REFERENCES
  1. SARS-CoV-2 data explorer. (n.d.). outbreak.info. Retrieved January 11, 2023, from https://outbreak.info
  2. SARS-CoV-2 variants of concern as of 9 January 2023. (n.d.). European Centre for Disease Prevention and Control.https://www.ecdc.europa.eu/en/covid-19/variants-concern
  3. Tan, T. S., Toyoda, M., Ode, H., Barabona, G., Hamana, H., Kitamatsu, M., Kishi, H., Motozono, C., Iwatani, Y., & Ueno, T. (2022). Dissecting Naturally Arising Amino Acid Substitutions at Position L452 of SARS-CoV-2 Spike. Journal of virology, 96(20), e0116222.https://doi.org/10.1128/jvi.01162-22
  4. Jackson, C. B., Farzan, M., Chen, B., & Choe, H. (2021). Mechanisms of SARS-CoV-2 entry into cells. Nature Reviews Molecular Cell Biology, 23(1), 3–20.https://doi.org/10.1038/s41580-021-00418-x
  5. Ding, C., He, J., Zhang, X., Jiang, C., Sun, Y., Zhang, Y., Chen, Q., He, H., Li, W., Xie, J., Liu, Z., & Gao, Y. (2021). Crucial Mutations of Spike Protein on SARS-CoV-2 Evolved to Variant Strains Escaping Neutralization of Convalescent Plasmas and RBD-Specific Monoclonal Antibodies. Frontiers in Immunology, 12.https://doi.org/10.3389/fimmu.2021.693775
  6. Huo, J., Dijokaite-Guraliuc, A., Nutalai, R., Das, R., Zhou, D., Mentzer, A. J., Fry, E. E., Mongkolsapaya, J., Ren, J., Stuart, D. I., & Screaton, G. R. (2022). Humoral responses against SARS-CoV-2 Omicron BA.2.11, BA.2.12.1 and BA.2.13 from vaccine and BA.1 serum. Cell Discovery, 8(1).https://doi.org/10.1038/s41421-022-00482-3
  7. Shang, J., Ye, G., Shi, K., Wan, Y., Luo, C., Aihara, H., Geng, Q., Auerbach, A., & Li, F. (2020). Structural basis of receptor recognition by SARS-CoV-2. Nature, 581(7807), 221–224.https://doi.org/10.1038/s41586-020-2179-y
  8. Kyte, J., & Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology, 157(1), 105–132.https://doi.org/10.1016/0022-2836(82)90515-0
  9. Young, L., Jernigan, R., & Covell, D. (1994). A role for surface hydrophobicity in protein-protein recognition. Protein Science, 3(5), 717–729.https://doi.org/10.1002/pro.5560030501
  10. Su, C., He, J., Han, P., Bai, B., Li, D., Cao, J., Tian, M., Hu, Y., Zheng, A., Niu, S., Chen, Q., Rong, X., Zhang, Y., Li, W., Qi, J., Zhao, X., Yang, M., Wang, Q., & Gao, G. F. (2022). Molecular Basis of Mink ACE2 Binding to SARS-CoV-2 and Its Mink-Derived Variants. Journal of virology, 96(17), e0081422.https://doi.org/10.1128/jvi.00814-22
  11. Starr, T. N., Greaney, A. J., Hilton, S. K., Ellis, D., Crawford, K. H., Dingens, A. S., Navarro, M. J., Bowen, J. E., Tortorici, M. A., Walls, A. C., King, N. P., Veesler, D., & Bloom, J. D. (2020). Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding. Cell, 182(5), 1295-1310.e20.https://doi.org/10.1016/j.cell.2020.08.012
  12. Burkholz, S., Pokhrel, S., Kraemer, B. R., Mochly-Rosen, D., Carback, R. T., Hodge, T., Harris, P., Ciotlos, S., Wang, L., Herst, C., & Rubsamen, R. (2021). Paired SARS-CoV-2 spike protein mutations observed during ongoing SARS-CoV-2 viral transfer from humans to minks and back to humans. Infection, Genetics, and Evolution, 93, 104897.https://doi.org/10.1016/j.meegid.2021.104897
  13. Su, C., He, J., Han, P., Bai, B., Li, D., Cao, J., Tian, M., Hu, Y., Zheng, A., Niu, S., Chen, Q., Rong, X., Zhang, Y., Li, W., Qi, J., Zhao, X., Yang, M., Wang, Q., & Gao, G. F. (2022b). Molecular Basis of Mink ACE2 Binding to SARS-CoV-2 and Its Mink-Derived Variants. Journal of Virology, 96(17).https://doi.org/10.1128/jvi.00814-22
FIGURE LEGEND: (A) Mutational analysis of spike glycoprotein RBD region of SARS-CoV-2 Omicon. Hydrophobicity of amino acids according to the Kyte and Doolittle scale is represented as superscript. (B) Representation of RBD residues interacting specifically with the hACE2 receptor across 18 omicron sublineages.
Unique mutations are highlighted in red and hACE2 positions interacting with RBD are highlighted below the sequence in orange.