References
1. Coronaviridae Study Group of the International Committee on Taxonomy of V. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol . Apr 2020;5(4):536-544. doi:10.1038/s41564-020-0695-z
2. Rothe C, Schunk M, Sothmann P, et al. Transmission of 2019-nCoV Infection from an Asymptomatic Contact in Germany. N Engl J Med . Mar 5 2020;382(10):970-971. doi:10.1056/NEJMc2001468
3. Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med . May 2020;8(5):475-481. doi:10.1016/S2213-2600(20)30079-5
4. Ren J, Pang W, Luo Y, et al. Impact of Allergic Rhinitis and Asthma on COVID-19 Infection, Hospitalization, and Mortality. J Allergy Clin Immunol Pract . Jan 2022;10(1):124-133. doi:10.1016/j.jaip.2021.10.049
5. Murphy TR, Busse W, Holweg CTJ, et al. Patients with allergic asthma have lower risk of severe COVID-19 outcomes than patients with nonallergic asthma. BMC Pulm Med . Nov 14 2022;22(1):418. doi:10.1186/s12890-022-02230-5
6. Zheng J, Haberland V, Baird D, et al. Phenome-wide Mendelian randomization mapping the influence of the plasma proteome on complex diseases. Nat Genet . Oct 2020;52(10):1122-1131. doi:10.1038/s41588-020-0682-6
7. Baranova A, Cao H, Teng S, Zhang F. A phenome-wide investigation of risk factors for severe COVID-19. J Med Virol . Jan 2023;95(1):e28264. doi:10.1002/jmv.28264
8. Baranova A, Cao H, Chen J, Zhang F. Causal Association and Shared Genetics Between Asthma and COVID-19. Front Immunol . 2022;13:705379. doi:10.3389/fimmu.2022.705379
9. Glymour MM, Tchetgen Tchetgen EJ, Robins JM. Credible Mendelian randomization studies: approaches for evaluating the instrumental variable assumptions. Am J Epidemiol . Feb 15 2012;175(4):332-9. doi:10.1093/aje/kwr323
10. Ferreira MA, Vonk JM, Baurecht H, et al. Shared genetic origin of asthma, hay fever and eczema elucidates allergic disease biology.Nat Genet . Dec 2017;49(12):1752-1757. doi:10.1038/ng.3985
11. Bycroft C, Freeman C, Petkova D, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature . Oct 2018;562(7726):203-209. doi:10.1038/s41586-018-0579-z
12. Kurki MI, Karjalainen J, Palta P, et al. FinnGen: Unique genetic insights from combining isolated population and national health register data. 2022:2022.03.03.22271360. doi:10.1101/2022.03.03.22271360 %J medRxiv
13. Initiative C-HG. The COVID-19 Host Genetics Initiative, a global initiative to elucidate the role of host genetic factors in susceptibility and severity of the SARS-CoV-2 virus pandemic. Eur J Hum Genet . Jun 2020;28(6):715-718. doi:10.1038/s41431-020-0636-6
14. Gill D, Efstathiadou A, Cawood K, Tzoulaki I, Dehghan A. Education protects against coronary heart disease and stroke independently of cognitive function: evidence from Mendelian randomization. Int J Epidemiol . Oct 1 2019;48(5):1468-1477. doi:10.1093/ije/dyz200
15. Palmer TM, Lawlor DA, Harbord RM, et al. Using multiple genetic variants as instrumental variables for modifiable risk factors. 2012;21(3):223-242. doi:10.1177/0962280210394459
16. Burgess S, Small DS, Thompson SG. A review of instrumental variable estimators for Mendelian randomization. Stat Methods Med Res . Oct 2017;26(5):2333-2355. doi:10.1177/0962280215597579
17. Li R, Chen Y, Zhao A, et al. Exploring genetic association of insomnia with allergic disease and asthma: a bidirectional Mendelian randomization study. Respir Res . Apr 7 2022;23(1):84. doi:10.1186/s12931-022-02009-6
18. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol . Apr 2015;44(2):512-25. doi:10.1093/ije/dyv080
19. Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genet Epidemiol . May 2016;40(4):304-14. doi:10.1002/gepi.21965
20. Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption.Int J Epidemiol . Dec 1 2017;46(6):1985-1998. doi:10.1093/ije/dyx102
21. Bowden J, Del Greco MF, Minelli C, et al. Improving the accuracy of two-sample summary-data Mendelian randomization: moving beyond the NOME assumption. Int J Epidemiol . Jun 1 2019;48(3):728-742. doi:10.1093/ije/dyy258
22. Verbanck M, Chen CY, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet . May 2018;50(5):693-698. doi:10.1038/s41588-018-0099-7
23. Rees JMB, Wood AM, Dudbridge F, Burgess S. Robust methods in Mendelian randomization via penalization of heterogeneous causal estimates. PLoS One . 2019;14(9):e0222362. doi:10.1371/journal.pone.0222362
24. Yang Z, Schooling CM, Kwok MK. Credible Mendelian Randomization Studies in the Presence of Selection Bias Using Control Exposures.Front Genet . 2021;12:729326. doi:10.3389/fgene.2021.729326
25. Cho Y, Haycock PC, Sanderson E, et al. Exploiting horizontal pleiotropy to search for causal pathways within a Mendelian randomization framework. Nat Commun . Feb 21 2020;11(1):1010. doi:10.1038/s41467-020-14452-4
26. Jackson DJ, Busse WW, Bacharier LB, et al. Association of respiratory allergy, asthma, and expression of the SARS-CoV-2 receptor ACE2. J Allergy Clin Immunol . Jul 2020;146(1):203-206 e3. doi:10.1016/j.jaci.2020.04.009
27. Choi HG, Kim SY, Joo YH, Cho HJ, Kim SW, Jeon YJ. Incidence of Asthma, Atopic Dermatitis, and Allergic Rhinitis in Korean Adults before and during the COVID-19 Pandemic Using Data from the Korea National Health and Nutrition Examination Survey. Int J Environ Res Public Health . Nov 1 2022;19(21)doi:10.3390/ijerph192114274
28. Marko M, Pawliczak R. Can we safely use systemic treatment in atopic dermatitis during the COVID-19 pandemic? Overview of selected conventional and biologic systemic therapies. Expert Rev Clin Immunol . Jun 2021;17(6):619-627. doi:10.1080/1744666X.2021.1919511
29. Guttman-Yassky E, Lowes MA, Fuentes-Duculan J, et al. Major differences in inflammatory dendritic cells and their products distinguish atopic dermatitis from psoriasis. J Allergy Clin Immunol . May 2007;119(5):1210-7. doi:10.1016/j.jaci.2007.03.006
30. Fan R, Leasure AC, Damsky W, Cohen JM. Association between atopic dermatitis and COVID-19 infection: A case-control study in the All of Us research program. JAAD Int . Mar 2022;6:77-81. doi:10.1016/j.jdin.2021.12.007
31. Zhang J, Loman L, Kamphuis E, Schuttelaar MLA, Lifelines Corona Research I. Impact of the COVID-19 pandemic on adults with moderate-to-severe atopic dermatitis in the Dutch general population.JAAD Int . Mar 2022;6:86-93. doi:10.1016/j.jdin.2021.12.006
32. Wu JJ, Martin A, Liu J, et al. The risk of COVID-19 infection in patients with atopic dermatitis: A retrospective cohort study. J Am Acad Dermatol . Jan 2022;86(1):243-245. doi:10.1016/j.jaad.2021.09.061
33. Nguyen C, Yale K, Casale F, et al. SARS-CoV-2 infection in patients with atopic dermatitis: a cross-sectional study. Br J Dermatol . Sep 2021;185(3):640-641. doi:10.1111/bjd.20435
34. Rakita U, Kaundinya T, Guraya A, et al. Atopic dermatitis is not associated with SARS-CoV-2 outcomes. Arch Dermatol Res . Dec 2022;314(10):999-1002. doi:10.1007/s00403-021-02276-1
35. Ungar B, Glickman JW, Golant AK, et al. COVID-19 Symptoms Are Attenuated in Moderate-to-Severe Atopic Dermatitis Patients Treated with Dupilumab. J Allergy Clin Immunol Pract . Jan 2022;10(1):134-142. doi:10.1016/j.jaip.2021.10.050
36. Kridin K, Schonmann Y, Solomon A, et al. Risk of COVID-19 and its complications in patients with atopic dermatitis undergoing dupilumab treatment-a population-based cohort study. Immunol Res . Feb 2022;70(1):106-113. doi:10.1007/s12026-021-09234-z
37. Eichenfield LF, Bieber T, Beck LA, et al. Infections in Dupilumab Clinical Trials in Atopic Dermatitis: A Comprehensive Pooled Analysis.Am J Clin Dermatol . Jun 2019;20(3):443-456. doi:10.1007/s40257-019-00445-7
38. Kridin K, Schonmann Y, Tzur Bitan D, Damiani G, Weinstein O, Cohen AD. The Burden of Coronavirus Disease 2019 and Its Complications in Patients With Atopic Dermatitis-A Nested Case-Control Study.Dermatitis . Oct 1 2021;32(1S):S45-S52. doi:10.1097/DER.0000000000000772
39. Liu S, Cao Y, Du T, Zhi Y. Prevalence of Comorbid Asthma and Related Outcomes in COVID-19: A Systematic Review and Meta-Analysis. J Allergy Clin Immunol Pract . Feb 2021;9(2):693-701. doi:10.1016/j.jaip.2020.11.054
40. Bartha I, Bernaola M, Escudero C, Rodriguez Del Rio P, Bazire R, Ibanez Sandin MD. COVID-19 and childhood asthma: Analysis of a pediatric referral hospital. Pediatr Allergy Immunol . Mar 2022;33(3):e13757. doi:10.1111/pai.13757
41. Licari A, Votto M, Brambilla I, et al. Allergy and asthma in children and adolescents during the COVID outbreak: What we know and how we could prevent allergy and asthma flares. Allergy . Sep 2020;75(9):2402-2405. doi:10.1111/all.14369
42. Harwood R, Yan H, Talawila Da Camara N, et al. Which children and young people are at higher risk of severe disease and death after hospitalisation with SARS-CoV-2 infection in children and young people: A systematic review and individual patient meta-analysis.EClinicalMedicine . Feb 2022;44:101287. doi:10.1016/j.eclinm.2022.101287
43. Matsumoto N, Kadowaki T, Takanaga S, Ikeda M, Yorifuji T. Impact of COVID-19 pandemic-associated reduction in respiratory viral infections on childhood asthma onset in Japan. J Allergy Clin Immunol Pract . Dec 2022;10(12):3306-3308 e2. doi:10.1016/j.jaip.2022.09.024
44. Lee KH, Yon DK, Suh DI. Prevalence of allergic diseases among Korean adolescents during the COVID-19 pandemic: comparison with pre-COVID-19 11-year trends. Eur Rev Med Pharmacol Sci . Apr 2022;26(7):2556-2568. doi:10.26355/eurrev_202204_28492