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Abstract: The atmospheric CO2 growth rate is a fundamental measure of climate forcing. NOAA’s growth rate estimates, 

derived from in situ observations at the marine boundary layer (MBL), serve as the benchmark in policy and science. 

However, NOAA's MBL-based method encounters challenges in accurately estimating the whole-atmosphere CO2 growth 

rate at sub-annual scales. We introduce the Growth Rate from Satellite Observations (GRESO) method as a complementary 

approach to estimate the whole-atmosphere CO2 growth rate utilizing satellite data. Satellite CO2 observations offer 25 

extensive atmospheric coverage that extends the capability of the current NOAA benchmark. We assess the sampling errors 

of the GRESO and NOAA methods using ten atmospheric transport model simulations. The simulations generate synthetic 

OCO-2 satellite and NOAA MBL data for calculating CO2 growth rates, which are compared against the global sum of 

carbon fluxes used as model inputs. We find good performance for the NOAA method (R = 0.93, RMSE = 0.12 ppm year-1 
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or 0.25 PgC year-1). GRESO demonstrates lower sampling errors (R = 1.00; RMSE = 0.04 ppm year-1 or 0.09 PgC year-1). 30 

Additionally, GRESO shows better performance at monthly scales than NOAA (R = 0.77 vs 0.47, respectively). Due to 

CO2's atmospheric longevity, the NOAA method accurately captures growth rates over five-year intervals. GRESO's 

robustness across partial coverage configurations (ocean or land data) shows that satellites can be promising tools for low-

latency CO2 growth rate information, provided the systematic biases are minimized using in situ observations. Along with 

accurate and calibrated NOAA in situ data, satellite-derived growth rates can provide information about the global carbon 35 

cycle at sub-annual scales. 

1 Introduction 

Accurate estimations of atmospheric CO2 abundance and growth rates are vital for climate monitoring, predictions, and 

policymaking. Since the pre-industrial times, the global mean abundance of CO2 has increased by more than 50%, rising 

from 278 parts per million (ppm) to 419 ppm as of September 2023 (Lan et al., 2023). CO2 is the most significant 40 

anthropogenic greenhouse gas, contributing to approximately 66% of the radiative forcing by long-lived greenhouse gases. It 

has been responsible for an 80% increase in radiative forcing over the last decade (WMO, 2022).  

 

The change in the number of atmospheric CO2 molecules for any time interval is equal to the global net surface flux of CO2 

over the same interval. CO2 has negligible atmospheric chemical destruction and a small amount of atmospheric chemical 45 

production from carbon monoxide (~ 0.2 PgC vs. an atmospheric CO2 burden of ~ 850 PgC). Moreover, atmospheric 

chemical production generally has low interannual and intra-annual variability, leading to negligible influence on global 

growth rates.  

 

Figure 1 displays the estimated growth rate of CO2 for recent decades estimated from monthly global CO2 mean values from 50 

the National Oceanic and Atmospheric Administration (NOAA) using Marine Boundary Layer (MBL) atmospheric CO2 

observations. Emissions from anthropogenic activities, such as fossil fuel combustion, cement production, and land-use 

changes, are also shown. Anthropogenic sources are estimated to have emitted 11 petagrams of carbon (PgC) in 2021 

(Friedlingstein et al., 2022a). The land biosphere and ocean act as net sinks for CO2, absorbing, on average, about half of the 

emissions from human activities. These sinks are sensitive to major climate variation modes such as the El Niño-Southern 55 

Oscillation (ENSO) (Bacastow, 1976). The total sink, comprising land and ocean sinks, varies from 20% to 80% of annual 

anthropogenic emissions. The land sink shows substantial interannual variability, influenced by the balance between 

photosynthetic CO2 uptake, respiratory release, and fires. Although much smaller in magnitude, variations in ocean fluxes 

also impact the interannual CO2 growth rate (Feely et al., 1999; Chatterjee et al., 2017). The proportion of anthropogenic 

CO2 that remains in the atmosphere, known as the airborne fraction (AF), drives variations of the atmospheric growth rates, 60 
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which can reveal trends in the carbon cycle (Knorr, 2009; Ballantyne et al., 2012; Van Marle et al., 2022; Bennedsen et al., 

2023). Accurate estimation of CO2 growth rates is essential for evaluating the climate sensitivity of land carbon fluxes in 

Earth system models and reducing uncertainty in climate predictions (Cox et al., 2013; Barkhordarian et al., 2022).  

 

 65 

 

Figure 1. Fossil fuel and other anthropogenic CO2 emissions vs. atmospheric growth rate of CO2. The growth rate time 

series (black line) is calculated from deseasonalized monthly global MBL CO2 mole fraction estimates provided by NOAA 

(Lan et al., 2023). To underscore the significant variability in the natural carbon sink, monthly growth rates are shown 

instead of the more accurate officially reported annual growth rates from NOAA. The anthropogenic CO2 emissions (red 70 

line) are taken from the Global Carbon Project (Friedlingstein et al., 2022a). The emissions are interpolated to monthly 

scales, employing a cubic spline fit. The background vertical shading corresponds to the monthly-resolution Multivariate 

ENSO Index (MEI; Wolter et al., 2011). The area shaded in green represents the removal of CO2 by land and ocean sinks. 

Tick marks on the right-hand y-axis represent the equivalent global net CO2 fluxes, expressed in units of PgC year-1. 

 75 

Continuous observations of CO2 at remote background sites (Mauna Loa and the South Pole) commenced in the 1950s by 

the Scripps Institution of Oceanography. Within the large seasonal and latitudinal variations, these CO2 observations 

revealed a "small but persistent growth in concentration" (Keeling, 1960). To monitor this growth, NOAA’s Global 

Monitoring Laboratory (GML) established the Global Greenhouse Gas Reference Network (GGGRN), which collects flask 

air samples from 50 remote sites globally (Figure 2) in addition to numerous sites on various platforms over the continents. 80 

The NOAA growth rate estimation method employs in situ CO2 observations from the MBL observation sites in their 

network to estimate growth rates of CO2, and other trace gases such as methane and nitrous oxide (CCGCRV, 2023; Lan et 

al., 2023; Masarie and Tans, 1995). These growth rates represent the longest continuous record of direct observations of 

global CO2 changes as a function of latitude, with the extended NOAA network dating back to the mid-1970s. 

 85 
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Figure 2. Coverage of NOAA MBL in situ flask-air observations for 2015-2020. Panel A illustrates the locations of MBL 

sites. Crosses indicate ground-based sites, whereas shipboard measurements in the Pacific Ocean are represented by dots, 

corresponding to the locations of those measurements for growth rate calculations. Panel B delineates the temporal extent of 

CO2 flask observations for each site. The temporal coverage of all shipborne observations in the Pacific is aggregated and 90 

represented under a single label designated as POC. 

 

 

NOAA's growth rates are the current benchmark, widely utilized in policy and scientific contexts, for example, providing the 

foundation for the Global Carbon Budget Project (Friedlingstein et al., 2022a). However, the MBL in situ observation 95 

network is limited to surface measurements at remote marine locations. This incomplete sampling of the whole atmosphere 

impacts NOAA's growth rate estimates due to the combined effect of (1) interannual variations in CO2 fluxes, atmospheric 

transport mechanisms that connect these fluxes to observations, and (2) the lack of representation of the vertical component 

of the atmosphere (Pandey et al., 2019). Thus, NOAA’s MBL CO2 abundance and growth rate estimates can be considered to 

be strictly valid for the MBL, not the entire atmosphere, even though these MBL values are implicitly used as proxies for 100 

both whole-atmosphere CO2 abundance and growth. NOAA’s MBL CO2 uncertainty estimates (Ballantyne et al., 2012; and 

described below in the Methods) account for incomplete sampling, but only with respect to the distribution of sites within the 

MBL and cannot be considered uncertainties for representing the whole atmosphere.  

 

Surface network data may not precisely reflect the true, mass-weighted whole-atmosphere average CO2 mole fraction due to 105 

the limitations of vertical and horizontal mixing. The CO2 increase in the stratosphere trails behind that in the marine 

boundary layer, while concentrations in the continental boundary layer typically lead, often offsetting each other (Ballantyne 

et al., 2012). Therefore, whole-atmosphere inaccuracies are minimal over spans of 5 to 10 years due to atmospheric mixing 

and the very long atmospheric lifetime of CO2. However, residual inaccuracies remain at the annual scale, necessitating 

further examination, as recognized by the Global Carbon Budget 2021 paper (Friedlingstein et al., 2022a). 110 
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NOAA publishes annual CO2 growth rates for each year in April of the following year, a four-month latency primarily due to 

two factors. Firstly, the growth rate for a calendar year can only be determined several months into the subsequent year, as 

flask-air samples need to be shipped to NOAA GML’s Boulder laboratory from very remote sampling locations. Secondly, 

the estimated growth rate for a given year is subject to “end effects” in the trend curve calculations that need approximately 115 

four months to begin to stabilize (see Figure 9/Section 4.5). 

 

Science and policy applications could benefit from the availability of growth rates with lower latency and better temporal 

resolution than annual values. Fine-temporal-resolution global growth rates can serve as a valuable tool for the immediate 

tracking of anthropogenic and biospheric carbon fluxes amid climatic irregularities such as droughts, heatwaves, and floods. 120 

For instance, the impact of the COVID-19 pandemic on CO2 growth rates was being investigated concurrently with the event 

(Weir et al., 2021; Laughner et al., 2021). Similarly, the 2015-2016 El Niño effects were studied in real-time (Chatterjee et 

al., 2017; Liu et al., 2017). This is also relevant for areas prone to aggressive climate shifts (William et al., 2022). Monthly-

to-seasonal-scale regional events affect the global CO2 growth rate. For example, the 2023 Canadian fires released between 

572–705 Tg C over five months (Byrne et al., 2023). The significant flux signal might have been observable in sub-annual 125 

CO2 growth rates, which are challenging to estimate using the current MBL in situ network. The rapid availability of satellite 

data can facilitate low-latency estimations of growth rates, which can be used as a preliminary low-latency measure of 

extreme climate incidents, allowing for monitoring well in advance of the more intricate outputs derived from sophisticated 

atmospheric inverse models or biosphere models. Satellite observations provide more extensive atmospheric sampling and 

low-latency data, but their use has not been fully explored to calculate growth rates. 130 
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Figure 3. The spatial and temporal coverage of OCO-2 CO2 observations. Panels A and B illustrate the number of single-135 

sounding observations per 5° × 5° grid cell (latitude and longitude) for June and December 2018, respectively, representing 

the typical extremes in seasonal coverage patterns. Panel C displays the number of observations per month, denoted by blue 

'+' symbols, and the percentage of Earth's area covered by filled 5° × 5° grids with observations, denoted by red '×' symbols. 

Panel D depicts a typical averaging kernel for OCO-2, which describes the sensitivity of a CO2 observation as a function of 

pressure. The figure is discussed in Sections 2 and 3.2. 140 

 

 

The Orbiting Carbon Observatory-2 (OCO-2) satellite, launched in July 2014, measures column-average dry-air mole 

fractions of CO2 (i.e., moles of CO2 per mole of dry air, typically expressed as ppm), commonly denoted as XCO2, with 

near-global coverage (Crisp et al., 2017; Eldering et al., 2017). Figure 3 shows the coverage of OCO-2. Satellite 145 

measurements have wider horizontal coverage than the MBL in situ observations used by NOAA. Also, satellite 

measurements utilize CO2 bands in the shortwave infrared (SWIR), which are sensitive to CO2 throughout the troposphere 

and partially sensitive in the stratosphere (Figure 3D). Above the tropopause, where the averaging kernel deviates from 

unity, CO2 abundance information is derived in part from a priori CO2 profiles so that total column abundance can be 

estimated. Some studies have attempted to estimate growth rates using satellite data. For example, Buchwitz et al. (2018) 150 

published growth rates from combined SCIAMACHY-ENVISAT and GOSAT, and National Institute for Environmental 

Studies publishes growth rates from GOSAT data (NIES, 2023).  
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Despite the better atmospheric coverage of satellites, the lower accuracy and precision of XCO2 relative to in situ 

measurements may yield satellite-derived growth rates with greater uncertainty than NOAA estimates. The current level of 155 

trust in growth rates derived from satellite observations, or even from atmospheric flux inversions, does not match the 

confidence in global growth rates provided by NOAA. Growth rates, or 3D mole fraction fields based on inverse-posterior 

fluxes, are still validated against NOAA MBL-based estimates (Buchwitz et al., 2018; Taylor et al., 2023; Byrne et al., 

2023). The advantage of better atmospheric coverage by satellite in reducing sampling errors remains unknown.  

 160 

We present a new method, the Growth Rate from Satellite Observations (GRESO), which is tailored for determining growth 

rates using satellite data. While the GRESO method draws on the NOAA approach, it is specifically optimized to leverage 

the enhanced atmospheric sampling capabilities of satellites. The error in real-world growth rates derived from satellite data 

will be the quadratic sum of the sampling errors and the biases that remain uncorrected by the bias correction schemes. This 

study focuses only on understanding and minimizing atmospheric sampling errors. Using Observing System Simulation 165 

Experiments (OSSEs), we evaluate the whole-atmosphere sampling uncertainties inherent in the NOAA and GRESO 

methods. 

 

The rest of this paper is structured as follows: Section 2 explores the concept of CO2 growth rate, details the NOAA method, 

and introduces the GRESO method. Section 3 provides a deeper look into our data and methodology, including using the 170 

OSSE approach to estimate errors in growth rate methods. Section 4 unveils our results and discussion, examining our OSSE 

results and the sampling errors linked to NOAA and GRESO estimates. Following this, we present a series of stress tests 

using the OSSE setup to evaluate the robustness of the GRESO method. Additionally, we briefly touch on other methods of 

growth rate estimates. After that, we discuss the delay in the availability of these estimates. Section 5 gives the summary and 

outlook. 175 

2 Growth rate estimation methods 

A growth rate method estimates the change in globally averaged mole fraction of CO2. The growth rate 𝐺𝐴𝑇𝑀  (𝑡1, 𝑡2) over a 

period 𝑡1 − 𝑡2 can be calculated as follows: 

 

 𝐺𝐴𝑇𝑀(𝑡1, 𝑡2) =  𝑘
 𝑀𝐴𝑇𝑀(𝑡2)−𝑀𝐴𝑇𝑀(𝑡1)

𝑡2−𝑡1 
 ,  …….. (1)  180 

 

where 𝑀𝐴𝑇𝑀 (𝑡) is the whole-atmosphere average mole fraction in ppm, i.e., the total number of CO2 molecules in the 

atmosphere divided by the total number of air molecules after removal of the water vapor component. The constant k = 2.124 
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PgC ppm-1 serves as a conversion factor. It is derived assuming (instantaneous) dilution of a unit amount of CO2 into the 

entire atmosphere (Ballantyne et al., 2012; Friedlingstein et al., 2022a).  185 

 

A growth rate method calculates the time series 𝑀𝐴𝑇𝑀(𝑡) using a set of discrete atmospheric CO2 observations (𝑍) of the 

continuous four-dimensional CO2 mole fraction field 𝑚(𝑙𝑥 , 𝑙𝑦 , ℎ, 𝑡), where 𝑙𝑥 , 𝑙𝑦 , ℎ are longitude, latitude, and the 

geopotential height, respectively. 𝑀𝐴𝑇𝑀(𝑡) approximates the true density-weighted average of the mole fraction field, 𝑚̅(𝑡), 

across 𝑙𝑥  , 𝑙𝑦  and ℎ:  190 

 

𝑀𝐴𝑇𝑀(𝑡) = 𝑚̅(𝑡) + 𝜖(𝑡), ………  (2) 

 

where, 𝜖 (𝑡)  denotes the error, comprising the measurement error, sampling error (the error due to incomplete sampling of 

the mole fraction field), and model theory error associated with the growth rate method. The net flux of CO2 into or out of 195 

the atmosphere is equal to 𝑘
𝑑𝑚̅(𝑡)

𝑑𝑡
.  While the atmospheric chemical production of CO2 (mainly via oxidation of CO by OH) 

is not negligible in any given year, its year-to-year variability and, thus, contribution to 
𝑑𝑚̅(𝑡)

𝑑𝑡
 is negligible. 𝜖(𝑡) can be 

decomposed into time-dependent error component 𝛼(𝑡), with mean of zero, and time-invariant error components 𝛽:  

 

𝜖(𝑡) =   𝛼𝑏(𝑡) + 𝛼𝑟(𝑡) +  𝛽𝑏 + 𝛽𝑟      ……….  (3) 200 

 

The subscripts b and r represent the systematic and random components of the error, respectively. When calculating 𝐺𝐴𝑇𝑀 , 

the 𝛽  error terms of 𝑀𝐴𝑇𝑀 cancel out as per Equation 1. The random error component 𝛼𝑟(𝑡) is not a major contributor to the 

overall error owing to a large number of measurements used. Typically, the analytical random error is about 0.10 ppm for in 

situ observations and about 0.5 ppm for satellite observations. A growth rate method uses thousands of observations, so the 205 

random errors are diminished quickly following of the law of large numbers, for all practical purposes. The main error 

sustained when calculating growth rates 𝐺𝐴𝑇𝑀(𝑡1, 𝑡2) results from 𝛼𝑏(𝑡1) and 𝛼𝑏(𝑡2). It comprises (1) sampling errors due to 

absolute and year-to-year changes in observations coverage, and (2) temporally varying observations biases or growth rate 

biases in observations. Growth rate methods are designed to minimize the sampling error component of 𝛼𝑏(𝑡), but errors due 

to growth rate biases in retrievals as well as in situ observations are difficult to address.  210 

2.1 The NOAA growth rate method 

CO2 observations at each NOAA MBL site exhibit a seasonal cycle, long-term trend, and noise attributable to local 

influences (Keeling, 1960). NOAA reports annual growth rate estimates using a combination of filtering, deseasonalization, 

interpolation, and data-extension techniques (Masarie and Tans, 1995). The method first creates a continuous, smoothed, and 
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deseasonalized weekly CO2 time series for each MBL measurement site, 𝑀𝑠𝑖𝑡𝑒(𝑡) (Thoning et al., 1989). For each site, the 215 

measurements (𝑍𝑠𝑖𝑡𝑒(𝑡)) are fitted to a function using least squares minimization of residuals to a function composed of a 

quadratic polynomial 𝜙𝑝(𝑡) to capture the long-term trend, along with a harmonic function 𝜙h(t) with eight harmonic 

parameters to represent the average seasonal cycle as follows.  

 

𝑍𝑠𝑖𝑡𝑒(𝑡) = 𝜙𝑝(𝑡) + 𝜙h(t) +  𝑅(𝑡)    220 

𝜙𝑝(𝑡)= 𝑐0 + 𝑐1𝑡 + 𝑐2𝑡2 

𝜙ℎ(t) =  ∑ [𝑏2𝑘−1 sin(2𝜋𝑘𝑡) + 𝑏2𝑘 cos(2𝜋𝑘𝑡)]4
𝑘=1   ……… (4) 

 

After determining the coefficients for the polynomial and harmonic functions, the residuals 𝑅(𝑡) are computed by 

subtracting the function values from the original dataset (𝑅(𝑡) =  𝑍𝑠𝑖𝑡𝑒(𝑡) − 𝜙𝑝(𝑡) − 𝜙ℎ(𝑡)). These residuals are then 225 

filtered twice (in the frequency domain), once using a low-pass filter with a cutoff frequency typically set to a value 

equivalent to 80 days and once with a cutoff equivalent to 667 days. The short filter is intended to remove higher frequency 

noise, for example, associated with synoptic-scale variability, and capture interannual variations in seasonality not captured 

by the initial least-squares fit.  The long filter is intended to remove any remaining seasonal variability as well as some 

interannual variability and thereby isolate longer-term trends.  The smoothed residuals are then transformed back into the 230 

time domain via an inverse Fast Fourier Transform.  𝑀𝑠𝑖𝑡𝑒(𝑡) is generated using the “trend curve”, which is the sum of 𝜙𝑝(𝑡) 

and 𝑅(𝑡) filtered with the large cutoff value (CCGCRV, 2023). Additionally, as first described by Masarie and Tans, (1995), 

a “difference” climatology (comparing adjacent sites) is used to fill in long gaps in measurement time series at any given 

site.  The set of fully gap-filled time series from all sites is then synchronized to 48 “quasi-weeks” per year. This gap-filling 

and synchronization process results in “extended” data records, which form the basis for calculating global, annual mean 235 

CO2 (and other long-lived GHGs). 

 

Then, for each quasi-week, CO2 values from all sites are fitted meridionally. The fitted curve is then sampled in forty-one 

0.05 sine of latitude (equal area) increments (Tans et al., 1989). This process results in a matrix with dimensions of 41 by 48 

by the number of years, representing the north-south and temporal distribution of MBL CO2. A time-dependent global mean 240 

MBL CO2 is then calculated simply by averaging along the north-south dimension. Annual growth rates are determined by 

subtracting the mean values for December and January (abbreviated as MDJ) of one year from the MDJ values of the 

following year as a way of suppressing some noise (as opposed to interpolating the quasi-week values to January 1). This 

calculation approximates the net amount of CO2 added to or removed from the atmosphere due to both anthropogenic 

emissions and net land and ocean sinks over the course of the year. The method approximates global mean MBL CO2 to 245 

represent the whole-atmosphere CO2 mole fraction (𝑀𝑀𝐵𝐿  (𝑡)~𝑀𝐴𝑇𝑀 (𝑡)). Previous tests with inverse model-generated 

three-dimensional distributions of atmospheric CO2 have shown that the MBL is a good proxy for the whole-atmosphere 
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CO2 abundance, due to the cancellation of errors by not representing the continental boundary layer, with higher CO2 

generally, and not representing the stratosphere, with lower CO2 (see Methods of Ballantyne et al., 2012). 

 250 

To evaluate the sampling error of the MBL portion of the GGGRN, NOAA employs a bootstrap method, generating 100 

alternative global networks from existing NOAA/GML MBL sites (Conway, 1994). Each of these alternative networks 

maintains the same number of sites but may contain duplicates or omissions. Furthermore, each network is required to 

include at least one site from the southern, tropical, and northern high latitudes. These alternative networks also retain their 

temporal data gaps. Starting in September 2018, NOAA introduced an additional term for analytical uncertainty, calculated 255 

using a Monte Carlo method. NOAA-reported growth rate uncertainties are based primarily on the spread (the inner 68th 

percentile) of the bootstrap ensemble. Measurement uncertainty constitutes a small component of the total uncertainty, 

particularly in the timeframe examined in this study (Ballantyne et al., 2012). The globally averaged surface CO2 

concentrations, both monthly and annual means, along with annual growth rates, are made publicly available on the NOAA 

webpage (Lan et al., 2023).  260 

 

2.2 Growth rate from satellite observations (GRESO) method 

Figure 4 lists the main steps of the GRESO method. The GRESO method can be divided into two groups of processing steps: 

(1) sequential aggregation and (2) time series processing.  

 265 

Sequential aggregation generates a representative global CO2 mole fraction time series 𝑀𝐴𝑇𝑀(𝑡) from individual OCO-2 

soundings. This process uses stepwise averaging and data elimination to ensure that areas with high numbers of observations 

or high errors do not overly influence the global CO2 mole fraction time series. The OCO-2 soundings have a footprint size 

of 1.25 km x 2.2 km. They are first converted into 10-second average OCO-2 XCO2 (referred to as 10s XCO2 observations 

hereafter). Mean XCO2 observations over 10-second intervals (equivalent to about 67.5 km along the satellite's trajectory) 270 

are calculated by weighting based on the inverse of the square of the XCO2 uncertainty from the retrieval. To consider the 

potential correlations between individual measurements, assumed correlations of +0.3 for land scenes and +0.6 for ocean 

scenes are incorporated in calculating the mean and uncertainty for the 10s averages. The measurements with lower 

uncertainties contribute more to the final 10s average than those with higher uncertainties. For a detailed description of this 

approach, see Baker et al. (2022).  275 

 

In the subsequent step, poor-quality 10s data are filtered out. Initially, measurements with uncertainties exceeding two ppm 

are discarded. Additional filtering is implemented to eliminate unrealistic XCO2 values for well-mixed atmospheric CO2. 

The 10s data are grouped into 16-day intervals, and XCO2 values deviating by more than five standard deviations from the 
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group's median are discarded. This procedure aids in removing unrealistic XCO2 values in the CO2 field of a well-mixed 280 

atmosphere. 

 

 

Figure 4. Schematic flowchart of the growth rate from satellite observations (GRESO) method.  

 285 

The remaining 10s XCO2 data are then processed by averaging them onto a grid with a resolution of 5° latitude by 5° 

longitude and a temporal resolution of 16 days. This results in a three-dimensional array with dimensions for latitude, 

longitude, and time. The average CO2 mole fraction along the longitude dimension is then calculated, producing a two-

dimensional array of CO2 mole fraction time series for each 5° latitude band. After that, averaging is performed along the 

latitude dimension, weighted with the cosine of latitude to account for the changes in meridional atmospheric airmass. This 290 

results in a time series of globally representative CO2 mole fractions. This time series is smoothed using a running 3-point 

median to give the global CO2 time series 𝑀𝐴𝑇𝑀, with a temporal resolution of 16 days.  
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The time series processing steps are as follows. 𝑀𝐴𝑇𝑀 is interpolated for missing data points in the time domain and then, 

both annual and deseasonalized monthly CO2 growth rates are calculated. 𝑀𝐴𝑇𝑀 is modeled as a sum of polynomial, 295 

harmonic, and residual functions using the method described by Equation 4. This deseasonalized version of the global CO2 

time series (𝑀𝐴𝑇𝑀,𝐷
  (𝑡)) is then obtained by adding only the polynomial term and a linearly interpolated residual function, 

𝑀𝐴𝑇𝑀,𝐷
 (𝑡)  =  𝜙𝑝(𝑡) + 𝑅(𝑡). Thereafter, 𝑀𝐴𝑇𝑀,𝐷

  (𝑡) is sampled at the beginning of each calendar month. The difference in 

CO2 concentrations between consecutive time steps is used to obtain the monthly growth rate in ppm month-1 (Equation 1). 

Averaging the growth rates of each month within a year yields the annual growth rate, which represents the CO2 growth rate 300 

from midnight of December 31st of the preceding year to midnight of December 31st of the current year. This annual growth 

rate is equivalent to the sum of all the monthly CO2 fluxes during that year. Note that because the monthly growth rates are 

calculated from deseasonalized global CO2 time series, they do not have a seasonal cycle.  

3. Method and Data 

To understand the sampling errors of the NOAA and GRESO methods, we design OSSEs using posterior (optimized) three-305 

dimensional estimates of CO2 mole fractions from atmospheric CO2 inversions from the OCO-2 version 10 Model 

Intercomparisons Project (MIP; Byrne et al., 2023). For each MIP model run used here, the estimated total surface CO2 flux 

over any time interval is known and identically matches the estimated change in whole-atmosphere CO2 abundance over the 

same interval. Growth rates from these methods are estimated by sampling the posterior mole fraction fields at the times and 

locations of the true MBL flask-air and OCO-2 soundings (“co-samples”), with OSSE “truth” defined as the posterior fluxes 310 

of the MIP inversions.  

3.1 NOAA point measurements 

NOAA’s Global Monitoring Laboratory (GML) monitors atmospheric CO2 abundance in the remote surface atmosphere as 

part of its GGGRN (Conway et al., 1994). The network is an international collaborative effort which includes regular 

discrete flask-air samples from the GML baseline observatories, cooperative fixed sites, and commercial ships (Figure 2). 315 

Air samples are collected in 2.2 L borosilicate flasks approximately weekly from these globally distributed networks of sites. 

The flasks are measured in GML’s Boulder laboratory for dry air mole fraction of CO2, reported in ppm. Because the 

atmospheric gradients of CO2 are small in the background atmosphere far from sources of pollution, the World 

Meteorological Organization (WMO) Global Atmosphere Watch (GAW) has adopted a single reference scale (currently 

X2019; Hall et al., 2021), maintained and disseminated by NOAA, upon which to base all measurements made within the 320 

program. The scale is based on the International System of Units (called “SI”) and is recognized by the International Bureau 

of Weights and Measures (BIPM), the coordinating body of metrology laboratories. NOAA participates in regular 

comparisons of standards for “Amount of Substance Ratios” (mole fractions) for greenhouse gases organized by the BIPM. 
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Most, but not all, CO2 mole fraction measurements are calibrated to the NOAA scale.  The WMO mole fraction scale is also 

the target CO2 scale to which remote sensing measurements such as those from TCCON and OCO-2 are linked via calibrated 325 

in situ measurements. 

3.2 OCO-2 observations 

The OCO-2 satellite operates in a sun-synchronous, near-polar orbit at an altitude of 705 km. Its equatorial crossing time is 

between 13:21 and 13:30 local time, with ground tracks more closely spaced at high latitudes than at mid-latitudes. As part 

of the Earth Observing System's (EOS) Afternoon Constellation (A-Train), OCO-2 has a 16-day ground track repeat cycle 330 

providing global XCO2 coverage twice a month. OCO-2 is equipped with a spectrometer that measures sunlight reflected by 

the Earth and its atmosphere in three spectral bands: the oxygen A-band in the near-infrared (NIR) at 0.76 µm wavelength 

and two CO2 spectral bands in the shortwave infrared (SWIR) at 1.6 and 2.1 µm. The satellite offers spatially dense data with 

a narrow 10 km swath and a spatial resolution of 1.25 km by 2.2 km. Land and ocean XCO2 retrievals from OCO-2 are 

performed using version 10 of NASA's Atmospheric CO2 Observations from Space (ACOS) full-physics retrieval algorithm 335 

(O'Dell et al., 2018). OCO-2 data are validated and bias-corrected using CO2 retrievals from the Total Column Carbon 

Observing Network (TCCON; Wunch et al., 2017; Taylor et al., 2023), whose data have been linked to the WMO CO2 mole 

fraction scales via calibrated in situ vertical profiles sampled by aircraft and AirCore (Karion et al., 2010; Laughner et al., 

2023b).  

 340 

Figure 3 displays coverage of single-sounding OCO-2 observations from September 2014 to June 2021. Approximately two-

thirds of OCO-2 observations are from ocean glint mode, while 16% are land nadir, 16% are land glint, and only 0.05% are 

land target observations. Nadir retrievals are those in which the satellite looks at the Earth directly below, i.e., at the sub-

satellite point. These retrievals are only usable when the instrument is directly over land. Glint retrievals are from 

measurements occurring when the instrument is pointed (usually off-nadir) toward the solar glint spot. Glint is the primary 345 

mode for over-ocean retrievals, as the ocean surface is very dark in the SWIR spectral range when viewed from the nadir, 

only reflecting sufficient solar radiation near the glint point. Target mode retrievals are obtained when the sensor points at a 

fixed location along the orbit to keep a particular point on the Earth’s surface in view. Target mode is employed mainly to 

collect validation data over locations such as TCCON sites. 

 350 

Due to OCO-2’s reliance on sunlight, the coverage gaps at high latitudes vary seasonally, with reduced coverage during 

winter months in each hemisphere (Figure 3A and 3B). These gaps are most noticeable during solstices when the Earth’s tilt 

results in the poles experiencing their longest periods of darkness. From 2015 to 2021, OCO-2 covered approximately 80% 

of the Earth’s surface in most months. We determine the monthly area coverage by calculating the fraction of 5° x 5° grid 

cells with at least one satellite observation during the month. From July 31–September 19, 2017, OCO-2 data collection was 355 
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suspended. Having a low number of observations in a month does not necessarily imply low area coverage, as area coverage 

measures the extent of observations over the month. For instance, if half of the observation days were missing, the number of 

observations would be roughly halved, but the area coverage could still be close to 80% if the remaining half of the days 

covered the Earth evenly. The vertical column sensitivity of the XCO2 observations is shown in Figure 3D. It is close to one 

in the lower troposphere and then reduces gradually with altitude, maintaining a value of 0.5 in the lower stratosphere. With 360 

a strong sensitivity in the troposphere where significant XCO2 signals occur due to surface emissions and removal of CO2, 

OCO-2 effectively observes the atmosphere in the vertical domain. 

3.3 MIP transport model run 

The OCO-2 Model Intercomparison Project (MIP), organized by the OCO-2 Science Team, is a collaborative effort among 

atmospheric CO2 modelers aiming to study the impact of assimilating OCO-2 retrieval data into atmospheric inversion 365 

models (Crowell et al., 2019; Peiro et al., 2022; Byrne et al., 2023). The project's primary objective is to generate an 

ensemble of CO2 surface flux estimates to understand how these estimates, using OCO-2 retrievals and in situ measurements, 

depend on factors such as transport, data assimilation methodology, prior flux, and associated errors, and potential 

systematic errors in OCO-2 retrievals (across viewing modes like ocean glint, land nadir, and land glint). In the most recent 

version of the MIP (v10, Byrne et al., 2023), modelers used NASA's operational bias-corrected OCO-2 L2 Lite XCO2 370 

product v10 (Kiel et al., 2019) aggregated into 10-second averages. In situ data were sourced primarily from GlobalView-

plus v6.1 (Schuldt et al., 2021). The submitted flux estimates cover from January 2015 to December 2020. Fossil fuel 

emissions were standardized using a temporally downscaled and extended dataset (Basu and Nassar, 2021) that was based on 

the ODIAC2019 dataset (Oda et al., 2018), while other prior flux estimates were independently selected by each modeling 

group.  375 

3.4 Observing System Simulation Experiments (OSSEs)  

Observing System Simulation Experiments (OSSEs) are a widely used research tool for evaluating the effectiveness of 

atmospheric observing systems, such as satellites, in situ measurement platforms, or data processing methods (Basu et al., 

2018; Pandey et al., 2015). In this study, we utilize results from 10 modeling groups participating in the v10 MIP, listed in 

Table 1.  380 

 

We use the posterior (final iteration of variational inversions) forward transport run of inversions assimilating point 

observations (in situ/IS inversions) over land and ocean. Within our OSSE setup, each MIP posterior model run is treated as 

an end-to-end simulation of atmospheric transport and CO2 observing systems. The posterior fluxes of these model runs 

serve as the pseudo-truth. The 10s XCO2 and in situ co-samples from the posterior CO2 concentration fields of the model 385 

runs serve as synthetic observations. These co-samples are generated at the location and time of all in situ and satellite 
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observations. The satellite co-sample generation process uses the averaging kernel and the prior profile employed in the 

OCO-2 10s XCO2 observations. Synthetic growth rate estimates are generated using the NOAA method on MBL point co-

samples and the GRESO method on 10s XCO2 co-samples.  

 390 

Table 1 Specifications of OCO-2 MIP version 10 models used in this study&.  

MIP modelling 

group 

Atmospheric 

transport model 

Meteorology 

data 

Transport model 

resolution (latitude × 

longitude) 

Optimization 

method 

AMES GEOS-Chem MERRA-2 4° × 5° 4D-Var 

BAKER PCTM MERRA-2 4° × 5° 4D-Var 

CAMS LMDz ERA5 1.9° × 3.75° Variational 

CMS-Flux GEOS-Chem MERRA-2 4° × 5° 4D-Var 

COLA GEOS-Chem MERRA-2 4° × 5° EnKF 

CT TM5 ERA-interm 2° × 3° * EnKF 

OU TM5 ERA-interm 4° × 6° 4D-Var 

TM5-4DVAR TM5 ERA-interm 2° × 3° 4D-Var 

UT GEOS-Chem GEOS-FP 4° × 5° 4D-var 

WOMBAT GEOS-Chem MERRA-2 2° × 2.5° 
Synthesis with 

MCMC 

&Detailed description in Byrne et al. (2023) and Peiro et al. (2022) and NOAA MIP webpage 

(https://gml.noaa.gov/ccgg/OCO2_v10mip/ last access: 14-09-2023) 

*1° × 1° over North America 

 395 

Our pseudo-truth growth rates represent the net of the respective MIP runs’ posterior fluxes. The MIP posterior fluxes are 

reported as 1° by 1° monthly components for ocean, land, and fossil categories. These components are combined globally to 

create a global monthly flux time series. The flux time series is then modeled as the sum of polynomial, harmonic, and 

residual terms (Equation 4). Combining the polynomial and residual terms creates a de-seasonalized monthly flux time 

series, representing the de-seasonalized growth rate during a given month. The pseudo growth rate time series is then 400 

estimated from the de-seasonalized flux time series using the 2.124 PgC ppm-1 conversion factor (Ballantyne et al., 2012). 

 

We evaluate the performance of the NOAA and GRESO methods at monthly and annual scales by calculating the correlation 

coefficient (R) and root mean square error (RMSE) compared to the pseudo truth. The RMSE quantifies the error relative to 

the truth (i.e., the quadrature sum of accuracy against pseudo truth and precision), whereas R indicates the prediction 405 

https://gml.noaa.gov/ccgg/OCO2_v10mip/
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capability of the growth rates. For the synthetic growth rate estimates, we use a 0.1 ppm 1-standard-deviation error on 

individual NOAA in situ flask co-samples. For satellite growth rate errors, we propagate OCO-2 10s XCO2 retrieval errors 

through the GRESO method.  

 

To implement the NOAA growth rate method, we utilize the Python version of the NOAA DEI code. To ensure consistency 410 

with the data filtering and configuration implemented by NOAA, we tested our NOAA method implementation by 

reproducing the NOAA-reported growth rates using the site-wise observation file for our period of interest, 2015-2019. We 

found excellent agreement between the NOAA-reported annual growth rates and our own estimates (R = 1.0 and RMSE = 

0.03 ppm year-1).  

 415 

OCO-2 co-samples from the MIP posteriors transport model are available until March 2021, enabling the calculation of 2020 

annual growth rates. However, in situ co-samples provided by MIP ended in late 2020, preventing us from estimating 2020 

growth rates. For consistency in our OSSE comparison between NOAA and OCO-2 data, our analysis is limited to the 2015–

2019 period. 

 420 

To use realistic growth rate variations in our OSSE, we use optimized posterior fluxes from real-world data. OSSE results 

with unrealistic growth rate variations could be misleading; for example, including an unrealistic annual growth rate of 10 

ppm in our OSSE might lead to a significantly larger RMSE than what would be expected from the 2-3 ppm year-1 growth 

rate range during 2015-2019. Conversely, a near-flat growth rate of 2 ppm year-1 could result in an unrealistically large 

correlation range due to insufficient signal, i.e., growth rate variability. Fortunately, our study period includes a strong El 425 

Niño year 2015 (with a high growth rate of 3 ppm year-1) and a weak La Niña year 2017 (with a growth rate of 2 ppm year-1), 

allowing for a robust evaluation of the GRESO and NOAA methods at a range of growth rates.    

4 Results and Discussion  

We first present and discuss the results of our OSSEs. Utilizing the OSSEs, we conduct additional tests to evaluate the 

robustness of the GRESO method against changes in data density and gaps (Section 4.2). Subsequently, we briefly discuss 430 

some alternative methods for growth rate estimation (Section 4.3). We then present the real-world measured CO2 growth 

rates (Section 4.4). Following this, we discuss the expected latency in growth rates for the NOAA and GRESO methods 

(Section 4.5). 
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4.1 OSSE results 

 435 

Figure 5. CO2 growth rate estimates on annual scale. Panel (A) presents the flux-based growth rate estimates, considered the 

OSSE truth, across various MIP models. Panels (B) and (D) display the annual growth rate estimates generated by the 

GRESO method and their deviations from the OSSE truth, respectively. Similarly, Panels (C) and (E) depict the annual 

growth rate estimates and deviations from the truth for the NOAA method. The GRESO and NOAA methods calculate 

growth rates using the OCO-2 data and MBL in situ co-samples, respectively, which are derived from the mole fraction 440 

fields of MIP models. 

 

Figure 5 shows the estimated annual growth rates and the corresponding OSSE truths, i.e., flux-based growth rates, for the 

10 MIP transport model runs. The performance of the growth rate methods for a given MIP model is evaluated with RMSE 

and R of the truth and estimates (Figure 6). The differences in these evaluation metrics for various MIP models result from 445 

the interplay of differences in atmospheric transport and spatial and temporal distribution of truth fluxes. For instance, a flux 

anomaly will appear more pronounced in an in situ network if the atmospheric transport of the model efficiently conveys the 

flux signal to the network's location. Conversely, if the anomaly signal is positioned to be carried away from the network by 

the transport, the opposite effect can occur. The overall performance of the growth rate methods is assessed by taking the 
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median of the 10 RMSE and R values, which are presented in Table 2. On the annual scale, the GRESO method exhibits 450 

strong performance with a median R of 0.997 and a median RMSE of 0.04 ppm year-1. The NOAA method has a median R 

of 0.93 and RMSE of 0.12 ppm year-1. Despite relying on a limited number of MBL sites, the NOAA method demonstrates 

an impressive skill in estimating annual growth rates. 

 

 455 

Figure 6. Comparative performance of growth rate methods on annual scale. The GRESO method employs OCO-2 satellite 

data for sampling, while NOAA utilizes in situ MBL observations. Panel (A) shows the correlation coefficients (R), and 

Panel (B) presents the RMSE associated with annual growth rates. In each box-and-whisker plot, the orange horizontal line 

represents the median value. The boxes delineate the interquartile range, and the whiskers extend to the full range of 

correlation coefficients and RMSE values obtained across the ten MIP model runs in the OSSE. Black crosses indicate the 460 

random error (i.e., without bias) in annual growth rates reported by NOAA for 2015-2019. Note that two pairs of years have 

nearly identical growth rate uncertainties, resulting in only three visible crosses. 

 

 

Table 2. Evaluation metrics for data-driven growth rate estimates&.  465 

Growth 

rate 

method 

Annual Monthly 5 Years 

R RMSE (ppm year-1) R RMSE (ppm year-1) RMSE (ppm year-1) 

NOAA 0.93 0.12 0.47 1.26 0.033 

GRESO 1.0 0.04 0.77 0.75 0.016 

&The table presents the median values of R and RMSE between estimated and pseudo growth rates across 10 MIP transport 

model runs. 
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Figure 7 and Table 2 present the results for monthly scale. Note that the methods are evaluated after removing the mean 

seasonal cycle from the truth flux and growth rate time series. The GRESO method demonstrates a median R of 0.77 and 470 

median RMSE of 0.75 ppm year-1 (~0.06 ppm month-1), whereas the NOAA method has a lower median R of 0.47 and a 

higher median RMSE of 1.26 ppm year-1 (0.11 ppm month-1). On 5-year scale (Table 2), we calculate median RMSE 

(equivalent to the mean absolute difference) as 0.016 ppm year-1 for the GRESO method and 0.033 ppm year-1 for the 

NOAA method. The NOAA method after 5 years has very low uncertainty which most likely reflects the nearly complete 

atmospheric mixing of flux anomalies (including into most of the upper atmosphere) after such a long period. Note that the 475 

sampling error estimates from our OSSE tests are expected to be less robust for monthly and 5-year errors in comparison to 

that of annual estimates. This is due to the limited number of data points for 5-year scales (one per model), and the monthly 

resolution of fluxes in the MIP models does not account for highly transient emissions events. 

 

We find the NOAA annual growth rate sampling error to be 0.12 ppm year-1. The sampling error originates from two 480 

primary sources: (1) Variations in the Marine Boundary Layer (MBL) network, including site additions or removals and 

temporal data gaps (Lan et al., 2023) (see Figure 2); and (2) The inherent uncertainty involved in approximating the true, 

mass-weighted, three-dimensional average CO2 concentration for the entire atmosphere using surface network data. 

Additional non-sampling errors not captured in the OSSE include (1) the long-term reproducibility of reference gas 

standards, with a 1-standard-deviation uncertainty of approximately 0.03 ppm dating back to the 1980s (0.01 ppm with a 485 

new reference system introduced in 2017), and (2) transient, unexplained systematic analytical errors. 

 

The total error in the NOAA growth rates would be derived by summing the sampling and non-sampling errors in 

quadrature. The non-sampling errors are expected to largely cancel out during the growth rate calculation, making their 

contribution to the total error negligible compared to the dominant sampling error of 0.12 ppm year-1. NOAA-reported 490 

growth-rate errors of 0.06-0.09 ppm year-1 (Figure 6) account for changes in the surface network over time (horizontal 

sampling error) and small, unexplained systematic analytical errors (non-sampling error).  

 

Differences between the reported errors and our RMSE estimates for NOAA can be attributed to the fact that NOAA's 

uncertainty quantification method, in effect, only addresses the horizontal atmospheric sampling uncertainty with the 495 

bootstrapping method (Section 2.1). North-south interhemispheric mixing timescales are roughly one year, and east-west 

mixing timescales are weeks, which means that flux anomalies cannot "hide" from the MBL sites for very long. In contrast, 

troposphere-stratosphere mixing timescales typically take several years (~2.5 years). Model simulations and aircraft profiles 

indicate rather homogeneous vertical profiles of CO2 above remote locations within the troposphere, suggesting that the key 

difference between the MBL and total column estimates relates to the estimation of dispersion of flux anomalies into the 500 

stratosphere. These signals are not considered in NOAA's uncertainty estimates, which are primarily derived using 

bootstrapping methods that address the uncertainty related to surface-horizontal sensitivity to flux anomalies. However, we 
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can estimate the vertical error component (𝜎𝑣) in the NOAA method using the horizontal uncertainty (𝜎ℎ ~ 0.08; median of 

black crosses) with the OSSE-estimated total uncertainties (𝜎𝑡𝑜𝑡𝑎𝑙
  ~ 0.12; orange lines) shown in Fig. 6B. Assuming that 

NOAA’s uncertainty quantification method gives a good estimate of the 𝜎ℎ and 𝜎𝑡𝑜𝑡𝑎𝑙
2 = 𝜎ℎ

2 + 𝜎𝑣
2, we estimate 𝜎𝑣

  = 0.09 505 

ppm year-1. This suggests the unaccounted vertical component of the uncertainty is roughly equal to the reported horizontal 

uncertainty. 

 

 

Figure 7. Performance of growth rate methods on monthly scale. Panel (A) displays flux-based deseasonalized growth rate 510 

estimates across various MIP models, treated as the OSSE truth. Panels (B) and (C) depict the discrepancies in growth rates 

as determined by the GRESO and NOAA methods, respectively. The y-axis range of Panel (B) is roughly half that of Panel 

(C), highlighting the smaller errors in the GRESO method compared to the NOAA method. The median monthly growth rate 

RMSE and R for the methods are given in Table 2. 

 515 
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Overall, across various temporal scales, the GRESO method outperforms the NOAA method in terms of whole-atmosphere 

sampling errors, largely due to its enhanced horizontal and vertical sampling capabilities provided by satellite observations. 

On an annual scale, GRESO's RMSE is three times lower than NOAA's. On monthly and 5-year scales, its RMSE is half that 

of NOAA's. Note that these RMSE values represent only the whole-atmosphere sampling errors, including the effect of 520 

change in coverage of high-quality OCO-2 data due to clouds and aerosols. The real-world errors in satellite growth rates are 

expected to be dominated by systematic biases in satellite data. 

4.2 Robustness of GRESO method 

The GRESO method has been developed based on existing growth rate estimation techniques, such as the NOAA method, 

but with refinements based on end-to-end OSSE transport model runs to optimally leverage satellite sampling of the 525 

atmosphere. The final version of the GRESO method presented here achieves optimal alignment between estimated growth 

rates and their corresponding pseudo truths, which represent the global net of fluxes. Alternative methods for growth rate 

estimation from satellite data have been proposed in other studies (Buchwitz et al., 2018). Table 3 provides evaluations of 

alterations made to the method's settings, such as the utilization of different temporal and spatial bins, to elucidate their 

influence on the method's efficacy in growth rate estimations. Buchwitz et al. (2018) employed 10° by 10° spatial bins and 530 

monthly temporal bins, coupled with direct global averaging. In contrast, the GRESO method employs 5° by 5° spatial bins 

and 16-day temporal bins, and a two-step averaging process: first along latitude bands and subsequently along longitudes. 

Our tests indicate that the performance of the GRESO method diminishes slightly when we adopt the settings used by 

Buchwitz et al. (2018).  

 535 

The sensitivity of the GRESO method to observation gaps, which satellites are prone to, is an important consideration for its 

utility. Our OSSE tests include the temporal and spatial gaps in the original OCO-2 dataset.  These gaps include multi-day 

discontinuities and a substantial gap from July 31 to September 19, 2017. To further scrutinize the robustness of the GRESO 

method against observation gaps, we subjected it to stress tests involving artificial reductions in observation numbers. Table 

4 presents the outcomes. The GRESO method performs well even when restricted to ocean-based (R = 0.99) or land-based 540 

(R = 0.98) observations. This implies that specialized satellites focusing solely on oceanic or terrestrial observations could 

yield accurate growth rate estimates. These findings are pertinent to estimating growth rates of CO2 and methane using 

satellites that primarily observe over land such as GOSAT and TROPOMI (Buchwitz et al. 2018; Balasus et al., 2023; 

Lorente et al., 2021; O'Dell, et al., 2018; Schneising et al., 2019). 

 545 

 

 

 

 

 550 
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Table 3. Sensitivity analysis of the GRESO method for temporal and spatial bin sizes&.  

Method alterations 
Annual Monthly 

R RMSE (ppm year-1) R RMSE (ppm year-1) 

GRESO method 

(original)* 
0.997 0.041 0.802 0.732 

Monthly temporal 

binsª 
0.988 0.063 0.751 0.684 

5-day temporal bins 0.985 0.069 0.707 0.888 

Global spatial 

averaging ª 
0.987 0.065 0.697 0.900   

10° by 10° spatial 

binsª 
0.985 0.055 0.713 0.828 

&The table presents the median values of R and RMSE between estimated and pseudo growth rates in the 10 MIP model 

runs. The base GRESO method is detailed in Figure 4. Values are rounded to three decimal places for precise comparisons. 

*Original GRESO setup: 5° x 5° spatial bins and 16-day temporal bins. 

ª Settings used by Buchwitz et al. (2018) 555 

 

We assess the GRESO method's performance under significantly reduced OCO-2 coverage conditions—50%, 10%, and 1% 

of the total 10s XCO2 observations. Despite data limitations, the method maintains high accuracy for annual CO2 growth rate 

estimates (R > 0.95). However, its performance suffers more noticeably at the monthly scale (R = 0.45 for 1% data), a 

decline that aligns with the NOAA method's performance based on limited in situ MBL observations. We also evaluated the 560 

impact of systematic omissions in data, specifically from the Sahara and Amazonia regions. These tests revealed that the 

GRESO method continues to perform robustly at both annual and monthly scales, albeit with a slight increase in the annual 

RMSE to 0.057 ppm year-1. 

 

The overall accuracy of GRESO growth rates hinges on the magnitudes of the GRESO method’s sampling errors versus the 565 

systematic errors in XCO2 measurements. This total error should be the quadrature sum of the two errors, assuming these 

error sources are independent. Our OSSEs show that the sampling error of the GRESO method is minimal. Therefore, the 

principal error source is systematic errors in XCO2 observations. Fortunately, many of these biases exhibit low interannual 

variability, suggesting they might negate each other during growth rate calculations, leaving only temporally fluctuating 

biases to affect the GRESO method (Section 2). Evidence indicates the existence of time-varying biases in the Ocean Glint 570 

data from OCO-2. Research teams involved in the OCO-2 version 10 MIP have observed significant discrepancies between 

flux estimates derived from OCO-2's ocean glint inversions and those obtained from NOAA and land XCO2 inversions. 

Assuming accurate initialization of the MIP inversions (spin-up), the variations in posterior fluxes from ocean inversions, 

compared to land data and NOAA inversions, point to potential growth rate biases in OCO-2 ocean glint data (refer to 
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Section 4.1 in Byrne et al., 2023 for more details). Additionally, validation studies utilizing data from the TCCON network 575 

support the presence of this growth rate bias in OCO-2 ocean glint observations (as illustrated in Figure 9D of Taylor et al., 

2023). Such systematic growth rates errors will be the primary factor dictating the overall precision of real-world GRESO 

growth rates. Concurrently, substantial efforts are underway to identify and mitigate these systematic biases, with an 

expectation of continued improvement in the accuracy of satellite observations. 

 580 

Table 4. The performance of the GRESO method with a hypothetical reduction in OCO-2 observation coverage&.  

Hypothetical 

coverage 

Annual 

 

Monthly 

 

R RMSE (ppm year-1) R RMSE (ppm year-1) 

Ocean (OG) 0.990 0.049 0.691 0.828 

Using Land 

observations 

(LNLG) 

0.984 0.097 0.686 0.972 

1 % OCO-2 

observations 
0.951 0.123 0.449 1.440 

10 % OCO-2 

observations 
0.971 0.083 0.647 0.876 

50 % OCO-2 

observations 
0.996 0.046 0.723 0.876 

Sahara1 seasonala  

gap 
0.992 0.057 0.784 0.732 

Sahara1 annualb 

gap 
0.992 0.057 0.780 0.733 

Amazonia2 

seasonala gap 
0.992 0.057 0.784     0.731 

Amazonia2 

annualb gap 
0.992 0.057 0.779 0.732 

&The table presents the median values of R and RMSE between estimated and pseudo growth rates across 10 MIP model 

runs. Values are shown up to three decimal places for precise comparisons. 
1Sahara region gap:  -18° to 29° longitude and -2° to 37° latitude. 
2Amazonia region gap: -79° to -67° longitude and -13° to -5° latitude. 585 
aSeasonal gap: 1st January 2017 –1st April 2017 
bAnnual gap: 1st January 2017 –1st January 2018 
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4.3 Alternative growth rate methods 

4.3.1 WMO WDCGG  590 

The World Meteorological Organization (WMO) World Data Centre for Greenhouse Gases (WDCGG) also reports global 

CO2 averages using methods similar to those of NOAA (Tsutsumi et al., 2009). However, WDCGG incorporates a more 

extensive dataset, sourced from various independent laboratories, including continental sites. This results in a higher mean 

CO2 mole fraction and a greater amplitude of the seasonal cycle than those estimated by NOAA. Notably, neither method 

offers a comprehensive representation of the troposphere or stratosphere. Wu et al. (2024) have investigated the 595 

discrepancies between the growth rate estimates of NOAA and WMO and reported that the growth rate values from the two 

sources exhibit strong agreement. 

4.3.2 GEOS/OCO-2  

The GRESO method, leveraging its data-driven nature and utilization of level-2 OCO-2 XCO2 data, offers computational 

efficiency in generating growth rate estimates. NASA's GEOS/OCO-2 model uses XCO2 observations to constrain a 4-600 

dimensional CO2 mole fraction field, employing an intricate level-3 system for assimilating OCO-2 data (Weir et al., 2021; 

Weir et al., 2022). The GEOS/OCO-2 atmospheric carbon monitoring system updates global CO2 concentrations at three-

hour intervals by incorporating bias-corrected OCO-2 XCO2 retrievals (version 10) via a statistical data assimilation 

technique. Such assimilation enables the GEOS method to harmonize its simulations with empirical observations, thereby 

adjusting the state of atmospheric CO2 to align closely with observed values. The growth rate values are readily calculated 605 

by averaging the optimized CO2 mole fraction field. 

4.4 Measured growth rates 

Figure 8 shows real-world growth rate estimates for 2015–2020 derived from OCO-2 data via the GRESO method, NOAA-

reported estimates (Lan et al., 2023), and growth rates from the GEOS/OCO-2 level-3 product. Table 5 encapsulates the 

correlation coefficients (R) and root mean square difference (RMSD) between each pair of estimates. Over the 6-year span, 610 

annual growth rates from GRESO and NOAA estimates align well, achieving an R of 0.94 and an RMSD of 0.13 ppm year-1 

for annual growth rates. Given the associated sampling errors in these methods, this level of agreement is expected. 

GEOS/OCO-2 also shows good agreement with both NOAA and GRESO. Since GEOS/OCO-2 uses the NOAA MBL 

growth rate for prior information, its alignment in between GRESO and NOAA values is foreseeable. The mean growth rate 

over the six years for NOAA and GRESO agree very well with less than 0.03 ppm year-1.  This is also expected, given the 615 

mitigation of sampling errors resulting from the vertical and horizontal mixing over the span of 6 years (Section 4.1). 



25 

 

 

Figure 8. Real-world CO2 growth rates estimates from (1) the NOAA method based on MBL in situ observations, (2) the 

GRESO OCO-2 level-2 method, and (3) the GEOS/OCO-2 level-3 product. The horizontal lines (overlapping GRESO and 

GEOS) represent the mean growth rate in 2015-2020.  620 

 

Table 5. Comparison of measured growth rates for 2015-2020&.  

Method pairs  Annual R  
Annual RMSD  

(ppm year-1) 

6-year Mean Difference 

(ppm year-1) 

GRESO-NOAA 0.92 0.13 0.027 

GEOS- NOAA 0.97 0.08 0.029 

GRESO-GEOS 0.98 0.08 –0.002 

&Root mean square difference (RMSD) and Pearson correlation coefficients (R) are shown. NOAA uses MBL in situ 

observations GEOS (level-3) and GRESO (level-2) growth rate methods use OCO-2 version 10 observations. 

 625 

Taylor et al. (2023) presented estimates of real-world growth rates using OCO-2 data, drawing on the methodology outlined 

by Buchwitz et al. (2018). They compared these rates with those derived from NOAA and found a strong correlation with 

NOAA's annual growth rates (R = 0.98), exceeding the NOAA correlation with GRESO (R = 0.92). The main reason for the 

stronger alignment is that both Buchwitz et al. (2018) and NOAA growth rate methods generate a smoothed version of the 

annual growth rates. The Buchwitz et al. (2018) method gives a 6-month smoothed version of the annual growth rate time 630 

series and therefore does not capture the exact atmospheric mass change of CO2 over the course of a year. The smoothing in 

the NOAA method is attributable to a combination of limited marine boundary layer sampling, and the filtering and 
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averaging methods employed. Consequently, the method of Buchwitz et al. (2018) strongly agrees with NOAA. Smoothing 

the GRESO growth rates would similarly enhance its correlation with NOAA, as evidenced in Figure 8. However, such a 

modification would compromise the GRESO method's objective to estimate the atmospheric CO2 mass change over the 635 

course of an exact period, like a year.  

4.5 Latency in the availability of growth rates  

NOAA growth rate estimates of a year may undergo multiple revisions over several following months until it finally 

converges. This latency in convergence in growth rates from NOAA MBL samples and their subsequent revision can be 

primarily ascribed to two factors: First, the logistics associated with transporting weekly flask air samples from remote MBL 640 

locations to the NOAA laboratory in Boulder, Colorado, often entail a delay of months. Second, the utilization of the 

CCGCRV algorithm (Section 2.2) is sensitive to the temporal coverage of data, and edge effects can cause incremental 

estimates to change as more data are added to one end. The availability NOAA MBL-based growth rate estimates has a 

latency of about four months. Earlier growth rate estimates are not deemed reliable by NOAA due to large uncertainty. 

 645 

We illustrate the NOAA growth rate latency by performing the following experiment. For each year between 2014 and 2021, 

we calculate the CO₂ growth rate using NOAA’s DEI procedure based on MBL data available M months after the year 

ended. Figure 9 shows the growth rates estimated for each year as a function of M, compared to the final value (largest 

possible M for each year). While NOAA estimates typically stabilize within four months, the convergence period for certain 

years can extend beyond. Friedlingstein et al. (2022b) reported the 2019 CO₂ growth rate to be 2.56 ppm year-1, based on an 650 

access date of 25 September 2022. A more recent update calculates the 2019 growth rate as 2.50 ± 0.06 ppm year-1 (Lan et 

al., 2023; accessed on 2 October 2023). While this is a less than 1 standard deviation uncertainty change, it happened three 

years after the fact. In general, such changes due to re-calculation are more pronounced closer to the calendar year in 

question.  

 655 

Growth rates estimated by the GRESO method have a much shorter convergence period. By leveraging the more spatially 

extensive atmospheric sampling capabilities of satellite observations, GRESO forgoes NOAA's approach of curve fitting and 

frequency domain filtering to mitigate noise, so the GRESO method is generally not subject to curve fitting end effects. 

Linear interpolation of the residuals is utilized on the global representative CO2 time series to bridge any data gaps. The 

primary limitation of GRESO convergence is its 3-point median step (Figure 4). Hence, the method attains stability once it 660 

gathers two 16-day global representative CO2 data points after midnight on December 31 of a year, implying convergence by 

the end of the subsequent January if OCO-2 data are available immediately. It is important to note that even though the 

GRESO method reaches convergence within a month, changes in the growth rate values may still occur subsequently. This is 
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because the satellite observation values may undergo changes due to improvements made in retrieval algorithms, calibration, 

and other factors (Taylor et al., 2023). 665 

 

 

Figure 9. The convergence of annual CO₂ growth rates is estimated as a function of months beyond each year. The vertical 

black line marks a four-month lag when NOAA first publishes growth rate for a year. The difference (Y-axis) between final 

growth rates and the values estimated using observations available in the months following each year-end (X-axis) is shown. 670 

This difference indicates an error in the NOAA estimate attributable to the time required for the estimates to stabilize. 

 

GEOS/OCO-2 further amplifies the ability to deduce growth rates with minimal delay, attributed to its assimilation of the 

available OCO-2 data. However, GEOS/OCO-2 stands as an advanced assimilation system necessitating input surface 

fluxes, meteorology, and high-end computing resources. The GRESO method presented in this study, on the other hand, can 675 

deliver growth rate predictions within seconds following the availability of OCO-2 data. Although the preliminary stream of 

OCO-2 data is accessible after a one-week delay, better-quality operational data is typically available after a month's wait. 

Overall, considering both the delay in OCO-2 data availability and methodological constraints, a practical convergence 

period of up to two months is expected for GRESO and GEOS/OCO-2. 

5 Summary and outlook 680 

In this study, we have introduced the GRESO method, a robust method for calculating CO2 growth rates and global means 

utilizing satellite observations. We employed an OSSE framework involving multiple transport models to evaluate the 
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atmospheric sampling errors associated with the GRESO and the NOAA MBL-based DEI methods, where the latter relies on 

MBL in situ data. Our assessments were benchmarked against flux-based CO2 growth rates tracking the true CO2 growth in 

the OSSEs.   685 

 

Our findings demonstrate that the NOAA method utilizing MBL in situ data performs very well on an annual scale despite 

its limited surface sampling. However, whole-atmosphere sampling error for NOAA's annual growth rate predictions 

exceeds the uncertainty estimates from NOAA's bootstrapping analysis of real data. This discrepancy suggests an additional 

error source, likely stemming from restricted vertical sensitivity. Over five-year spans, however, the NOAA method's errors 690 

are remarkably low. This aligns with the observation that over a five-year duration, any instantaneous flux anomaly would 

become extensively mixed throughout most of the atmosphere, a phenomenon less pronounced over a single year and more 

limited to the troposphere. 

 

At annual time scales, the GRESO method utilizing OCO-2 data has sampling errors that are two to three times lower than 695 

the NOAA DEI approach. Our OSSE analysis suggests that if systematic errors in satellite observations are sufficiently 

mitigated, OCO-2's atmospheric sampling can provide reliable growth rate estimates at short periods like a month or season. 

It is expected that advances in retrieval methodologies and enhanced bias correction techniques, such as using machine 

learning algorithms (Balasus et al., 2023), will mitigate systematic errors in satellite data, facilitating accurate and promptly 

available growth rate estimates. However, as shown in Figure 8, even with the current level of biases, OCO-2 version 10 data 700 

with GRESO provides reasonable real-world growth rate estimates. 

 

Stress tests on the GRESO method, incorporating reductions in observation counts and introducing spatial gaps, affirmed its 

resilience and accuracy under suboptimal conditions. GRESO could reliably estimate growth rates using solely land- or 

ocean-based observations. This adaptability is particularly relevant for methane growth rate calculations using TROPOMI 705 

and other CO2 and methane satellites that predominantly observe over land.  

 

Looking forward, we anticipate that satellites will complement the long CO2 record from in situ networks with accurate, low-

latency growth rate estimates on shorter timescales. However, the growth rate estimates from long-term in situ observations 

from NOAA will be critically needed (Houweling et al., 2012). In situ sites from the NOAA network, such as Mauna Loa 710 

and American Samoa, provide invaluable data, serving as a priori CO2 information for satellites like OCO-2 and the TCCON 

network. For confidence to grow in GRESO and similar satellite-based methods, their continued comparison with purely in 

situ-based approaches, such as NOAA’s DEI method, will be required for the foreseeable future. The enduring in situ 

atmospheric CO2 record, initiated by Dave Keeling's seminal work at the Mauna Loa Observatory (Keeling, 1960), has been 

an indispensable asset. For over half a century, it has continuously provided insights into the 'small but persistent growth,' 715 

enhancing our understanding of anthropogenic impacts on the Earth's climate. 
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Data Availability: The OCO XCO2 data are publicly available at the NASA Goddard Earth Science Data and Information 

Services Center (GES-DISC). The Lite files, which include the quality-flagged and bias-corrected estimates of XCO2, can be 720 

obtained at https://doi.org/10.5067/E4E140XDMPO2 (OCO Science Team., 2020).  Level-3 GEOS XCO2 data are available 

at https://doi.org/10.5067/Y9M4NM9MPCGH (Weir et al., 2022). The fluxes and in situ and satellite co-samples of the MIP 

model runs are available at the NOAA MIP webpage (https://gml.noaa.gov/ccgg/OCO2_v10mip/ last access: 14 September 

2023). NOAA CO2 samples and growth rate values are available at  https://gml.noaa.gov/ccgg/ last access: 14 September 

2023).  725 
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