References
1. Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N, et al. Ferroptosis:
past, present and future. Cell Death Dis. 2020 Feb 3;11(2):88.
2. Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, et al. Ferroptosis:
process and function. Cell Death Differ. 2016 Mar;23(3):369-79.
3. Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon
SJ, et al. Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism,
Redox Biology, and Disease. Cell. 2017 Oct 5;171(2):273-85.
4. Chen X, Comish PB, Tang D, Kang R. Characteristics and Biomarkers of
Ferroptosis. Front Cell Dev Biol. 2021;9:637162.
5. Gao M, Deng J, Liu F, Fan A, Wang Y, Wu H, et al. Triggered
ferroptotic polymer micelles for reversing multidrug resistance to
chemotherapy. Biomaterials. 2019 Dec;223:119486.
6. Ma LL, Liang L, Zhou D, Wang SW. Tumor suppressor miR-424-5p
abrogates ferroptosis in ovarian cancer through targeting ACSL4.
Neoplasma. 2020 Oct 7.
7. Linkermann A, Skouta R, Himmerkus N, Mulay SR, Dewitz C, De Zen F, et
al. Synchronized renal tubular cell death involves ferroptosis. Proc
Natl Acad Sci U S A. 2014 Nov 25;111(47):16836-41.
8. Tuo QZ, Lei P, Jackman KA, Li XL, Xiong H, Li XL, et al. Tau-mediated
iron export prevents ferroptotic damage after ischemic stroke. Mol
Psychiatry. 2017 Nov;22(11):1520-30.
9. Gao M, Monian P, Quadri N, Ramasamy R, Jiang X. Glutaminolysis and
Transferrin Regulate Ferroptosis. Mol Cell. 2015 Jul 16;59(2):298-308.
10. Zhang J, Liu Y, Yao W, Li Q, Liu H, Pan Z. Initiation of follicular
atresia: gene networks during early atresia in pig ovaries.
Reproduction. 2018 Jul;156(1):23-33.
11. Ng SW, Norwitz SG, Norwitz ER. The Impact of Iron Overload and
Ferroptosis on Reproductive Disorders in Humans: Implications for
Preeclampsia. Int J Mol Sci. 2019 Jul 4;20(13).
12. Dolma S, Lessnick SL, Hahn WC, Stockwell BR. Identification of
genotype-selective antitumor agents using synthetic lethal chemical
screening in engineered human tumor cells. Cancer Cell. 2003
Mar;3(3):285-96.
13. McCullough K, Bolisetty S. Ferritins in Kidney Disease. Semin
Nephrol. 2020 Mar;40(2):160-72.
14. Ursini F, Maiorino M, Valente M, Ferri L, Gregolin C. Purification
from pig liver of a protein which protects liposomes and biomembranes
from peroxidative degradation and exhibits glutathione peroxidase
activity on phosphatidylcholine hydroperoxides. Biochim Biophys Acta.
1982 Feb 15;710(2):197-211.
15. Lewerenz J, Hewett SJ, Huang Y, Lambros M, Gout PW, Kalivas PW, et
al. The cystine/glutamate antiporter system x(c)(-) in health and
disease: from molecular mechanisms to novel therapeutic opportunities.
Antioxid Redox Signal. 2013 Feb 10;18(5):522-55.
16. Kagan VE, Mao G, Qu F, Angeli JP, Doll S, Croix CS, et al. Oxidized
arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem
Biol. 2017 Jan;13(1):81-90.
17. Dixon SJ, Winter GE, Musavi LS, Lee ED, Snijder B, Rebsamen M, et
al. Human Haploid Cell Genetics Reveals Roles for Lipid Metabolism Genes
in Nonapoptotic Cell Death. ACS Chem Biol. 2015 Jul 17;10(7):1604-9.
18. Feng H, Stockwell BR. Unsolved mysteries: How does lipid
peroxidation cause ferroptosis? PLoS Biol. 2018 May;16(5):e2006203.
19. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason
CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell
death. Cell. 2012 May 25;149(5):1060-72.
20. Slee EA, Adrain C, Martin SJ. Executioner caspase-3, -6, and -7
perform distinct, non-redundant roles during the demolition phase of
apoptosis. J Biol Chem. 2001 Mar 9;276(10):7320-6.
21. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, et
al. Molecular characterization of mitochondrial apoptosis-inducing
factor. Nature. 1999 Feb 4;397(6718):441-6.
22. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES,
et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9
complex initiates an apoptotic protease cascade. Cell. 1997 Nov
14;91(4):479-89.
23. Joza N, Susin SA, Daugas E, Stanford WL, Cho SK, Li CY, et al.
Essential role of the mitochondrial apoptosis-inducing factor in
programmed cell death. Nature. 2001 Mar 29;410(6828):549-54.
24. Chinnaiyan AM. The apoptosome: heart and soul of the cell death
machine. Neoplasia. 1999 Apr;1(1):5-15.
25. Kong QQ, Wang GL, An JS, Wang J, Cheng H, Liu T, et al. Effects of
postovulatory oviduct changes and female restraint stress on aging of
mouse oocytes. Reproduction. 2021 Jun 16;162(1):95-105.
26. Singla S, Iwamoto-Stohl LK, Zhu M, Zernicka-Goetz M.
Autophagy-mediated apoptosis eliminates aneuploid cells in a mouse model
of chromosome mosaicism. Nat Commun. 2020 Jun 11;11(1):2958.
27. Sun L, Wang H, Wang Z, He S, Chen S, Liao D, et al. Mixed lineage
kinase domain-like protein mediates necrosis signaling downstream of
RIP3 kinase. Cell. 2012 Jan 20;148(1-2):213-27.
28. Li S, Li H, Zhang YL, Xin QL, Guan ZQ, Chen X, et al. SFTSV
Infection Induces BAK/BAX-Dependent Mitochondrial DNA Release to Trigger
NLRP3 Inflammasome Activation. Cell Rep. 2020 Mar 31;30(13):4370-85.e7.
29. McCabe KE, Bacos K, Lu D, Delaney JR, Axelrod J, Potter MD, et al.
Triggering necroptosis in cisplatin and IAP antagonist-resistant ovarian
carcinoma. Cell Death Dis. 2014 Oct 30;5(10):e1496.
30. Chaudhary GR, Yadav PK, Yadav AK, Tiwari M, Gupta A, Sharma A, et
al. Necroptosis in stressed ovary. J Biomed Sci. 2019 Jan 21;26(1):11.
31. Hannan NJ, Beard S, Binder NK, Onda K, Kaitu’u-Lino TJ, Chen Q, et
al. Key players of the necroptosis pathway RIPK1 and SIRT2 are altered
in placenta from preeclampsia and fetal growth restriction. Placenta.
2017 Mar;51:1-9.
32. Bergsbaken T, Fink SL, Cookson BT. Pyroptosis: host cell death and
inflammation. Nat Rev Microbiol. 2009 Feb;7(2):99-109.
33. Cheng SB, Nakashima A, Huber WJ, Davis S, Banerjee S, Huang Z, et
al. Pyroptosis is a critical inflammatory pathway in the placenta from
early onset preeclampsia and in human trophoblasts exposed to hypoxia
and endoplasmic reticulum stressors. Cell Death Dis. 2019 Dec
5;10(12):927.
34. Ala M, Ala M. Metformin for Cardiovascular Protection, Inflammatory
Bowel Disease, Osteoporosis, Periodontitis, Polycystic Ovarian Syndrome,
Neurodegeneration, Cancer, Inflammation and Senescence: What Is Next?
ACS Pharmacol Transl Sci. 2021 Dec 10;4(6):1747-70.
35. Zhang CR, Zhu WN, Tao W, Lin WQ, Cheng CC, Deng H, et al.
Moxibustion against Cyclophosphamide-Induced Premature Ovarian Failure
in Rats through Inhibiting NLRP3-/Caspase-1-/GSDMD-Dependent Pyroptosis.
Evid Based Complement Alternat Med. 2021;2021:8874757.
36. Vander Borght M, Wyns C. Fertility and infertility: Definition and
epidemiology. Clin Biochem. 2018 Dec;62:2-10.
37. Laganà AS, Vitale SG, Salmeri FM, Triolo O, Ban Frangež H,
Vrtačnik-Bokal E, et al. Unus pro omnibus, omnes pro uno: A novel,
evidence-based, unifying theory for the pathogenesis of endometriosis.
Med Hypotheses. 2017 Jun;103:10-20.
38. Bulun SE, Yilmaz BD, Sison C, Miyazaki K, Bernardi L, Liu S, et al.
Endometriosis. Endocr Rev. 2019 Aug 1;40(4):1048-79.
39. Bulun SE. Endometriosis. N Engl J Med. 2009 Jan 15;360(3):268-79.
40. Nnoaham KE, Hummelshoj L, Webster P, d’Hooghe T, de Cicco Nardone F,
de Cicco Nardone C, et al. Impact of endometriosis on quality of life
and work productivity: a multicenter study across ten countries. Fertil
Steril. 2011 Aug;96(2):366-73.e8.
41. Simoens S, Dunselman G, Dirksen C, Hummelshoj L, Bokor A, Brandes I,
et al. The burden of endometriosis: costs and quality of life of women
with endometriosis and treated in referral centres. Hum Reprod. 2012
May;27(5):1292-9.
42. Lousse JC, Defrère S, Van Langendonckt A, Gras J, González-Ramos R,
Colette S, et al. Iron storage is significantly increased in peritoneal
macrophages of endometriosis patients and correlates with iron overload
in peritoneal fluid. Fertil Steril. 2009 May;91(5):1668-75.
43. Li Y, Zeng X, Lu D, Yin M, Shan M, Gao Y. Erastin induces
ferroptosis via ferroportin-mediated iron accumulation in endometriosis.
Hum Reprod. 2021 Mar 18;36(4):951-64.
44. Ng SW, Norwitz SG, Taylor HS, Norwitz ER. Endometriosis: The Role of
Iron Overload and Ferroptosis. Reprod Sci 3060. 2020 Jul;27(7):1383-90.
45. Li B, Duan H, Wang S, Li Y. Ferroptosis resistance mechanisms in
endometriosis for diagnostic model establishment. Reprod Biomed Online.
2021 Jul;43(1):127-38.
46. Murphy AA, Santanam N, Morales AJ, Parthasarathy S. Lysophosphatidyl
choline, a chemotactic factor for monocytes/T-lymphocytes is elevated in
endometriosis. J Clin Endocrinol Metab. 1998 Jun;83(6):2110-3.
47. Defrère S, Lousse JC, González-Ramos R, Colette S, Donnez J, Van
Langendonckt A. Potential involvement of iron in the pathogenesis of
peritoneal endometriosis. Mol Hum Reprod. 2008 Jul;14(7):377-85.
48. Murphy AA, Santanam N, Parthasarathy S. Endometriosis: a disease of
oxidative stress? Semin Reprod Endocrinol. 1998;16(4):263-73.
49. Goodall M, Thorburn A. Identifying specific receptors for
cargo-mediated autophagy. Cell Research. 2014 2014/07/01;24(7):783-4.
50. Woo JH, Choi YS, Choi JH. Iron-Storage Protein Ferritin Is
Upregulated in Endometriosis and Iron Overload Contributes to a
Migratory Phenotype. Biomedicines. 2020 Oct 27;8(11).
51. Andrisani A, Donà G, Brunati AM, Clari G, Armanini D, Ragazzi E, et
al. Increased oxidation-related glutathionylation and carbonic anhydrase
activity in endometriosis. Reprod Biomed Online. 2014 Jun;28(6):773-9.
52. Wan Y, Gu C, Kong J, Sui J, Zuo L, Song Y, et al. Long noncoding RNA
ADAMTS9-AS1 represses ferroptosis of endometrial stromal cells by
regulating the miR-6516-5p/GPX4 axis in endometriosis. Sci Rep. 2022 Feb
16;12(1):2618.
53. Ou Y, Wang SJ, Li D, Chu B, Gu W. Activation of SAT1 engages
polyamine metabolism with p53-mediated ferroptotic responses. Proc Natl
Acad Sci U S A. 2016 Nov 1;113(44):E6806-e12.
54. Wan Y, Song Y, Chen J, Kong J, Gu C, Huang J, et al. Upregulated
Fibulin-1 Increased Endometrial Stromal Cell Viability and Migration by
Repressing EFEMP1-Dependent Ferroptosis in Endometriosis. Biomed Res
Int. 2022;2022:4809415.
55. Srivastava SR, Zadafiya P, Mahalakshmi R. Hydrophobic Mismatch
Modulates Stability and Plasticity of Human Mitochondrial VDAC2. Biophys
J. 2018 Dec 18;115(12):2386-94.
56. Li G, Lin Y, Zhang Y, Gu N, Yang B, Shan S, et al. Endometrial
stromal cell ferroptosis promotes angiogenesis in endometriosis. Cell
Death Discov. 2022 Jan 17;8(1):29.
57. Meuleman C, Vandenabeele B, Fieuws S, Spiessens C, Timmerman D,
D’Hooghe T. High prevalence of endometriosis in infertile women with
normal ovulation and normospermic partners. Fertil Steril. 2009
Jul;92(1):68-74.
58. Li A, Ni Z, Zhang J, Cai Z, Kuang Y, Yu C. Transferrin Insufficiency
and Iron Overload in Follicular Fluid Contribute to Oocyte Dysmaturity
in Infertile Women With Advanced Endometriosis. Front Endocrinol
(Lausanne). 2020;11:391.
59. Chen X, Zhou Y, Wu D, Shu C, Wu R, Li S, et al. Iron overload
compromises preimplantation mouse embryo development. Reprod Toxicol.
2021 Oct;105:156-65.
60. Almeida CP, Ferreira MCF, Silveira CO, Campos JR, Borges IT, Baeta
PG, et al. Clinical correlation of apoptosis in human granulosa cells-A
review. Cell Biol Int. 2018 Sep;42(10):1276-81.
61. Ni Z, Li Y, Song D, Ding J, Mei S, Sun S, et al. Iron-overloaded
follicular fluid increases the risk of endometriosis-related infertility
by triggering granulosa cell ferroptosis and oocyte dysmaturity. Cell
Death Dis. 2022 Jul 4;13(7):579.
62. Tkach M, Théry C. Communication by Extracellular Vesicles: Where We
Are and Where We Need to Go. Cell. 2016 Mar 10;164(6):1226-32.
63. Li S, Zhou Y, Huang Q, Fu X, Zhang L, Gao F, et al. Iron overload in
endometriosis peritoneal fluid induces early embryo ferroptosis mediated
by HMOX1. Cell Death Discov. 2021 Nov 15;7(1):355.
64. Hu W, Zhang Y, Wang D, Yang T, Qi J, Zhang Y, et al. Iron
Overload-Induced Ferroptosis Impairs Porcine Oocyte Maturation and
Subsequent Embryonic Developmental Competence in vitro. Front Cell Dev
Biol. 2021;9:673291.
65. Sirmans SM, Pate KA. Epidemiology, diagnosis, and management of
polycystic ovary syndrome. Clin Epidemiol. 2013 Dec 18;6:1-13.
66. Dewailly D, Robin G, Peigne M, Decanter C, Pigny P, Catteau-Jonard
S. Interactions between androgens, FSH, anti-Müllerian hormone and
estradiol during folliculogenesis in the human normal and polycystic
ovary. Hum Reprod Update. 2016 Nov;22(6):709-24.
67. Zhang D, Yi S, Cai B, Wang Z, Chen M, Zheng Z, et al. Involvement of
ferroptosis in the granulosa cells proliferation of PCOS through the
circRHBG/miR-515/SLC7A11 axis. Ann Transl Med. 2021 Aug;9(16):1348.
68. Tan W, Dai F, Yang D, Deng Z, Gu R, Zhao X, et al. MiR-93-5p
promotes granulosa cell apoptosis and ferroptosis by the NF-kB signaling
pathway in polycystic ovary syndrome. Front Immunol. 2022;13:967151.
69. Zhang Y, Hu M, Jia W, Liu G, Zhang J, Wang B, et al.
Hyperandrogenism and insulin resistance modulate gravid uterine and
placental ferroptosis in PCOS-like rats. J Endocrinol. 2020
Sep;246(3):247-63.
70. Nasri F, Zare M, Doroudchi M, Gharesi-Fard B. Proteome Analysis of
CD4(+) T Cells Reveals Differentially Expressed Proteins in Infertile
Polycystic Ovary Syndrome Patients. Endocr Metab Immune Disord Drug
Targets. 2021;21(11):1998-2004.
71. Shi Q, Liu R, Chen L. Ferroptosis inhibitor ferrostatin‑1 alleviates
homocysteine‑induced ovarian granulosa cell injury by regulating TET
activity and DNA methylation. Mol Med Rep. 2022 Apr;25(4).
72. Hu M, Zhang Y, Ma S, Li J, Wang X, Liang M, et al. Suppression of
uterine and placental ferroptosis by N-acetylcysteine in a rat model of
polycystic ovary syndrome. Mol Hum Reprod. 2021 Nov 27;27(12).
73. Liu H, Xie J, Fan L, Xia Y, Peng X, Zhou J, et al. Cryptotanshinone
Protects against PCOS-Induced Damage of Ovarian Tissue via Regulating
Oxidative Stress, Mitochondrial Membrane Potential, Inflammation, and
Apoptosis via Regulating Ferroptosis. Oxid Med Cell Longev.
2022;2022:8011850.
74. Xu Y, Qin Z, Ma J, Cao W, Zhang P. Recent progress in nanotechnology
based ferroptotic therapies for clinical applications. Eur J Pharmacol.
2020 Aug 5;880:173198.
75. Wang JJ, Ge W, Zhai QY, Liu JC, Sun XW, Liu WX, et al. Single-cell
transcriptome landscape of ovarian cells during primordial follicle
assembly in mice. PLoS Biol. 2020 Dec;18(12):e3001025.
76. Wang F, Liu Y, Ni F, Jin J, Wu Y, Huang Y, et al. BNC1
deficiency-triggered ferroptosis through the NF2-YAP pathway induces
primary ovarian insufficiency. Nat Commun. 2022 Oct 5;13(1):5871.
77. Zhang D, Liu Y, Zhang Z, Lv P, Liu Y, Li J, et al. Basonuclin 1
deficiency is a cause of primary ovarian insufficiency. Hum Mol Genet.
2018 Nov 1;27(21):3787-800.
78. Young MF, Griffin I, Pressman E, McIntyre AW, Cooper E, McNanley T,
et al. Maternal hepcidin is associated with placental transfer of iron
derived from dietary heme and nonheme sources. J Nutr. 2012
Jan;142(1):33-9.
79. Zhang H, He Y, Wang JX, Chen MH, Xu JJ, Jiang MH, et al.
miR-30-5p-mediated ferroptosis of trophoblasts is implicated in the
pathogenesis of preeclampsia. Redox Biol. 2020 Jan;29:101402.
80. Zheng Y, Hu Q, Wu J. Adiponectin ameliorates placental injury in
gestational diabetes mice by correcting fatty acid oxidation/peroxide
imbalance-induced ferroptosis via restoration of CPT-1 activity.
Endocrine. 2022 Mar;75(3):781-93.
81. Wallis AB, Saftlas AF, Hsia J, Atrash HK. Secular trends in the
rates of preeclampsia, eclampsia, and gestational hypertension, United
States, 1987-2004. Am J Hypertens. 2008 May;21(5):521-6.
82. Ghulmiyyah L, Sibai B. Maternal mortality from
preeclampsia/eclampsia. Semin Perinatol. 2012 Feb;36(1):56-9.
83. Zur RL, Kingdom JC, Parks WT, Hobson SR. The Placental Basis of
Fetal Growth Restriction. Obstet Gynecol Clin North Am. 2020
Mar;47(1):81-98.
84. Leaños-Miranda A, Campos-Galicia I, Berumen-Lechuga MG, Molina-Pérez
CJ, García-Paleta Y, Isordia-Salas I, et al. Circulating Angiogenic
Factors and the Risk of Preeclampsia in Systemic Lupus Erythematosus
Pregnancies. J Rheumatol. 2015 Jul;42(7):1141-9.
85. Cardaropoli S, Todros T, Nuzzo AM, Rolfo A. Maternal serum levels
and placental expression of hepcidin in preeclampsia. Pregnancy
Hypertens. 2018 Jan;11:47-53.
86. Aires Rodrigues de Freitas M, Vieira da Costa A, Alves de Medeiros
L, da Silva Garrote Filho M, Lemos Debs Diniz A, Penha-Silva N. Are
There Differences in the Anthropometric, Hemodynamic, Hematologic, and
Biochemical Profiles between Late- and Early-Onset Preeclampsia? Obstet
Gynecol Int. 2018;2018:9628726.
87. Shaji Geetha N, Bobby Z, Dorairajan G, Jacob SE. Increased hepcidin
levels in preeclampsia: a protective mechanism against iron overload
mediated oxidative stress? J Matern Fetal Neonatal Med. 2022
Feb;35(4):636-41.
88. Toldi G, Stenczer B, Molvarec A, Takáts Z, Beko G, Rigó J, Jr., et
al. Hepcidin concentrations and iron homeostasis in preeclampsia. Clin
Chem Lab Med. 2010 Oct;48(10):1423-6.
89. Brunacci F, Rocha VS, De Carli E, Espósito BP, Ruano R, Colli C.
Increased serum iron in preeclamptic women is likely due to low hepcidin
levels. Nutr Res. 2018 May;53:32-9.
90. Kajiwara K, Beharier O, Chng CP, Goff JP, Ouyang Y, St Croix CM, et
al. Ferroptosis induces membrane blebbing in placental trophoblasts. J
Cell Sci. 2022 Mar 1;135(5).
91. Yang N, Wang Q, Ding B, Gong Y, Wu Y, Sun J, et al. Expression
profiles and functions of ferroptosis-related genes in the placental
tissue samples of early- and late-onset preeclampsia patients. BMC
Pregnancy Childbirth. 2022 Jan 31;22(1):87.
92. Patil SB, Kodliwadmath MV, Kodliwadmath M. Lipid peroxidation and
antioxidant activity in complicated pregnancies. Clin Exp Obstet
Gynecol. 2009;36(2):110-2.
93. Ahmadi R, Rahimi Z, Vaisi-Raygani A, Kiani A, Jalilian N, Rahimi Z.
Apolipoprotein E genotypes, lipid peroxidation, and antioxidant status
among mild and severe preeclamptic women from western Iran: protective
role of apolipoprotein ε2 allele in severe preeclampsia. Hypertens
Pregnancy. 2012;31(4):405-18.
94. Sarandöl E, Safak O, Dirican M, Uncu G. Oxidizability of
apolipoprotein B-containing lipoproteins and serum
paraoxonase/arylesterase activities in preeclampsia. Clin Biochem. 2004
Nov;37(11):990-6.
95. Wang Y, Zhang L, Zhou X. Activation of Nrf2 signaling protects
hypoxia-induced HTR-8/SVneo cells against ferroptosis. J Obstet Gynaecol
Res. 2021 Nov;47(11):3797-806.
96. Liao T, Xu X, Ye X, Yan J. DJ-1 upregulates the Nrf2/GPX4 signal
pathway to inhibit trophoblast ferroptosis in the pathogenesis of
preeclampsia. Sci Rep. 2022 Feb 21;12(1):2934.
97. Dipla K, Triantafyllou A, Grigoriadou I, Kintiraki E, Triantafyllou
GA, Poulios P, et al. Impairments in microvascular function and skeletal
muscle oxygenation in women with gestational diabetes mellitus: links to
cardiovascular disease risk factors. Diabetologia. 2017
Jan;60(1):192-201.
98. Murthi P, Vaillancourt C. RETRACTED: Placental serotonin systems in
pregnancy metabolic complications associated with maternal obesity and
gestational diabetes mellitus. Biochim Biophys Acta Mol Basis Dis. 2020
Feb 1;1866(2):165391.
99. Gautam S, Alam F, Moin S, Noor N, Arif SH. Role of ferritin and
oxidative stress index in gestational diabetes mellitus. J Diabetes
Metab Disord. 2021 Dec;20(2):1615-9.
100. Filomeni G, De Zio D, Cecconi F. Oxidative stress and autophagy:
the clash between damage and metabolic needs. Cell Death Differ. 2015
Mar;22(3):377-88.
101. Gauster M, Desoye G, Tötsch M, Hiden U. The placenta and
gestational diabetes mellitus. Curr Diab Rep. 2012 Feb;12(1):16-23.
102. Hernandez TL, Brand-Miller JC. Nutrition Therapy in Gestational
Diabetes Mellitus: Time to Move Forward. Diabetes Care. 2018
Jul;41(7):1343-5.
103. Peng HY, Li MQ, Li HP. High glucose suppresses the viability and
proliferation of HTR‑8/SVneo cells through regulation of the
miR‑137/PRKAA1/IL‑6 axis. Int J Mol Med. 2018 Aug;42(2):799-810.
104. Yung HW, Alnæs-Katjavivi P, Jones CJ, El-Bacha T, Golic M, Staff
AC, et al. Placental endoplasmic reticulum stress in gestational
diabetes: the potential for therapeutic intervention with chemical
chaperones and antioxidants. Diabetologia. 2016 Oct;59(10):2240-50.
105. Han D, Jiang L, Gu X, Huang S, Pang J, Wu Y, et al. SIRT3
deficiency is resistant to autophagy-dependent ferroptosis by inhibiting
the AMPK/mTOR pathway and promoting GPX4 levels. J Cell Physiol. 2020
Nov;235(11):8839-51.
106. Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD,
et al. Ovarian cancer statistics, 2018. CA Cancer J Clin. 2018
Jul;68(4):284-96.
107. Cannistra SA. Cancer of the ovary. N Engl J Med. 2004 Dec
9;351(24):2519-29.
108. Basuli D, Tesfay L, Deng Z, Paul B, Yamamoto Y, Ning G, et al. Iron
addiction: a novel therapeutic target in ovarian cancer. Oncogene. 2017
Jul 20;36(29):4089-99.
109. Liu N, Lin X, Huang C. Activation of the reverse transsulfuration
pathway through NRF2/CBS confers erastin-induced ferroptosis resistance.
British Journal of Cancer. 2020 2020/01/01;122(2):279-92.
110. Cheng Q, Bao L, Li M, Chang K, Yi X. Erastin synergizes with
cisplatin via ferroptosis to inhibit ovarian cancer growth in vitro and
in vivo. J Obstet Gynaecol Res 173. 2021 Jul;47(7):2481-91.
111. Kim R, Hashimoto A, Markosyan N, Tyurin VA, Tyurina YY, Kar G, et
al. Ferroptosis of tumour neutrophils causes immune suppression in
cancer. Nature. 2022 Nov 16.
112. Maiorino M, Conrad M, Ursini F. GPx4, Lipid Peroxidation, and Cell
Death: Discoveries, Rediscoveries, and Open Issues. Antioxid Redox
Signal. 2018 Jul 1;29(1):61-74.
113. Yan HF, Zou T, Tuo QZ, Xu S, Li H, Belaidi AA, et al. Ferroptosis:
mechanisms and links with diseases. Signal Transduct Target Ther. 2021
Feb 3;6(1):49.
Table 1. The comparison of main cell death