REFERENCES
- SARS-CoV-2 data explorer. (n.d.). outbreak.info. Retrieved January 11,
2023, from https://outbreak.info
- SARS-CoV-2 variants of concern as of 9 January 2023. (n.d.). European
Centre for Disease Prevention and Control.https://www.ecdc.europa.eu/en/covid-19/variants-concern
- Tan, T. S., Toyoda, M., Ode, H., Barabona, G., Hamana, H., Kitamatsu,
M., Kishi, H., Motozono, C., Iwatani, Y., & Ueno, T. (2022).
Dissecting Naturally Arising Amino Acid Substitutions at Position L452
of SARS-CoV-2 Spike. Journal of virology, 96(20), e0116222.https://doi.org/10.1128/jvi.01162-22
- Jackson, C. B., Farzan, M., Chen, B., & Choe, H. (2021). Mechanisms
of SARS-CoV-2 entry into cells. Nature Reviews Molecular Cell Biology,
23(1), 3–20.https://doi.org/10.1038/s41580-021-00418-x
- Ding, C., He, J., Zhang, X., Jiang, C., Sun, Y., Zhang, Y., Chen, Q.,
He, H., Li, W., Xie, J., Liu, Z., & Gao, Y. (2021). Crucial Mutations
of Spike Protein on SARS-CoV-2 Evolved to Variant Strains Escaping
Neutralization of Convalescent Plasmas and RBD-Specific Monoclonal
Antibodies. Frontiers in Immunology, 12.https://doi.org/10.3389/fimmu.2021.693775
- Huo, J., Dijokaite-Guraliuc, A., Nutalai, R., Das, R., Zhou, D.,
Mentzer, A. J., Fry, E. E., Mongkolsapaya, J., Ren, J., Stuart, D. I.,
& Screaton, G. R. (2022). Humoral responses against SARS-CoV-2
Omicron BA.2.11, BA.2.12.1 and BA.2.13 from vaccine and BA.1 serum.
Cell Discovery, 8(1).https://doi.org/10.1038/s41421-022-00482-3
- Shang, J., Ye, G., Shi, K., Wan, Y., Luo, C., Aihara, H., Geng, Q.,
Auerbach, A., & Li, F. (2020). Structural basis of receptor
recognition by SARS-CoV-2. Nature, 581(7807), 221–224.https://doi.org/10.1038/s41586-020-2179-y
- Kyte, J., & Doolittle, R. F. (1982). A simple method for displaying
the hydropathic character of a protein. Journal of Molecular Biology,
157(1), 105–132.https://doi.org/10.1016/0022-2836(82)90515-0
- Young, L., Jernigan, R., & Covell, D. (1994). A role for surface
hydrophobicity in protein-protein recognition. Protein Science, 3(5),
717–729.https://doi.org/10.1002/pro.5560030501
- Su, C., He, J., Han, P., Bai, B., Li, D., Cao, J., Tian, M., Hu, Y.,
Zheng, A., Niu, S., Chen, Q., Rong, X., Zhang, Y., Li, W., Qi, J.,
Zhao, X., Yang, M., Wang, Q., & Gao, G. F. (2022). Molecular Basis of
Mink ACE2 Binding to SARS-CoV-2 and Its Mink-Derived Variants. Journal
of virology, 96(17), e0081422.https://doi.org/10.1128/jvi.00814-22
- Starr, T. N., Greaney, A. J., Hilton, S. K., Ellis, D., Crawford, K.
H., Dingens, A. S., Navarro, M. J., Bowen, J. E., Tortorici, M. A.,
Walls, A. C., King, N. P., Veesler, D., & Bloom, J. D. (2020). Deep
Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals
Constraints on Folding and ACE2 Binding. Cell, 182(5), 1295-1310.e20.https://doi.org/10.1016/j.cell.2020.08.012
- Burkholz, S., Pokhrel, S., Kraemer, B. R., Mochly-Rosen, D., Carback,
R. T., Hodge, T., Harris, P., Ciotlos, S., Wang, L., Herst, C., &
Rubsamen, R. (2021). Paired SARS-CoV-2 spike protein mutations
observed during ongoing SARS-CoV-2 viral transfer from humans to minks
and back to humans. Infection, Genetics, and Evolution, 93, 104897.https://doi.org/10.1016/j.meegid.2021.104897
- Su, C., He, J., Han, P., Bai, B., Li, D., Cao, J., Tian, M., Hu, Y.,
Zheng, A., Niu, S., Chen, Q., Rong, X., Zhang, Y., Li, W., Qi, J.,
Zhao, X., Yang, M., Wang, Q., & Gao, G. F. (2022b). Molecular Basis
of Mink ACE2 Binding to SARS-CoV-2 and Its Mink-Derived Variants.
Journal of Virology, 96(17).https://doi.org/10.1128/jvi.00814-22
FIGURE LEGEND: (A) Mutational analysis of spike glycoprotein
RBD region of SARS-CoV-2 Omicon. Hydrophobicity of amino acids according
to the Kyte and Doolittle scale is represented as superscript. (B)
Representation of RBD residues interacting specifically with the hACE2
receptor across 18 omicron sublineages.
Unique mutations are highlighted in red and hACE2 positions interacting
with RBD are highlighted below the sequence in orange.