, is muddied in a build systemwhere the build tool executes
itself as one of a target’s commands (a so-called “recursive make”). This is clarified in Section 7.2.3, where real-world examples are considered.

A target that is neither a sibling nor a dependency is a top target (aka, a goal): an end product of the build system.
A dependency that is also a target of some other rule is called both an intermediate dependency and an intermediate target. This naturally partitions

dependencies into direct dependencies and transitive dependencies, and is the basis for computing the closure of a target’s dependencies.
A non-target dependency is a source dependency, the result of a manual process, such as editing by a human.
Perhaps surprisingly, updating a dependency does not necessarily require updating its targets. For example, a source-file edit, compiling to

unchanged object code, need not be relinked into an executable file.

Jim Buffenbarger 3

A top target differs from an intermediate target by being what a developer actually wants, not just a means to an end (e.g., an executable file,
distributed to customers). Vesta calls it a “shipped derived object.” The set of top targets can vary over time, even minute by minute. For example,
GNUMake, and Amake, let a developer specify any target on the command line, thereby making it a top target for that build. Therefore, any special
treatment of top targets must persist only until the next build. Ultimately, the purpose of a build tool, and a build system, is to update a set of top
targets from source and intermediate dependencies, while conserving computing resources.

3 PREVIOUS AMAKE MILESTONES

Amake extends GNUMake, with features to improve correctness and time/space performance. Amake performs automatic language-independent
deduction of file and non-file dependencies, storing them in text files, which can also be forensic aids to a build engineer. Its enhancements are
described below:

• While updating a target, several kinds of dependency are automatically detected and recorded (in its .dep and .cmd files): files accessed, com-
mands executed, script and binary programs executed, shared-libraries opened, and specified environment-variable values (other variables
are unset).

• A rule updating a target may create/write other files. Such siblings are also automatically detected and recorded, in its .sib file.
• Filesystem timestamps are ignored. Instead, checksums of file content are compared. This is accelerated by a workspace host’s checksum-

cache daemon.
• Heterogeneous targets and siblings are cached in a multi-user, multi-host, and multi-platform database. If a target needs updating, and a

suitable candidate is cached, execution of the commands to rebuild the target is avoided.
• If a top target needs to be updated, and a suitable candidate is in the cache, updating of its non-goal dependencies is avoided. This is called

a top build, which can save a huge amount of time and space. However, correctness requires appropriately constructed makefile rules. So,
this feature must be explicitly enabled, via a makefile variable. Top-build correctness is examined in Section 4, below.

GNUMake is a single executable program, which executes as a single process (of course, it can fork subprocesses to execute shell commands).
Amake is more complex, a collection of communicating programs, including daemons and a “preloaded” shared library.

A daemon (aka, server) is an independent process, that communicates with other processes via sockets. A long-lived daemon is started inde-
pendently from Amake, and has no particular termination time. This is the traditional kind of daemon. A short-lived daemon is started by Amake,
and is terminated by the end of the build.

These are Amake’s components:
• A short-lived target-cache daemon (tcd) provides a single build with access to the target cache.
• A long-lived (i.e., traditional) daemon (tid) provides tcd daemons with multi-user and multi-host access to the target cache. The target

cache has two parts: an index and the entries. The index is an off-the-shelf database, run-time selectable as: SQLite, 13 Berkeley DB, 14 GNU
DBM, 15 or MySQL. 16 The choice is made thread safe, with a homebrew concurrency wrapper. The entries are stored in any ordinary, but
network, filesystem (e.g., NFS 17 or AFS 18). An entry is a tar file and some makefile fragments.

• A checksum-cache daemon (ccd) avoids unneeded recalculation of file-content checksums. Its use is optional. As files change, Inotify 19
helps ccd invalidate entries.

• Several cache-query scripts aid cache maintenance and debugging. These compose the cache-maintenance tool, of Appendix A.
Amake’s shared library, libaccess.so, employs the GNU C library’s LD_PRELOADmechanism, to intercept and audit several standard shared-library
function calls (e.g., open). Each preloaded function records its arguments, and then calls the real function. Of course, this idea isn’t novel. For
example, Automake’s manual, 20 when discussing dependency analysis, suggests:

Rather than use the file system, one could write a special library to intercept open and other syscalls. This technique is also quite powerful, but
unfortunately it is not portable enough for use in Automake.

4 Jim Buffenbarger

Figure 1 Overall System Structure

In contrast, Clearmake and Vesta use a custom filesystem, implemented as part of the operating-system kernel, either as a compiled-in subsystem,
or as a dynamically loadable module. This is the “syscalls” approach. Amake’s approach is a “special library.” For LLVM and GCC, Amake’s shared
library was upgraded for the (relatively) new family of *_at functions (e.g., open_at), which mitigate a race condition between following a path to
a file and actually opening it. This addressed the GCC build process’s predilection for building targets in distant directories.

A system like this can be configured in multiple ways. Figure 1 shows a reasonable arrangement, for an installation with multiple developer
workstations, each with local compute and storage resources, and sharing centralized storage resources. Such sharing can be as simple as NFS.

4 TOP-BUILD RISKS

This section reviews Amake builds, focusing on top builds, in order to characterize the risk of using top builds. Eliminating the risk is straightforward,
once understood. We begin with an illustrative build scenario; discussion follows.

For example, consider the makefile in Figure 2. In particular:
• Variable definitions enable Amake features. The SPECIAL variable (and C-preprocessor macro) chooses between hypothetical “regular” and

“special” compilations. The ?= form of definition specifies that the default is regular compilation. The shared source file, f.c, simply prints
the name of the executable file it was linked into, and whether it was compiled regular or special.

• The pattern rule specifies that an object file depends on its C source file, and the compilation command.
• The rule for all specifies dependencies needed to build both executable files. Its command also runs both executable files, quietly.
• Two rules specify that both executable files depend on the same object file, and the two commands to link them. The difference between

the commands will highlight the top-build risk.
• The sinclude directive includes the content of Amake-generated files, from the previous build.

Jim Buffenbarger 5

1 SHELL:=/bin/bash
2 ACCESS_ENABLE:=1
3 ACCESS_CHKSUM:=1
4 ACCESS_CACHE:=1
5 ACCESS_TOP:=1

6 SPECIAL?=0
7 opts:=-DSPECIAL=$(SPECIAL)

8 %.o: %.c
9 gcc -c $< $(opts)

10 .PHONY: all
11 all: foo bar
12 @foo ; bar

13 foo: f.o
14 gcc -o $@ $^
15 bar: f.o
16 gcc -o $@ $^ $(opts)

17 sinclude *.dep

Figure 2 Top-Build Example Makefile

all

foo

bar

f.of.c

Figure 3 Top-Build Example System Model

1 $ amake
2 gcc -c f.c -DSPECIAL=0
3 Cache put: f.o
4 gcc -o foo f.o
5 Cache put: foo
6 gcc -o bar f.o -DSPECIAL=0
7 Cache put: bar
8 foo: regular
9 bar: regular

Figure 4 Top-Build Example (1 of 7)

Using the terminology of Section 2, the targets are all, foo, bar, and f.o. The dependencies are foo, bar, f.o and f.c. The top targets are all,
and because all is phony, foo and bar. The intermediate target/dependency is f.o. The source dependency is f.c. The dependency part of the
system model is shown in Figure 3.

In the following examples, we assume that previously built files have been removed from the workspace, before the build (e.g., via amake clean).
For our first example, in Figure 4, suppose we are in a new workspace, with an empty target cache, and compile regular. All targets are built, and

put into the cache.
The next example, in Figure 5, is a non-top regular build: All targets are fetched from the cache.
Compare this to a top regular build, in Figure 6. Unlike the previous build, in Figure 5, only the top targets are fetched from the cache. After the

6 Jim Buffenbarger

1 $ amake ACCESS_TOP:=
2 Cache get: f.o
3 Cache get: foo
4 Cache get: bar
5 amake: Nothing to be done for ’all’.
6 foo: regular
7 bar: regular

Figure 5 Top-Build Example (2 of 7)

1 $ amake
2 Cache top: foo
3 Cache top: bar
4 amake: Nothing to be done for ’all’.
5 foo: regular
6 bar: regular

Figure 6 Top-Build Example (3 of 7)

1 $ amake SPECIAL:=1
2 Cache top: foo
3 gcc -c f.c -DSPECIAL=1
4 Cache put: f.o
5 gcc -o bar f.o -DSPECIAL=1
6 Cache put: bar
7 foo: regular
8 bar: special

Figure 7 Top-Build Example (4 of 7)

build, the intermediate target, f.o, does not exist in the workspace. In a large software system, with thousands of source files, the time and space
saved by avoiding rebuilding, or even copying, files like this would be huge.

At this point, the cache contains only regular targets. We demonstrate the risk, by performing a special build, in Figure 7. Although bar is built
correctly, foo is not. The next paragraph explains what worked, while the sequel deconstructs what went wrong with foo.

The command for bar differs from the command that built the cached bar. But, before bar can be relinked, its dependencies must be considered.
The command to build f.o also differs from the command that built the cached f.o. So, f.o is recompiled, bar is relinked, and they are added to
the cache.

The command for foo is the same as the command that built the cached foo. Furthermore, the source dependencies are the same as those used
to build the cached foo. The source dependencies are f.c, as well the many automatically detected files, programs, and libraries that participated in
that build. The intermediate dependency, f.o, is not considered, because it is not in the workspace. So, an incorrect foo is fetched from the cache.

One might be tempted to call this a “bug” that needs to be fixed. However, trying to do so would just take you most of the way back to a non-top
build. Fetching f.o, for consideration, would undermine the whole point of a top build.

Of course, a non-top special build produces correct executable files, as seen in Figure 8. Now, the cache contains a full set of regular and special
targets. However, both the regular and special foo entries were built with exactly the same command. They cannot be distinguished, without
analyzing intermediate dependencies. Of course, a non-top regular build is still correct, as seen in Figure 9.

However, the top regular build in Figure 10 exposes an even more subtle form of risk. While trying to fetch an acceptable foo from the cache,
the tid provides the tcd with two, potentially acceptable, paths to the target-cache filesystem. One path is for the regular entry; the other is for
the special entry. The tid finds them both acceptable, because their commands are the same. The tcdwould also find both acceptable, due to their
source dependencies, making either entry completely acceptable. But, since the tid orders paths from newest to oldest, in a heuristic attempt to
speed-up fetches, the tcd succeeds after the most recent foo entry, which turns out to be the wrong one.

To summarize, the makefile in Figure 2 builds bar correctly, but foo incorrectly, in Figure 10, because the command to link bar contains the
value of $opts, even though the linker doesn’t need that value. A top build ignores intermediate depedencies, thereby ignoring the commands that

Jim Buffenbarger 7

1 $ amake ACCESS_TOP:= SPECIAL:=1
2 Cache get: f.o
3 gcc -o foo f.o
4 Cache put: foo
5 Cache get: bar
6 foo: special
7 bar: special

Figure 8 Top-Build Example (5 of 7)

1 $ amake ACCESS_TOP:=
2 Cache get: f.o
3 Cache get: foo
4 Cache get: bar
5 amake: Nothing to be done for ’all’.
6 foo: regular
7 bar: regular

Figure 9 Top-Build Example (6 of 7)

1 $ amake
2 Cache top: foo
3 Cache top: bar
4 amake: Nothing to be done for ’all’.
5 foo: special
6 bar: regular

Figure 10 Top-Build Example (7 of 7)

would build them. The computation of the leaves of the transitive closure (i.e., the source dependencies) skips them. A careful makefile designer,
hoping for correct top builds, needs to promote those command dependencies to the target, duplicating them, even if only as a comment on a
command line.

5 LLVM AND GCC

LLVM and GCC are well known programming-language translation systems. LLVM is more of a framework for translation and optimization, but
it comes with a compiler (i.e., clang). GCC is more of a set of translator frontends and backends, providing a cross-product of compilers and
standalone libraries. This work was done with LLVM 6.0.1 and GCC 9.2.0.

LLVM’s build system employs CMake, 21 to process over 400 CMakeLists.txt files, producing a tree of makefiles. CMake is cross platform: it
can target a dizzying zoo of build tools. Here, we use its Unix Makefiles platform, for GNU Make.

GCC’s build system employs GNU Autotools, 20 22 to process about 100 Makefile.am and configure.ac files, producing a tree of configure
scripts, which produce a tree of makefiles. GNU Make and Libtool 23 do the rest.

While both systems employ generated makefiles, which greatly simplifies scripted makefile tweaking, the CMakemakefiles are less brittle. GCC’s
makefile-generation tools allow arbitrary content to flow through, verbatim. Thus, scripts tomanipulate the resultingmakefilesmust be finely tuned.

GCC’s build system uses Autotools in a surprising way. In most systems (e.g., Bash), the configure step produces all of the makefiles. With GCC,
it produces one, top-level, makefile. The rest of the build, as directed by that makefile, produces the rest of the makefiles. Thus, makefiles are not
available for tweaking, until compilation/linking is underway. In short, configuration is interleaved with translation.

Two techniques can address this. In simple cases, such a makefile can be effectively modified by creating its directory and adding a wrapper,
named GNUmakefile. For example:

8 Jim Buffenbarger

1 some content here
2 include Makefile
3 more content here

GNU Make’s makefile-search order allows this wrapper to override parts of the real makefile. In other cases, a wrapper script, here named wrap,
can perform arbitrary operations, at very particular times, before forwarding its command-line options, in $@, on to the real make. For example:

1 #!/bin/bash
2 case $PWD in
3 where) action ;;
4 esac
5 exec amake MAKE:=$0 "$@"

Thus, wrap can use the working directory and makefile target to selectively: clear the checksum cache, modify makefiles and/or scripts, and/or
override makefile variables. It is executed for a top-level build, and for each recursive build. Here, LLVM was built with a 35-line wrap. GCC’s wrap
was 75 lines long.

The first step in porting a system’s build process to Amake is to understand, and disable, its ad-hoc dependency-analysis efforts. Their ubiquity
is a testament to the importance of automatic dependency analysis. Examples are everywhere: simple makefile-generation scripts, X11’s imake, 24
GNU Autotools, the Linux kernel’s Kbuild system, 25 or even just GCC’s -MMD option. 3 They all strive to increase accuracy and reduce manual labor.
Most techniques simply try to approximate files-accessed dependencies, but some also attempt commands-executed dependencies (e.g., Kbuild).

A detailed description of the ad-hoc dependency-analysis, employed by the LLVM and GCC builds, follows. Mainly, both builds try to detect
files-accessed dependencies via file-inclusion analysis. Consequently, both are severely hampered by what can be gleaned from preprocessor
directives in C/C++ source code. LLVM’s build scans the source code itself. GCC’s build asks the preprocessor to do it, which performs actual file and
conditional inclusion. Neither method works for other languages, such as LATEX, or one read by a homebrew translator. This form of incompleteness
is a common failing of build systems.

Both build processes can also build a set of software-development utilities, the so-called “binary utilities” (e.g., nm). They are distributed as part
of LLVM, but separately from GCC.

6 LLVM

This section describes the build changes and Amake modifications needed to build the LLVM distribution. A few build times are also cited.

6.1 LLVM-Build Changes

Starting from scratch, the LLVM and Clang distributions are untarred, or checked-out, creating a “source” directory, and CMake is executed in an
empty “build” directory. One command-line argument is the source-directory path; another specifies “a build system generator” of Unix Makefiles.
CMake is again executed to “set the build tree” to the current directory, and the build directory is populated with build.make makefiles, ripe for
subsequent tweaking.

As mentioned in Section 5, CMake implements build avoidance, which overlaps and interferes with some of Amake’s features, and must be
disabled. The first such change removes many dependency-analysis $(MAKE)commands from CMake’s Makefile2. Then, most absolute paths in
build.makemakefiles are made relative. These changes could have been accomplished by modifying CMake’s makefile generator. Finally, the two
build.make files that build the libclang and LTO shared libraries, as siblings of library-versioning symbolic-link top targets, are changed, to also
build the libraries as top targets.

Amake, via wrap, is then executed, with a command-line argument of --jobs=4, for a 4-job build. This low degree of parallelism avoids thrashing
during linking. A higher value can be used during compilation, but not linking. GNU Make has a command-line argument to throttle the number
jobs based on load average. It needs one to do the same based on memory pressure.

6.2 Amake Changes, for LLVM

Only one modification to Amake was required. It was surprising, but easy to implement. Referring to Figure 1, the target cache has two parts: the
index and the cachedir directories that hold entries. Since the cache is shared, between processes and hosts, it is thread safe, in twoways. The index
is protected by a typical readers/writers concurrency wrapper, implemented with mutexes and condition variables. The entries are protected by

Jim Buffenbarger 9

 0

 1000

 2000

 3000

 4000

 5000

 6000

putt
putg

gm
ake

S
e
co

n
d

s

1h26m02s
1h19m59s

48m10s

Figure 11 LLVM No/Empty Cache Builds

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

putt.top.all

putt.get

putg.get

putt.top

S
e
co

n
d

s

25m39s

20m36s
19m03s

3m06s

Figure 12 LLVM Cache Builds

writing them to directories named to prevent concurrent access, constructed from: username, hostname, date, time, PID, and filename. Originally,
the time granularity was seconds. However, LLVM’s build was observed writing two distinct targets, with the same name but to different workspace
directories, within one second of each other, causing them to be cached in the same cachedir. Such collisions were avoided by simply refining the
granularity, from seconds to microseconds.

6.3 LLVM-Build Times

A comprehensive build-performance analysis, even just for the time domain, is challenging, since there are so many build scenarios (e.g., in an
empty workspace, in an up-to-date workspace, and after a single source-file edit). Furthermore, the content of the cache makes a huge difference.
Therefore, only a few comparisons are drawn here.

First, consider Figure 11. In an empty build directory, a GNU Make build requires 0:48:10 (hours:minutes:seconds). In an empty build directory,
with an empty target cache, Amake top and get builds require 1:26:02 and 1:19:59 (resp.), 179% and 166% more than GNU Make. The overhead
is mainly for filling the cache, for later builds. The top build also has to compute transitive closures and write .top files. Note that, with an empty
cache, a top build still has to build all of the targets, to build the top targets.

Next, consider Figure 12. With a cache of qualified candidates (a common scenario), times are much better. In an empty build directory, sans
CMake progeny, an Amake get build requires 0:25:39 to fetch all 2453 targets. Comparable top builds require 0:20:36 and 0:19:03 to fetch 504 top
targets, including 242 lib/ and 83 bin/ files. The multitude of top targets are due to CMake’s generated makefiles. Indeed, top builds are slower
than corresponding get builds, due to redundant dependency checking, across so many top targets. When wrap selects just the “important” 106
top targets, 9 lib/*.so and the same 83 bin/ files, Amake requires only 0:03:06.

Compared to the first-mentioned “from scratch” build, Amake’s cached workspace-filling build requires only 53% of the time required by GNU
Make. If only the important top targets are needed (e.g., for testing), this drops to a miniscule 6% of that required by GNU Make.

Themost common scenario, shown in Figure 13, starts with an almost up-to-date workspace, and a cache of mostly acceptable target candidates
(e.g., after a developer has just made changes to one source file). This scenario is accurately approximated with a completely up-to-date workspace
(i.e., just after one of the previously discussed builds). A GNU Make up-to-date build, albeit with rudimentary dependency checking, requires 4

10 Jim Buffenbarger

 0

 5

 10

 15

 20

 25

putt.utd

putg.utd

putt.top.toputd.all

putt.get.getutd

putt.top.toputd

gm
ake.utd

S
e
co

n
d

s

0m16s 0m16s
0m15s 0m15s

0m09s

0m04s

Figure 13 LLVM UTD Builds

seconds. Amake up-to-date builds (permutations of top/get and uncached/cached) require about 16 seconds, 4 timesmore. If only the the important
top targets are needed, the aforementioned shared-library and executable files, Amake requires 9 seconds, only 5 seconds more than GNU Make.

7 GCC

This section describes build and Amake modifications needed to build the GCC distribution. As in the previous section, a few build times are cited.

7.1 GCC-Build Changes

Compared to LLVM’s build process, many more changes are required to build GCCwith Amake. This is because LLVM’s CMake-generated makefiles
enjoy the uniformity of algorithmically produced code, while GCC’s generated makefiles contain much handcrafted code. The remainder of this
subsection describes these changes.

Starting from scratch, the GCC distribution is untarred, or checked-out, creating a “source” directory. This directory’s configure script is then
executed, from an empty “build” directory. The first change is to execute this script with a command-line argument to disable Automake’s depcomp
script. According to a comment in the script, it “understands how to coax many different C and C++ compilers into generating dependency in-
formation in the format it requires.” While –disable-dependency-tracking sounds promising, further ad-hoc build-avoidance techniques must
be disabled. After configure deduces its source directory, it creates a single makefile, in the build directory, ripe for such tweaking. Further
configuration is performed by rules in that makefile.

The second change involves wrap. As described in Section 5, wrap can redefine a makefile’s variables, changing what the makefile does. But, it
can also change scripts and makefiles generated by that makefile, just before they are (later) used. The gcc, libcpp, and libgcc subsystems get
this treatment. In short, the soon-to-be tree of about 30 configure scripts will later generate makefiles, which will even later execute wrap/amake,
rather than make, by overriding the value of $(MAKE), eventually updating real targets (e.g., object files). In this way, wrap quashes the remaining
ad-hoc build-avoidance techniques (e.g., use of a compiler’s -MMD command-line argument).

After the configuration step, wrap is executed, with a command-line argument of --jobs=$(nproc), launching a 24-job build (for the comput-
ing environment described in Appendix B). Upon entering a GCC subsystem for the first time, the configure/wrap/amake interleaving occurs,
eventually updating real targets.

The other build-process changes fall into several, related, categories.

7.1.1 The Righteous Path

Names in a makefile have two facets. First, they are simply character strings that look like they could be paths to filesystem objects. They might
contain slashes and dots, but they are just targets and dependencies, with no connection to files and directories (e.g., all and clean). Second, they
might also be paths to filesystem objects, which have filesystem metadata (e.g., timestamps).

A name that is also a path is fragile. Mostly, GNUMake compares names as strings. However, a file has multiple paths, without even considering
hard-link and symbolic-link trickery. For example, foo, ./foo, and /x/y/z/foo are unequal names, but may be equal paths. Since Amake records
target and dependency paths, by writing them to files (e.g., .dep files), it must decide which form to use.

Jim Buffenbarger 11

When GNU Make and Amake compare names that are paths, some filesystem resolution is needed. GNU Make attempts superficial filesystem
resolution, but it is easily discouraged. For example, if a target’s dependency is ./prg, GNUMake recognizes the target named prg (and vice versa).
Curiously, $< drops the leading ./ and, thereby, activates $PATH search. But if dir is a directory, and the dependency is dir/../prg, GNU Make
doesn’t realize that it’s also prg (and vice versa).

Beyond GNU Make’s half-hearted attempts at resolution, Amake tries harder. Its code, and that of libaccess, leaves paths as is. However,
wrap converts absolute paths to relative paths (e.g., for GCC’s VPATH). In contrast, amake-collect resolves paths fully, for equality, but preserves
relativity, Relativity is critical for inter-workspace caching and GCC’s staging directories. A “canonical” absolute path (e.g., according to realpath)
is fine for one workspace, but others might be located at different levels (i.e., distances from /), whether on this workstation or another. Indeed, a
workspace might even be remounted at a different level. Levels also matter because GCC’s build writes the “same” target to multiple directories,
at different levels. For example, gengtype is written to · · · /gcc/build in stage 1, but to its parent directory in later stages, by different rules, by
the same makefile. Amake’s target cache must accommodate this.

Amake’s code preserves absolute paths. Such paths might have been typed by a human, or generated by a program. Notably, GCC’s makefiles
also use absolute paths for VPATH and vpath. But to allow sharing between GCC workspaces, wrap performs absolute/relative path conversion.

7.1.2 Thick and Thin

An absolute path embedded in a target file can also interfere with inter-workspace caching. GCC’s build employs a crossbred feature of the ar

librarian, producing a filewith traits of both static and dynamically-linked libraries. A “thin archive” is built with a -T argument, and “contains a symbol
index and references to the original copies of the member files of the archive.” Amake has no trouble tracking its files-referenced dependencies,
but embedded paths can be fragile, with respect to cache fetches. Also, while a static or shared library can be a top target, a thin archive cannot: it’s
worthless without its referenced files. An arwrapper avoids these problems: -T is simply ignored. Further, -D is added, to “operate in deterministic
mode” (e.g., no timestamps), allowing checksums to match. Even further, -u is replaced by -c, always creating a new archive, rather than updating
it, to preserved member order.

7.1.3 A Timeless Way of Building

The fundamental algorithm of GNUMake, as well as most Make variants, is to update a target if and only if one or more files upon which it depends
is changed (i.e., written to). Since the beginning (circa 1979), makefile authors have needed/wanted to avoid this behavior. They have tried to write
some makefile rules whose targets would always be up to date, and some whose targets would always be out of date.

GNU Autotools uses files and directories to record build state (e.g., config.cache). Some are always to be updated. For those, wrap sets Amake
variables, which disable automatic-dependency and caching features, simply treating the files as GNUMake would. Some of these files are scripts,
which are not thread safe. A makefile comment laments: “Serialization dependencies: Host configures don’t work well in parallel to each other, due
to contention over config.cache. Target configures and build configures are similar.” By the way, Autotools should not hardcode file descriptors 5
and 6. Bash, at least, can allocate a free file descriptor, and assign its number to a variable (e.g., exec {fd}<foo).

Another ad-hoc build-avoidance trick is known as a “stamp,” which records when an event occurred, to prevent target updates. A stamp is just
a file, often empty, created to indirectly record time-of-last-modification metadata (e.g., with a simple >$@). The makefile in GCC’s gcc subsystem
contains a well-written 35-line comment, explaining the trick’s evolution. Basically, “Make must be deceived into thinking · · · ” that a file has
changed if and only if its content has changed. Since Amake’s checksum comparisons do just that, wrap transforms these numerous and complex
stamp rules, into fewer and simpler rules.

7.2 Amake Changes, for GCC

Building LLVM required just one small change to Amake, as described in Section 6.2. Building GCC required several significant changes to: target-
cache entries, the checksum-cache daemon, and automatic makefile-variable values (e.g., $^).

7.2.1 Target-Cache Content

Earlier build-with-Amake projects (e.g., for Bash and LLVM) failed to reveal an overly optimistic assumption: an entry’s cachedir could simply hold
the target itself, its siblings (if any), and its metadata. However, some GCC makefile rules write files to directories other than that in which the build
was started; they can’t just be stored in the cachedir. A rule that writes a file to a subdirectory poses no problem: it can be stored in a cachedir
subdirectory. But, a rule that writes a file to a parent directory is trickier. Its path could be either relative (e.g., ../bin/foo) or absolute (e.g., /bin/foo),
and these two cases cannot be unified, by path conversion, because different workspaces might be located at different levels (i.e., distances from
/). Nor can such a file just be stored in its cachedir, according to its path; it might end up outside of the cachedir. Removing a path prefix could

12 Jim Buffenbarger

cause collisions, and would prevent determining destinations of future fetches. So, a cache entry’s target and siblings are combined into a tar file,
which is stored in the cachedir. Fetching an entry is just a tar extract operation. To avoid a spawning a process for each fetch, tcd links against a
tar library, 26 which also offers compression.

Prior to the adoption of tar files as cache entries, an entry was simply a set of plain files and directories: whatever was being cached. This
simplified cache debugging, analysis, and maintenance. With tar file entries, the familiar Unix toolbox of find, grep, diff, and others cannot be
used directly. To address this, a cache-analysis tool was developed, as described in Appendix A.

Using tar solves the problem of a target’s rule storing files in arbitrary directories, but only if the rule doesn’t create the directory. At first, such
a directory seemed like it should be treated as a sibling of that target. However, a different target’s rule might also create that directory, for its files.
If the directory was treated as a sibling of both such targets, it would be added to both of their tar files, along with all of its contained files. This is
wrong. Those files must be partitioned between the targets’ tar files. Otherwise, fetching either entry would extract siblings (and targets) of both
targets. Subsequently, fetching the other entry would overwrite those same files. Parallel builds, started with the -j or --jobs= command-line
option, exacerbate this interference. Indeed, if a directory could be a target, Amake would need to compute its checksum. A directory could be
opened with open and its O_DIRECTORY flag, then the directory’s raw bytes could be read and checksummed. However, two directories containing
identical files and subdirectories could easily have different checksums, which would interfere with caching.

Therefore, a directory is never a sibling, nor a target, but its contained files can be either or both. Fetching those files might create the directory,
in the workspace, as a side effect of extracting from the tar file. This supports the invariant from Section 2: A sibling belongs to exactly one target.

The foregoing analysis applies to “install” targets, in general, and GCC’s staging targets, in particular. Their commands spray siblings all over a
filesystem. Caching such a target doesn’t make sense. Consider a blatant example, install-leaf, which is unconditionally updated after GCC’s
libgcc subsystem has built its targets:

1 all: all-multi
2 $(MAKE) install-leaf · · ·

3 install-leaf: · · ·
4 $(mkinstalldirs) · · ·
5 $(INSTALL_DATA) libgcc.a · · ·
6 chmod 644 · · ·/libgcc.a
7 $(RANLIB) · · ·/libgcc.a

The libgcc makefile says: “Now that we have built all the objects, we need to copy them back to the GCC directory. Too many things (other
in-tree libraries, and DejaGNU) know about the layout of the build tree, for now.” Therefore, caching is disabled for this target, with an Amake
target-specific variable. Similarly, because directories containing them are renamed as a new stage begins, automatic-dependency detection on
the previously built tools (e.g., xgcc) is disabled during the new stage, with another Amake variable.

Amake stores a target’s command sequence in a .cmd file, typically in the same directory as the target. A target whose rule creates its destination
directory originally surfaced as a problem because a .cmd file was originally computed and stored before executing the commands. Early command-
sequence analysis makes sense, because commands need to be compared when deciding to update a target, but it is a chicken/egg problem. So,
commands are now computed before, kept in memory during, and stored after, a target’s update.

This directory analysis may seem esoteric and pedantic. However, the GCC build’s reliance on Libtool forces our focus on these details. For
example, while building the libstdc++ subsystem, Libtool builds targets whose siblings are stored in a shared (between targets) .libs directory.
This directory is created by the targets’ commands, as needed. For example, a library of interfaces to the C and C++ front ends, named libcc1,
which is linked into GDB, 27 is also part of the GCC distribution. Three of its deliverables are shared libraries (e.g., libcc1.so), but the makefile
does not build them as targets, They are built as siblings of their respective “libtool library file” targets (e.g., libcc1.la). Each such target has a
makefile rule with a command like:

1 ./libtool --tag CXX --mode=link · · · -o · · ·.la

It writes the target to the working directory, but the deliverable, the sibling, is stored in a subdirectory named .libs, which is created as needed
by libtool, a generated 9300-line sh script. Considering libcc1.la as a single example, its cache entry is libcc1.la.tar, containing:

1 libcc1.la
2 libcc1.la.cmd
3 libcc1.la.dep
4 libcc1.la.sib
5 libcc1.la.top
6 .libs/libcc1.la -> ../libcc1.la
7 .libs/libcc1.la.cmd
8 .libs/libcc1.lai
9 .libs/libcc1.lai.cmd

Jim Buffenbarger 13

10 .libs/libcc1.so -> libcc1.so.0.0.0
11 .libs/libcc1.so.cmd
12 .libs/libcc1.so.0 -> libcc1.so.0.0.0
13 .libs/libcc1.so.0.cmd
14 .libs/libcc1.so.0.0.0
15 .libs/libcc1.so.0.0.0.cmd

This content demonstrates important points. Files written by a target’s commands can be to directories other than that in which the build was
started. Siblings of other targets are not in this entry, thereby avoiding cache-fetch collisions. Absolute and relative symbolic links are supported,
whether the destination exists or not. Amake metadata (e.g., a target’s .cmd file) is stored too, so it can be fetched into the correct directory. A
sibling also has a .cmd file, as discussed in 7.2.3.

Commands for a target can write files to directories other than the one in which a build was started, as discussed above, but a different problem
occurs when commands change to a different directory before writing files. Suppose Amake is started in directory A, and a target foo is being
updated. Referring to Figure 1, way back in Section 3, the amake-collect process for foo is, therefore, also executing in A. However, a command
to updateA/foo could be executing as a process in directoryB. When that command calls a library function like open, the call is intercepted by the
corresponding libaccess function, and the path is relative to B. That path is piped to the amake-collect process, executing in A, to be written
to A/foo.dep. Indeed, a single amake-collect process might be receiving paths from multiple processes using libaccess in multiple directories.
Later, when another Amake process is started in directory A, it reads the relative paths in A/foo.dep, but cannot access the files they refer to,
because they are relative to directories other than A. To solve this problem, libaccess functions transform a relative path to an absolute path,
before piping it to amake-collect. The directory parameter of the family of *_at functions, is also involved. Then, amake-collect transforms it
to a relative path, before writing it to a .dep file. Similarly, when amake-top computes the transitive closure of dependencies, from multiple .dep
files, from different directories, it also transforms relative paths appropriately.

Another possibility is that one of a target’s commands might change to a different directory, before executing a program. This impacts the design
of .cmd files. Recall that a target’s .cmd file records the sequence of commands that created the target. The solution is to simply parenthesize each
command in the sequence, causing it to be executed within a subshell. Now, a target’s command-sequence checksum is computed after adding: a
prologue of environment-variable export/unset commands, aforementioned parentheses, and aesthetic indentation. In addition, an initial set -e

allows manual execution, without placing && between parenthesized commands, effecting a makefile rule’s stop-on-error behavior.
Finally, because a build’s targets (and metadata) might be stored in multiple directories, locating and reading their .dep files, at the start of a

subsequent build (i.e., via GNU Make’s sinclude directive), can be challenging. Those .dep files can be anywhere in a workspace, and they must
be included selectively. A makefile cannot just sinclude all of the .dep files in a workspace. A solution is to accumulate the set of directories in
which targets are stored, during builds, and store the set in a file, specified by a makefile variable. A subsequent build, using the same makefile,
reads the set of directories from that file, and then reads the .dep files in those directories.

7.2.2 Checksum-Cache Daemon

As seen in Section 3, file checksums are computed locally, never over a network. Checksums might be compared remotely, but they are merely 40-
byte ASCII strings. Nevertheless, local checksumming takes time, and is a perfect candidate for caching. Perhaps surprisingly, building GCC forced
design-level changes to ccd, Amake’s checksum-cache daemon. Originally, a file’s checksum-cache entry was invalidated only when the operating
system’s Inotify 19 facility reported a change to the file. Inotify makes sense for source files, which change infrequently, but derived filesmust also be
checksummed, and changes must be noticed immediately. So, Amake operations that create files now perform checksum-cache entry invalidation.
This approach still ignores latency for source-file changes, but a developer who changes a source file, during a build, deserves the consequences.

A distinctive feature of the GCC distribution is that it builds itself, in stages. First, a native compiler builds GCC, then GCC builds GCC, and then
another self-build ends with object-file comparison (as a sort of test). Each stage is stored in a set of carefully named, and renamed, subdirectories.
These names allow each stage to treat itself as the final deliverable. Unfortunately, all this renamingwreaked havoc on the cache-checksumdaemon,
rendering per-entry checksum-cache invalidation insufficient. Each new stage needs a complete checksum-cache invalidation. The solution is for
wrap to request its local ccd to clear the entire cache between stages.

7.2.3 Nested Builds

Section 2warned of confusion, when a target’s rule executes $(MAKE), on either the same makefile or a different one, in either the same directory
or a different one. Such a build, a nested or hierarchical build, is often called a “recursive” build, due in part to a paper criticizing the practice. 28 Yet,
they are common, and often very modular. The name suggests a misunderstanding of the concept: they seem no more recursive than a process
calling fork. Consider the makefiles in Figure 14. They are not equivalent, but similar enough to allow refinement of terminology. A similar chunk
of GCC makefile is in Figure 15. In Figure 14 (upper), bar is a dependency of foo, and zap is a sibling of bar. In Figure 14 (lower), bar and zap are

14 Jim Buffenbarger

1 foo: bar
2 cp bar $@

3 bar:
4 >zap
5 >$@

1 foo:
2 $(MAKE) bar
3 cp bar $@

4 bar:
5 >zap
6 >$@

Figure 14 Non-Nested and Nested Makefiles

1 stmp-fixinc: gsyslimits.h · · ·
2 · · ·
3 cd ../prev-gcc && \
4 $(MAKE) · · · DESTDIR=../gcc · · ·
5 · · ·
6 $(STAMP) stmp-fixinc

Figure 15 A GCC Nested Makefile

siblings of foo, and zap is also a sibling of bar. The split affinity of zap does not violate our invariant that “a sibling must have exactly one target,”
because it occurs only across separate, albeit nested, builds. Each target has a .cmd file, a Bash script that records how it was built, and how to
rebuild it. A developer might also want to rebuild a sibling. A sibling’s .cmd file simply executes its target’s .cmd file, thereby rebuilding the sibling
as a side effect. For Figure 14 (lower), zap.cmd executes either foo.cmd or bar.cmd, depending on which target built the sibling last. In a nested
build, this means the outer build, an application of the Principle of Least Surprise. Figure 15 is like Figure 14 (lower): stmp-fixinc is a real file, a
stamp. The rule’s commands copy a slew of header files, from the previous stage back into the current stage. They are all siblings of the stamp. So,
when the stamp is fetched from cache, the header files are fetched, too. This must be, since a fetch (by definition), does not execute commands,
and thus does not perform the nested build. Fortunately, such rules are rare. To that makefile author’s credit, “Yuck” is in a nearby comment, which
also hints at struggling with such rules, while using Ccache, a compiler-cache tool. 29

7.2.4 $<, $?, $^, $+, and $|

Mixing automatic-dependency analysis and automatic variables presents challenges, as was discovered almost immediately after Amake’s debut.
At first, simple makefile workarounds sufficed, but GCC’s build needed a wholesome solution, which, in turn, entailed non-trivial design changes.
All of the automatic variables are impacted, but in the same way. Consider $^ (“dollar caret”), a target’s dependencies, without duplicates, often
used to link object files into an executable file. For example:

1 foo: $(objs)
2 gcc -o $@ · · · $^

Detected dependencies, written to foo.dep, and soon read via sinclude by a makefile, cause two problems: Since foo depends on gcc, as a
programs-executed dependency, gcc tries to link itself into the target. And, since foo also depends on various library and object files (e.g., libc.so
and crt.o), as files-accessed dependencies, Amake tries to update them, using builtin rules. Regardless of which happens, the build fails spec-
tacularly. The forementioned workaround simply replaces $^with $(objs). While the order of dependencies in $^can affect linking, $<, the “first”
dependency, is even more sensitive to dependency order. That’s why, originally, an sinclude *.dep had to be at the end of a makefile.

The obvious solution is to omit detected dependencies from $^ and company. This must be done on a per-target basis, because a detected
dependency for one targetmight be explicit for another. Since a detected dependency produces an ordinarymakefile rule, albeit without commands,
distinguishing detected and explicit dependencies requires more information. The solution is provenance. When reading makefiles, GNU Make
saves a rule’s location as its target’s fileloc. Amake now does the same for dependencies. Now, $^ for foo contains bar when the fileloc of

Jim Buffenbarger 15

bar is other than foo.dep. Often, a file is explicitly listed and implicitly detected, resulting in a duplicate dependency. For example, an object file is
explicitly listed, to link it into an executable file, then detected when linked, resulting in a .dep rule. Amake uses provenance to omit the detected
one from $.̂

A target’s $^ is also very important because it helps determine the command sequence to execute, to update the target. This has four facets.
First, the commands help decide if a workspace file is already acceptable. Second, they help decide if a cache entry is acceptable. Third, they
specify how to build an acceptable file. The fourth facet is a refinement of the third: automatically detected dependencies can select the rule,
among implicit alternatives, thereby determining $^ and thus the command sequence. This is surprising, since a target can have only one explicit
rule with commands. And, as GNUMake’s manual says, “explicit prerequisites do not influence implicit rule search.” However, implicit prerequisites
can influence implicit rule search. For example, in the fragment below, an initially absent tgt.bar causes the second rule to be selected, creating
tgt.bar, but a subsequent build selects the first rule, because both dependencies exist.

1 %: %.foo %.bar
2 >$@

3 %: %.foo
4 test -f $*.bar
5 >$@

6 tgt:

7 tgt.foo:
8 >tgt.bar
9 >$@

GNUMake’s VPATH features can also interact with automatically detected dependencies to determine rule selection, $^, and thus the commands.
For example, in the fragment below, a present foo/tgt.zap and initially absent bar/tgt.zap causes the second rule to be selected, creating
bar/tgt.zap. A subsequent build selects the first rule, because both dependencies exist (as the same file).

1 VPATH=bar:foo

2 %: %.zap bar/%.zap
3 >$@

4 %: %.zap foo/%.zap
5 >bar/$*.zap
6 >$@

7 tgt:

Another subtlety is the possible effect of automatically detected dependencies on parallel builds. A makefile may contain a carefully (or co-
incidentally) crafted set of explicit dependencies, resulting in an acceptable degree of concurrency, and an acceptable sequence of concurrent
compilations. For example, one “tool” might need to be built before it can be used to build another tool. This happens in GCC’s gcc/build sub-
subsystem, with its GTFILES family of makefile variables. A makefile comment and rule makes this clear: “In order for parallel Make to really start
compiling the expensive objects from $(OBJS) as early as possible, build all their prerequisites strictly before all objects.”

1 $(ALL_HOST_OBJS):| $(generated_files)

An automatically detected dependency can also cause a target to be updated later than otherwise. This can cause its commands to execute
concurrently with, and interfere with, another target’s commands, especially when temporary-file names are poorly constructed, allowing collisions.
The solution is to choose better names.

Evidently, GNU Make’s maintainers have also thought about partitioning dependencies. Version 4.3, has a .EXTRA_PREREQS variable:

Words in this variable are considered prerequisites of targets but they are not added to any of the automatic variable values when expanding the
recipe. This variable can either be global (applies to all targets) or a target-specific variable.

At first, this new variable, as well as variable inheritance, was seen as a potential way to help Amake partition dependencies. However, employing
one or the other would render the feature unavailable to a user. As stated above, dependency provenance, the file containing a dependency’s
definition, provides a general solution.

16 Jim Buffenbarger

 0

 1000

 2000

 3000

 4000

 5000

putg
putt

gm
ake

S
e
co

n
d

s

1h21m15s
1h15m51s

27m34s

Figure 16 GCC No/Empty Cache Builds

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

putt.get

putt.get

putg.get

putt.top

S
e
co

n
d

s

25m43s

9m00s 8m51s

6m46s

Figure 17 GCC Cache Builds

7.3 GCC-Build Times

As with LLVM, only a few comparisons are drawn here.
First, consider Figure 16. In an empty build directory, a GNU Make build requires 0:27:34. Likewise, and with an empty target cache, Amake

get and top builds require 1:21:15 and 1:15:51 (resp.), 295% and 275% more than GNU Make. The overhead is mainly for filling the cache, an
investment for later. The cache doesn’t help at first, but it fills as the build progresses. Later stages fetch top-build entries, making the top build
faster than the get build. Indeed, whereas the get build fetches 2299 targets, the top build fetches only 924 targets. This speedup occurs despite
the top build computing transitive closures, and writing them to files.

Next, consider Figure 17. A more satisfying, and common, scenario starts in an empty build directory, as before, but with a cache of acceptable
candidates. A get build takes 0:08:51 to fetch all 7959 targets. The top build takes 0:06:46 to fetch the 1301 top targets. Thus, Amake’s cached
workspace-filling build takes only 33% of the time required by a “from scratch” GNU Make build. If only top targets are needed (e.g., for testing),
this drops to 25% of that required by GNU Make. The leftmost two builds also fetch all 7959 targets. The leftmost one is much slower because
the only prior cache-filling build was a top build: 1381 targets were not added to the cache; the leftmost one adds them. Rerunning the build in an
empty workspace produces the second from the left.

The most common scenario, depicted in Figure 18, approximates a developer changing one source file. It starts with an up-to-date workspace
and a cache of acceptable candidates (with Amake). GNU Make, with its simple dependency checking, takes just 0:00:09. Amake get builds take
0:01:26 – 0:01:19, while top builds take 0:00:39 – 0:00:26, depending upon how the cache was filled. For times below 90 seconds, percentages
make less sense than absolute differences: A developer waiting to test a build probably wouldn’t mind an extra 30 seconds.

8 CONCLUSION AND FUTURE WORK

We’ve seen that Amake can build large-scale software systems efficiently, with only minor build-process modifications.

Jim Buffenbarger 17

 0

 20

 40

 60

 80

 100

putt.utd

putg.utd

putt.get.getutd

putg.get.utd

putt.toputd

putt.top.toputd

gm
ake.utd

S
e
co

n
d

s

1m26s 1m26s
1m19s 1m19s

0m39s

0m26s

0m09s

Figure 18 GCC UTD Builds

An underlying performance assumption of the organization shown in Figure 1 is that there are benefits to copying a target from a remote cache,
compared to rebuilding the target locally. This benefit would be magnified with a local cache (somehow still shared). Since the cache is essentially
a database, distributed-database technology should be investigated.

Expecting performance benefits from a distributed database seems reasonable, due to both spatial and temporal locality. If a target is built in
a workspace on a particular host once, it seems likely that it will also be needed in other workspaces on the same host. This would happen, for
example, on an “integrate and test” machine, where branches are incrementally merged, previously uncached targets are built (then, subsequently
fetched), and “smoke tested” prior to baselining. A developer merging changes between multiple “task” branches, sprouted from the same baseline,
might see similar benefits from a local cache. Recall that the target cache has two parts: an index and its entries. The index is treated as a key/value
database, even with an underlying SQL implementation. So, a distributed key/value database (e.g., Cassandra 30, CockroachDB 31, or CrateDB 32)
should be investigated. The entries compose a directory-oriented filesystem. So, a distributed filesystem, (e.g., Andrew File System 18 or Coda File
System 33) should be investigated.

APPENDIX

A CACHE TOOL

Amake’s target cache now stores entries in tar 26 files, rather than as plain Unix directories, files, and symbolic links. This hampers cache browsing,
debugging, and maintenance, for both developers and users of Amake. They can’t directly use their typical Unix toolbox of: find, grep, diff, and
others. A cache-analysis tool, named ct, is available to help with such forensics, circumventing the stickiness of tar. It’s one of those programs
with (abbreviatable) subcommands, rather than traditional command-line options:

1 f|find <entry>
2 ct|chksumtgt <entry>
3 cd|chksumdep <entry>
4 cc|chksumcmd <entry>
5 ok|depok <entry>
6 da|diffall <entry>
7 d2|difftwo <dir1> <dir2>

Most of the subcommands take an entry filename, without slashes, as an argument (e.g., foo.o). They print the absolute paths to each cache-entry
cachedir for that entry, sorted by creation date, as mounted on the local workstation. The find subcommand might be used to prune old or “bad”
entries. A bad entry could result from a build command that violates exit-code protocols. The chksumtgt subcommand also prints the file-content
checksum for the target file in each of those cachedirs. This can help in understanding a cache miss. Two entries for the same target can have the
same checksum if, for example, they depend on superficially different versions of the same source file. The chksumdep subcommand also prints
the checksum for the target’s .dep file, in each of those cachedirs. This can help in understanding, for example, the scenario from the previous
paragraph. The chksumcmd subcommand also prints the checksum of the commands that built the target, in each of those cachedirs. This can also
help with the above scenario. The depok subcommand is like chksumdep, but actually compares checksums. For each of the entry’s cachedirs,

18 Jim Buffenbarger

for each dependency in the target’s .dep file, the dependency’s checksum is compared to the checksum of the corresponding workspace file (if
it exists). This checks whether a cache entry is acceptable, with respect to files, programs, and libraries in the current workspace. The diffall

subcommand pairwise compares all of the entries for a given filename, printing those that are identical. Duplicate entries indicate a problem.
The difftwo subcommand takes two cachedirs as arguments, printing, in diff format, differences. This can help in understanding why different
workspaces build differently. It forms the body of the diffall loop.

B DEVELOPMENT ENVIRONMENT

The builds described and timed, in Sections 6and 7, were performed on two identical Supermicro X8DTH-iF computers. Each has two 2.8GHz Intel
5660 CPUs (6 cores per CPU, 2 hyperthreads per core, 32KB L1 cache, 256KB L2 cache, 12MB shared L3 cache), 24GB RAM, a single 3.0Gb/s disk
drive, and Gigabit Ethernet LAN. One of the computers served as the “shared infrastructure” of Figure 1. The other played the role of a “workspace
host” capable of parallel builds. This isn’t exactly cutting-edge hardware, but cachingmakes themost sense in an environment with slow processors,
and fast communication and disks.

References

1. Smith P. GNU Make. Free Software Foundation, 2020, http://www.gnu.org/software/make.
2. LLVM Foundation. The LLVM Compiler Infrastructure. 2020, http://llvm.org.
3. Stallman R, Community TGD. GCC, the GNU Compiler Collection. Free Software Foundation, 2020, http://gcc.gnu.org.
4. Buffenbarger J. Amake: GNU Make with Automatic Dependency Analysis and Target Caching. In: BCS Configuration Management Specialist

Group Conference. British Computer Society; 2012.
5. Buffenbarger J. Adding Automatic Dependency Processing to Makefile-Based Build Systems with Amake. In: International Workshop on

Release Engineering. ACM; 2013.
6. Buffenbarger J. Amake: Cached Builds of Top-Level Targets. Computer Languages, Systems & Structures 2017; 50: 20–30.
7. Buffenbarger J. Amake. Sourceforge; 2022, http://posixamake.sourceforge.net.
8. Feldman S. Make: A Program for Maintaining Computer Programs. Software — Practice and Experience 1979; 9(4).
9. Lam A. Using Remote Cache Service for Bazel. Communications of the ACM 2019; 62(1): 38-42.

10. Rational ClearCase. Wikipedia; 2021, http://en.wikipedia.org/wiki/Rational_ClearCase.
11. Heydon A, Levin R, Mann T, Yu Y. The Vesta Approach to Software Configuration Management. Tech. Rep. 168, Compaq Systems Research

Center, 2001, http://www.vestasys.org.
12. Atria Software, Inc. ClearCase User’s Manual. 1996, http://irix7.com/techpubs/007-2369-001.pdf.
13. SQLite Developers SQLite. 2020, http://www.sqlite.org.
14. Oracle, Inc. Oracle Berkeley DB. 2020, http://www.oracle.com/database.
15. Nelson P, Downs J, Poznyakoff S. GNU DBM. Free Software Foundation, Inc., 2011, http://www.gnu.org/software/gdbm.
16. Axmark D, Widenius M.MySQL Reference Manual. Oracle, Inc., 2012, http://dev.mysql.com/doc.
17. Sandberg R, Goldberg D, Kleiman S, Walsh D, Lyon B. Design and implementation of the Sun network filesystem. In: 1985 Summer USENIX

Conference. USENIX; 1985: 119-130.
18. OpenAFS Foundation. OpenAFS. 2019, http://www.openafs.org.
19. Inotify. Wikipedia; 2014, http://en.wikipedia.org/wiki/Inotify.

Jim Buffenbarger 19

20. Meyering J. GNU Automake. Free Software Foundation, 2020, http://www.gnu.org/software/automake.
21. Kitware. CMake. 2019, http://cmake.org.
22. Eggert P, Blake E. GNU Autoconf. Free Software Foundation, 2020, http://www.gnu.org/software/autoconf.
23. Vaughan G. GNU Libtool. Free Software Foundation, 2020, http://www.gnu.org/software/libtool.
24. DuBois P. Software Portability with imake. O’Reilly . 1996.
25. Kaindl B. kbuild - Linux Kernel Build. Sourceforge; 2013, http://sourceforge.net/projects/kbuild.
26. Kientzle T. Libarchive. FreeBSD, 2020, http://www.libarchive.org.
27. Stallman R, Pesch R, Shebs S, others . Debugging with GDB. Free Software Foundation, Inc., 2020, http://www.gnu.org/software/gdb.
28. Miller P. Recursive Make Considered Harmful. Australian UNIX Users Group Newsletter 1998; 19(1): 14–25.
29. Tridgell A, Rosdahl J. Ccache – A Fast C/C++ Compiler Cache. Ccache Developers, 2020, http://ccache.dev.
30. The Apache Software Foundation. Cassandra. 2023, http://cassandra.apache.org.
31. Cockroach Labs. CockroachDB. 2023, http://github.com/cockroachdb/cockroach.
32. CrateDB. Wikipedia; 2021, http://en.wikipedia.org/wiki/CrateDB.
33. Carnegie Mellon University. Coda File System. 2023, //http://coda.cs.cmu.edu.
34. Ramey C. The GNU Bash Reference Manual. Free Software Foundation, 2016, http://www.gnu.org/software/bash.

	Building the LLVM and GCC Translation Systems, with Amake
	Abstract
	Introduction
	Related Systems
	Outline

	Terminology
	Previous Amake Milestones
	Top-Build Risks
	LLVM and GCC
	LLVM
	LLVM-Build Changes
	Amake Changes, for LLVM
	LLVM-Build Times

	GCC
	GCC-Build Changes
	The Righteous Path
	Thick and Thin
	A Timeless Way of Building

	Amake Changes, for GCC
	Target-Cache Content
	Checksum-Cache Daemon
	Nested Builds
	Verba, Verbb, Verbc, Verbd, and Verbe

	GCC-Build Times

	Conclusion and Future Work
	Appendix
	Cache Tool
	Development Environment
	References

