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Introduction

In this supplement we provide supporting information about the observational data base
underlying our results (S1), with a particular focus on adjustments that we applied to improve
the data consistency (S1.2). We provide information about the exact configuration of our
statistical method, discussing also aspects of the configuration that we tested during this
study, but that revealed to be of secondary relevance (S2). We provide additional
observation-based results to extend the information given in the main text (S3). In section
S4, a detailed description of our uncertainty and sensitivity assessment is given, including
also a decomposition of the uncertainty into its components. We extend this uncertainty
assessment in section S5 through reporting the results of our tests of the eMLR(C*) method
with synthetic data from a Global Ocean Biogeochemical Model (GOBM). Finally, we provide
a detailed comparison of our results to those obtained from previous regional studies (S6).



S1 Observational data base

S1.1 Basin mask for regional clustering

Based on the basin mask provided by the World Ocean Atlas 2018 (Garcia et al., 2019), we
derived six different definitions (Fig. S1) of the main ocean basins that we used to cluster the
data in the horizontal dimensions for the eMLR(C*) analysis.

Fig. S1: The six basin mask definitions used to cluster observations for the fitting of MLR models and
the subsequent mapping of ΔCant. Basin mask “3” was used for our standard case reconstructions of
ΔCant. Basin mask “5” was also used to integrate ΔCant inventories for individual ocean basins.

S1.2 Data adjustments for the Indian Ocean and North Pacific

A prerequisite for the accurate reconstruction of ΔCant is the consistency of the underlying
measurements. In this regard, the eMRL(C*) method profits from the incorporation of all
available cruise data from one sampling period in a single model fitting step, which reduces
the sensitivity to measurement biases, which are often attributed to different instrumental
set-ups, procedures or staff on individual cruises. Furthermore, GLODAP performs a
comprehensive data quality assessment and reduces remaining biases when compiling
observations into a harmonised database. This is achieved through data adjustments based
on crossover comparisons of deep water measurements. The ambitious aim of GLODAP is
to provide an overall consistent data set comprising observations collected over more than
five decades (Lauvset et al., 2021; Olsen et al., 2016).

Despite these efforts, applying the eMLR(C*) method to observations as published in
GLODAPv2.2021, leads to an evenly distributed ΔCant signal below 1500m that is in the
order of +3 µmol kg-1 in the Indian Ocean for the 1994–2004 period and in the order of +2
µmol kg-1 in the North Pacific Ocean for the 2004–2014 period (Fig. S2). This deep water
ΔCant accumulation causes substantially (regionally up to 10 mol m-2 dec-1) elevated column
inventory changes in the two hemispheric basins (Fig. S11). Such a strong accumulation of
ΔCant in the deep waters of these basins cannot be reasonably explained based on
oceanographic knowledge and is further in disagreement with the close-to-zero levels of
pCFC-12 (Key et al., 2004) and total Cant (Sabine et al., 2004) estimated for these water
masses in 1994. Likewise, we do not find a similar deep water ΔCant increase in the
respective other decade, i.e. the 2004–2014 period for the Indian and the 1994–2004 period
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for the Pacific Ocean. Extensive configuration changes and tests of the eMLR(C*) method
(including the separate analysis of 20° latitude or longitude bands, the removal of individual
predictors, the use of DIC as target variable, and using reoccupied cruises only) indicate that
the elevated deep water ΔCant signal in these two regions is not causes by a methodological
artefact.

Fig. S2: ΔCant profiles determined with the eMLR(C*) method applied to adjusted (blue) and
unadjusted (red) data, for 1994–2004 in the Indian Ocean (left) and for 2004–2014 in the North Pacific
(right). The solid lines refer to the reconstructions based on the standard basin clustering scheme “3”,
while the ribbons indicate 1 and 2 standard deviations across the reconstructions of all 6 basin
clustering options displayed in Fig. S1.

In contrast, several lines of arguments suggest a bias in the underlying observations. An
evaluation of the GLODAP crossover results (Olsen et al., 2016 and subsequent GLODAP
updates) revealed remaining mean decade-to-decade offsets expressed in C* units in the
adjusted GLODAP products of around +5 µmol kg-1 when comparing the RV Knorr Indian
Ocean cruises from the 2000s and the 1990s, and of around +3 µmol kg-1 when comparing
all North Pacific Ocean cruises from the 2010s and the 2000s (Fig. S3). The offsets in C*
units represent the sum of the content offsets in DIC, TA and phosphate, the last of which
was approximated as the product of the factorial phosphate offset and the mean deep water
phosphate content of the respective basin. Only in the two affected ocean basins (Indian
Ocean 2000s vs 1990s and North Pacific 2010s vs 2000s), the absolute mean C* offset
between the decades exceeds the standard deviation of the individual mean cruise offsets,
indicating a robustness of the offset. Only in these basins and decades, we investigated the
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crossover offsets of the three underlying variables DIC, TA and phosphate to determine data
adjustments.

Fig. S3: Mean deep water cruise offsets in C* units against reference cruises from the 2000s. Colors
distinguish cruises from each of our three sampling periods. Symbol size refers to the number of
observations per cruise. The centre of the boxes indicate the mean offset across all cruises weighted
by the number of observations per cruise, and the height represents the standard deviation across all
offsets. The deep water crossover offsets shown here refer to the same depth thresholds also used by
GLODAP to exclude data from the most variable parts of the ocean (Lauvset et al., 2021; Olsen et al.,
2016), i.e. those sampled shallower than 1500 dbar in most regions.

Among the Indian Ocean data collected in the 1990s, more than 60% of the measurements
were made in the framework of the WOCE sampling campaign with RV Knorr in 1994/95,
identified as all Indian Ocean cruises with expocodes starting with 316N199. For these
cruises, the offsets determined through the reanalysis of GLODAP crossover data are
consistent in sign and magnitude with offset determined from measurements of certified
reference materials for TA (Millero et al., 1998) and DIC (Johnson et al., 1998). In contrast to
the general procedure applied to more recent cruises, the CRM offset determined for the RV
Knorr cruises were not applied to the seawater measurements before the compilation of the
data into GLODAP (Johnson et al., 2002).

According to the CRM measurement and in agreement with the mean decadal GLODAP
crossover offset, we apply following bulk adjustments to all Indian Ocean RV Knorr cruises
from the 1990s:

● TA: -3.5 µmol kg-1

● DIC: +1.7 µmol kg-1
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The CRM based adjustments applied here were approved by the GLODAP reference group
and applied in GLODAPv2.2022 (Lauvset et al., 2022).

According to the mean decadal GLODAP crossover offset, we further apply following bulk
adjustments to all North Pacific cruises from the 2010s:

● TA: +2.05 µmol kg-1

● DIC: -0.6 µmol kg-1

● Phosphate: 1.007 (multiplicative adjustment)

It should be noted that our adjustments of the North Pacific data from the 2010s do not aim
to improve the accuracy of these data, but to increase their consistency with the
observations from the two previous sampling periods (1990s and 2000s), which were found
to be internally more consistent (Fig. S3). Furthermore, all adjustments listed above are
within the consistency targets and adjustments limits of GLODAP and would therefore not
normally be adjusted during GLODAP's secondary quality control The offsets were only
detected when analysing the crossover results from a decade-by-decade perspective as
relevant to this study, and when converting the offsets from the individual parameters into C*
units. It can thus not be concluded that the originally applied GLODAP adjustments are
inappropriate.

In addition to the bulk adjustments listed above, we also tested a cruise-by-cruise
adjustment of the data from the same periods, based on the mean offset of each cruise to
cruises from the 2000s (Fig. S3). These tests revealed a largely consistent ΔCant

reconstruction compared to the outcome with bulk adjustments (Fig. S9).

S1.3 Data gap-filling

The eMLR(C*) method requires that samples that are included in the analysis provide all
required variables. Some cruises were initially not included after the flagging criteria were
applied, because they lack measurements of only one of the nutrients (nitrate or phosphate)
or TA for the calculation of C*. Our tests with synthetic data revealed that in some regions
and decades the lack of the affected cruises is detrimental to the robustness of the ΔCant

reconstructions, which was identified as an increase of the column inventory biases by more
than a factor of two when comparing reconstructions with and without these data. The
tropical Atlantic and the Southern Pacific were in particular affected by this lack of
observations. To increase the robustness of our reconstructions through a better data
coverage, we also include observations (Fig. 1 and Table S1) of nitrate, phosphate or TA that
did not fulfil the strictest quality criteria (i.e. f-flag=2 and qc-flag=1). In cases where the
flagging criteria were not met but data were provided through GLODAP, we used the
available data. In cases where a parameter was not available at all, we used CANYON-B
predictions (Bittig et al., 2018) for gap-filling, but only in cases where the required input
parameters (including O2) fulfilled our flagging criteria. The sufficient quality of all data
sources used for the gap-filling (Table S1) was confirmed through additional quality
assurance tests (see Table S1). The gap-filling procedure is reflected in our uncertainty
assessment by including reconstructions with perturbed gap-filled data in our ensemble (Fig.
S9).
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Table S1: Gap-filling and quality assurance of observations that deviate from our standard flagging
criteria (i.e., f-flag=2 and qc-flag=1), but were still included in the analysis to avoid large regional data
gaps. Footnotes: (1)Wrongly assigned qc flags of 1 were identified in GLODAPv2.2021. This refers to
DIC or TA data calculated from the fugacity of carbon dioxide (fCO2). As fCO2 was not secondary
quality controlled, any derived parameter should carry a qc flag of 0, which was not always the case.
This error was corrected for the purpose of this study and in GLODAPv2.2022 (Lauvset et al., 2022).
(2)The offset of calculated TA data can plausibly be explained by any kind of TA contribution (e.g. from
organic acids) that is not included in the acid-base system considered for the calculation. This “excess
alkalinity” was previously estimated to be in the order of +4 µmol kg-1 in the open ocean (Fong and
Dickson, 2019), which is in good agreement with the adjustment applied here.

Cruise
expocodes

Gap filling procedure Quality assurance

06MT19900123
316N19920502
316N19921006

Available TA data
calculated from DIC
and pCO2 were used
as provided by
GLODAP.(1)

Additional GLODAP crossover with measured TA data
from other cruises;
Calculated TA data are on average 3 µmol kg-1 too low
based on deep water crossover to directly measured
TA, and were thus adjusted by this value(2)

31DS19940126 Measured nitrate data
were used although
GLODAP qc-flags do
not meet our flagging
criterion

As a sensitivity test we did run the eMLR method
without nitrate as predictor variable (thereby including
cruise 31DS19940126). The ΔCant reconstruction were
found to be indistinguishable from those with the
measured nitrate data

33MW19930704
33RO20030604
33RO20050111
33RO19980123

Missing phosphate
data were filled with
CANYON-B prediction

Additional GLODAP crossover with measured
phosphate data from other cruises;
Predicted phosphate data agree within ±1% to
measured data for each of the four cruises

06AQ19980328 Missing TA data were
filled with CANYON-B
prediction

Additional GLODAP crossover with measured TA data
from other cruises;
The mean absolute crossover offset between the
predicted and measured TA data is <0.5 µmol kg -1

S2 Additional minor configuration changes of the eMLR(C*) method

In the following, we describe additional configuration changes of the eMLR(C*) method
compared to the analysis by Gruber et al. (2019). These configuration changes were tested,
but did not result in a relevant difference of the ΔCant reconstructions compared to our
standard case and were thus not considered in our uncertainty budget (see supplement S4).

S2.1 Data thinning, subsetting and clustering

A random spatial subsampling procedure was introduced to thin the data from densely
sampled regions, thus avoiding their disproportionate impact on the ΔCant reconstruction.
The data thinning was achieved by grouping the observations within each neutral density
slab on a 5°x5° horizontal grid. The total number of observations in each of the grid cells was
counted. In the n-th quantile of grid cells with the highest number of observations, the
observations were randomly subsetted to be identical to the highest number of observations
within the remaining grid cells. This data thinning maintains the bulk of data and does not
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increase the number of observations in poorly sampled regions, but it reduces the number of
data points in highly sampled grid cells. It was found that up to a quantile threshold of n ≈
0.3, the data thinning has no noticeable effect on the ΔCant reconstructions, indicating a
robustness of the eMLR(C*) results to uneven sampling distribution. A moderate thinning
with n = 0.05 was used for our analysis.

A bottom depth threshold of 500m was tested to exclude observations from continental
shelves. The ΔCant reconstructions with and without the observations from the coastal shelf
were very similar. The removal of shelf data was thus not further considered.

For our standard configuration of the eMLR(C*) method, the data were clustered vertically
into the neutral density slabs previously defined by Gruber et al. (2019), i.e., slabs with
boundaries at 26.00, 26.50, 26.75, 27.00, 27.25, 27.50, 27.75, 27.85, 27.95, 28.05, 28.10,
28.15, 28.20 kg m-3, of which the two highest density boundaries were only used in the
Atlantic Ocean. Neutral densities were calculated from salinity and temperature following
Jackett and McDougall (1997). Halving the number of these density slabs by combining two
adjacent slabs did not strongly impact the outcome. The general spatial ΔCant distribution
was even maintained when no slab separation was applied. We thus deem the slab
separation to be of secondary importance for our analysis and included only reconstruction
based on the standard density slabs in our uncertainty assessment.

S2.2 MLR model selection criteria

Among the 2 x 120 MLR models fitted for each density slab and decade, the best models
were selected. As a first step, MLR models with a combination of multicollinear predictors
were removed. These models were identified as those with a variance inflation factor (VIF)
higher than 500, which is an alternative procedure to the previous arbitrary decision to limit
the maximum number of predictors to 5 out of 7 (Gruber et al., 2019). The selected VIF of
500 represents a rather weak threshold, as our test with synthetic data revealed that stricter
removal criterion (e.g. VIF ≤ 100) increases the biases of the ΔCant column inventories. The
rather weak sensitivity of the eMLR outcome to the VIF threshold indicates a general
robustness of the eMLR(C*) method to multicollinearity of predictors.

Among the remaining MLR models, the 10 models with the lowest summed root mean
squared error (RMSE) across both sampling periods were selected for the ΔCant prediction.
The Akaike information criterion (AIC) was tested as an alternative model selection criteria to
the RMSE. Both approaches result in essentially identical ΔCant reconstructions, indicating a
robustness of the eMLR(C*) method toward overfitting the data.

We did perform ΔCant reconstructions after individually removing each of the predictor
variables. It was found that any predictor can be removed without a noticeable impact on the
ΔCant reconstruction, with the exception of the nutrient that was used for C* calculation. This
indicates a certain redundancy among the complete set of possible predictor variables,
which is consistent with the finding that the avoidance of predictor collinearity based on the
VIF criterion has only a weak impact on the ΔCant reconstruction.
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S3 Additional observation-based results

S3.1 Column inventory maps of β

Fig. S4: Column inventory maps of β = ΔCant / ΔpCO2,atm for the preindustrial period from 1800–1994,
as well as for the two decades and the 20-year period analysed in this study.



S3.2 Regional and global mean β column inventories

Fig. S5: Global and regional mean column inventories of β = ΔCant / ΔpCO2,atm for the decades
1994–2004 and 2004–2014. White points represent the standard case and error bars the 1𝜎- and
2𝜎-uncertainty ranges. Other points represent ΔCant reconstructions considered for the uncertainty
assessment (red: configuration changes; blue: regional clustering). Horizontal lines indicate β
inventories based on the total Cant storage in 1994 (Sabine et al., 2004).

S3.4 Reproduction of the study by Gruber et al. (2019)

In addition to our estimates for the two decades since 1994, we reconstructed ΔCant from
1994–2007 to test the consistency of our approach with the analysis by Gruber et al. (2019).
For this purpose, we clustered the observations into the same sampling periods (1982–1999
and 2000–2014) used by Gruber et al. (2019), while maintaining all other configurations of
the eMLR(C*) method as applied in this study. With this approach, we find indistinguishable
global ΔCant inventories (33 ± 4 Pg C vs 34 ± 4 Pg C) and very similar spatial distribution of
the column inventory changes from 1994–2007 (Fig. S6). This agreement underlines the
robustness of our findings and similarity of the approaches when taking into account that we
used different releases (v2 vs v2.2021) of GLODAP (Lauvset et al., 2021; Olsen et al., 2016)
and the World Ocean Atlas (Locarnini et al., 2019; Zweng et al., 2019), introduced
modification of the eMLR(C*) method and applied data adjustments. It should be noted that
the analysis of Gruber et al. (2019) is based on unadjusted Indian Ocean data from the
1990s, but in their standard case, which combines the Indian Ocean and Pacific into one
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spatial cluster (basin mask “2” in Fig. S1), the regional impact of the unadjusted data is less
pronounced compared to a separate analysis of the Indian Ocean as performed in this study
and the sensitivity cases 107 and 110 of Gruber et al. (2019). The less pronounced impact of
the unadjusted data in the Indian Ocean in the earlier study could also partly be due to the
manual removal of “stations with an excessive amount of scatter in the computed C* tracer”
(Gruber et al., 2019).

The analysis for the 1994–2007 periods incorporates observations from 2000–2014 for the
second sampling period, i.e., only data collected since 2015 are used for the first time in our
analysis of the 2004–2014 decade. The fact that the increasing Cant storage rates in the
South Atlantic Ocean emerge already in the 1994–2007 reconstruction, while the North
Atlantic Ocean still maintains a relatively strong, yet already weaking storage rate, is most
likely due to the incorporation of a good fraction of the observations from the early 2010s in
the analysis of the 1994–2007 period.

Fig. S6: Column inventory maps of (A) ΔCant for the period 1994-2007 as analysed by Gruber et al.
(2019) and in this study (panel rows). Reconstructions are shown for the two regional clustering
schemes “2” and “5” (Fig. S1) that were applied in both studies (panel columns). (B) ΔCant offset
between Gruber et al. (2019) and this study.
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S3.5 Zonal mean sections of ΔCant

Fig. S7: Zonal mean sections of (A) ΔCant for each ocean basin (columns) and decade (rows). White
contour lines highlight a ΔCant level of 5 µmol kg-1 dec-1. (B) Decadal differences in the storage
changes (ΔΔCant). Black contour lines indicate isoneutral density levels, where the selected
boundaries represent every second density slab used to cluster the data in the vertical dimension.

The strong decadal differences between the ΔCant zonal mean sections in the Northern
Hemisphere of the Indian Ocean (Fig. S7B) are a consequence of the lack of observations in
the Arabian Sea during the central sampling period (2000–2009) of our analysis. This data
sparsity requires strong spatial extrapolation to reconstruct the C* distribution, which leads to
higher uncertainties. The resulting bias structures according to our tests with synthetic data
(Fig. S16) are almost mirrored in the Northern Hemisphere of the Indian Ocean for the
1994–2004 and 2004–2014 decade, because the data sparsity in the central sampling
period affects both reconstructions inversely. In terms of the ΔCant column inventories, the
positive (surface) and negative (1000–1500 m) extrapolation errors in the Northern Indian
Ocean largely cancel out (Fig. S13). In terms of the mean ΔCant profiles (Fig. 4A) and
whole-basin inventories (Figs. 4B and 5) for the Indian Ocean, the impact of the
extrapolation uncertainty is negligible due to low volume of the affected water masses. Our
20yr reconstruction from 1994–2014 is also not affected by this issue, because it does not
require data from the central sampling period (2000–2009).



S3.6 Residuals of MLR models

Fig. S8: Residuals of the MLR models averaged over 5° latitude bins within each density slab, shown
as a heatmap of residuals from the first in comparison to the second sampling period. The correlation
coefficient is 0.56.



S4 Determination of uncertainty based on configuration changes of the
eMLR(C*) method

S4.1 Uncertainty quantification

Our primary uncertainty quantification is based on an ensemble of ΔCant reconstructions that
differ with respect to the specific configuration of the eMLR(C*) method. For this purpose, we
identified the most impactful configuration changes of the method that are still believed to
provide an equally likely representation of the true ΔCant distribution as our standard case.
The following description of our uncertainty quantification refers to the ΔCant reconstructions
as the primary outcome of our analysis, but applies analogously to other derived estimates
such as the mean penetration depth of ΔCant, β, or the ocean-borne fraction of CO2

emissions.

One of the most important configuration choices of the eMLR(C*) method is the regional
clustering of the data for the MLR fitting and mapping of ΔCant. In total, we applied six
different basin mask definitions (Fig. S1), of which the basin mask “3” is used for our
standard case reconstruction. The mean absolute difference (sreg) between the ΔCant

reconstructions obtained with basin mask “3” and the five alternative basin masks is
considered as one component of our uncertainty budget.

The other configuration changes considered in our uncertainty estimate are:

1. Cruise-by-cruise data adjustments: Individual cruise adjustment values according to
our crossover analysis (Fig. S3) were applied instead of a bulk adjustments (see
supplement S1.2)

2. Modified gap-filling: Perturbations were applied to the gap-filled data reflecting the
crossover offset between the gap-filled data and observations available from
GLODAPv2.2021. Specifically, we perturbed CANYON-B predictions for TA with an
offset of 1 µmol kg-1 and for phosphate data with a factorial offset of 1.01. Calculated
TA data were perturbed with an offset of 3 µmol kg-1 (see supplement A1.3).

3. C*(N,TA) as target variable: Nitrate and TA rather than phosphate and TA were used
for the calculation of C*.

4. Surface ΔCant: The surface ocean ΔCant was not estimated with the atmospheric
equilibrium approach, but based on the observation-based surface ocean DIC
product OceanSODA (Gregor and Gruber, 2021). To eliminate local and short-term
variability in DIC from this product, a local linear regression for DIC as function of
pCO2,atm was fitted for the period 1990–2020. Based on the slope of this regression,
the surface ocean DIC increase was predicted between the reference years 1994,
2004 and 2014 according to the increase in pCO2,atm.

5. WOA18 predictors: Nutrients and oxygen from World Ocean Atlas 2018 (Locarnini et
al., 2019; Zweng et al., 2019) were used for the mapping of ΔCant, instead of the
gridded climatologies based on GLODAPv2 (Lauvset et al., 2016).

For each of these five additional configuration choices, we calculated the difference between
the ΔCant reconstructions obtained with standard configuration and the modified configuration
(sconfig,1-5), all of which were obtained using the basin mask “3”.
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For our global ΔCant inventories we consider an additional uncertainty component (sscaling)
arising from the upscaling of the directly mapped ΔCant inventories by +7% to account for
storage changes in unmapped regions and the deep ocean. The uncertainty contribution is
assumed to be half of the absolute scaling value, i.e. ±3.5% of the global ΔCant inventories.
This assigned scaling uncertainty reflects the uncertainty in the underlying regional
inventories and the potential for their non-steady growth.

The combined uncertainty was determined as the square root of the sum of squares (RSS)
of the individual uncertainty components:

𝑠
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We consider the combined uncertainty scombined as standard uncertainty (±1𝜎) of our
reconstructions representing a 68% confidence interval. We derive the expanded uncertainty
of our estimates through multiplication of scombined with a factor of 2. The obtained expanded
uncertainty (±2𝜎) represents a confidence interval of 95%. All results are reported with ±1𝜎
uncertainty ranges. A difference between two estimates is considered significant if the
absolute difference is larger than the combined uncertainty, i.e., the RSS of the
1𝜎-uncertainties of both estimates.

The individual uncertainty components sreg and sconfig,1-5 are displayed at the 1𝜎-level for
column inventories in Fig. S9 and for inventories in Fig. 6. Fig. 6 also includes sscaling for the
global estimate. The combined uncertainty scombined at the ±1𝜎 level is displayed for column
inventories in Fig. S10.



Fig. S9: Individual column inventory uncertainty contributions determined as offsets between our
standard case reconstruction and six configuration choices of the eMLR(C*) method (panel rows) for
both decades (panel columns). Negative values indicate that lower column inventories were obtained
with the configuration changes. The regional clustering offsets are positive by definition, as they
represent the mean absolute offsets across five alternative basin masks.



Fig. S10: Combined column inventory uncertainties at the 1σ-uncertainty level. Panel rows distinguish
the two reconstructed decades. The combined uncertainties are determined as the square root of
summed squared offsets (RSS) of the individual uncertainty components shown for observations in
Fig. S9.

S4.2 Further sensitivity analysis

Following the same approach as for the primary uncertainty quantification described above
(supplement S4.1), we assess the sensitivity of our ΔCant reconstructions to additional
configuration choices of the eMLR(C*) method. These reconstructions are not believed to
provide an equally likely representation of the true ΔCant distribution as our standard case,
but are intended to illustrate the sensitivity to certain aspects of the method such as the data
coverage or data consistency. The considered changes of the configuration are:

1. No data adjustment: All data are used as published in GLODAPv2.2021 (see
supplement A1.2).

2. Reoccupation filter: Only data from sections that were reoccupied are used. The
filtering criterions is that at least one record must be available within a density slab
and 1°x1° horizontal grid box for each of two compared sampling periods.

3. C*(P) target variable: C* was calculated only with phosphate (neglecting TA).
4. DIC target variable: DIC was used as a target variable, i.e. without removing a

nutrient or TA contribution and without adjusting to the reference year (t ref).
5. No tref adjustment: Calculation of C* based on phosphate and TA as in the standard

case, but without temporal adjustment to the reference year (tref).

The individual sensitivity components are displayed at the 1𝜎-level for column inventories in
Fig. S11 and for inventories in Fig. S12.



Fig. S11: Column inventory sensitivity to specific aspects of the eMLR(C*) method at the
1σ-uncertainty level determined as offsets between our standard case reconstruction and five
sensitivity reconstructions (panel rows) shown for both decades (panel columns). Negative values
indicate that lower column inventories were obtained with the sensitivity tests. Note that the sensitivity
reconstructions are not included in the uncertainty budget as they are not considered an equally likely
representation of the true ΔCant signal.



Fig. S12: Inventory sensitivity at the 1σ-uncertainty level determined as offsets between our standard
case reconstruction and five sensitivity configurations of the eMLR(C*) method (colours) for each
ocean region and both decades (panels). All offsets are shown as absolute values. Note that the
sensitivity reconstructions are not included in the uncertainty budget as they are not considered an
equally likely representation of the true ΔCant signal.



S5 Testing of the eMLR(C*) method with synthetic data

For the purpose of testing the eMLR(C*) method with respect to biases that cannot be
retrieved from its application to observational data, we generated a synthetic data set which
contains data that were subsetted from a GOBM according to the spatio-temporal coverage
of real-world observations available through GLODAP. Applying the eMLR(C*) method to this
synthetic data set allows us to compare the reconstructed ΔCant distribution to the model
truth and thereby assess the quality of the reconstruction. The assessment with synthetic
data was previously used for the development of the eMLR(C*) method and was described
in detail by Clement and Gruber (2018).

S5.1 Generation of synthetic data from CESM model

The synthetic data set used in this study was generated from the Community Earth System
Model (CESM), an ocean circulation hindcast model with embedded biogeochemistry
(Doney et al., 2009). After a 180-year spin-up phase, two model runs A and D were split up
and forced with the historic (Dlugokencky and Tans, 2019) and preindustrial atmospheric
CO2 concentration, respectively. Both runs were forced with historic surface-atmospheric
data from JRA55-do (Tsujino et al., 2018) during the analysis period. The raw model output
was horizontally regridded to a regular 1°x1° grid, while the original irregular 60 depth levels
were maintained. The model output used in this study was also submitted and analysed in
phase 2 of the REgional Carbon Cycle Assessment and Processes project (RECCAP2) and
will be made available upon completion of this project (Poulter et al., 2022).

The synthetic data set was created by subsetting model run A (increasing atmospheric CO2,
variable climate). Therefore, the model output was linearly interpolated between depth levels
to match the exact sampling depth in GLODAP. Annually averaged model truth fields of total
Cant were calculated as the difference in DIC between model runs A and D (preindustrial
atmospheric CO2, variable climate). ΔCant was calculated as the difference between total Cant

at the second (tref2) and first (tref1) reference year of each analysis decade. Climatological
fields of the predictor variables were calculated as the annual average of the year 2007.

S5.2 Method evaluation results

Our tests with synthetic generated from the GOBM confirm that the eMLR(C*) method is
capable of retrieving the global ΔCant patterns in the horizontal (Fig. S13) and vertical (Figs.
S16 and S17A) dimension when applied to data that represent the spatio-temporal coverage
of observations available for the past three decades. The absolute column inventory biases
of our standard case reconstruction (Fig. S13B) are below 2 mol m-2 dec-1 for most parts of
the ocean (87% of the total surface area), and only in a few regions increase up to 4 mol m-2

dec-1 (13%) or exceed the latter threshold (<0.5%). In contrast, the ΔCant column inventories
in our model are larger than these thresholds of 2 and 4 mol m-2 dec-1 over more than 55 and
90% of the surface area of the ocean, respectively (Fig. S13A). Likewise, the biases of the
standard case reconstruction in the zonal mean sections (Fig. S16B) are mostly within 2
µmol kg-1, which is about half as much as the decadal changes in the observation-based
ΔCant reconstructions (Figs. 3 and S7).

When comparing the ΔCant depth layer inventories of our standard case reconstructions to
the model truth (Fig. S17B), we find that in most ocean basins and depth layers the offsets
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are within the 2𝜎-uncertainty range determined from our ensemble of eMLR(C*)
reconstructions. When comparing the reconstructed ΔCant inventories integrated over the top
3000 m to the model truth (Fig. S18), we find that out of the 12 reconstructed ΔCant

inventories, 7 and 11 revealed a bias that is within the 1σ- and 2σ-uncertainty range (Fig.
S18), which meets the expectation of 68% and 95% confidence intervals, respectively. Only
the bias of our standard case inventory for the South Atlantic slightly exceeds the
2σ-uncertainty range for the 2004–2014 decade.

When interpreting the outcome of our tests with synthetic data, it should be taken into
account that the CESM model that we used as a testbed reveals a lower decadal ΔCant

variability than our observation-based reconstructions, as well as a generally low Cant storage
in the North Atlantic due to a weak AMOC in the model. It should further be noted that any
potential model drift would affect the synthetic data generated from run A, but not the model
truth ΔCant field which is calculated as a difference of two model runs (A and D). Thus, our
bias estimate also includes a model drift component.

Fig. S13: Column inventory maps of changes in anthropogenic CO2 (ΔCant) integrated over the upper
3000m, comparing the eMLR(C*)-based reconstructions with the model truth. (A) Absolute ΔCant for
two decades from 1994 to 2014. (B) Bias in the eMLR(C*)-based reconstructions compared to the
model truth as shown in (A).



Fig. S14: Same as Fig. S13B, but contrasting the reconstructed decadal differences (ΔΔCant) in the
storage changes with the model truth, instead of showing the reconstruction bias for both decades.

Fig. S15: Same data as Fig. S14 but showing the bias in the decadal differences (ΔΔCant bias) in the
storage changes by subtracting the model truth from the reconstruction.



Fig. S16: Zonal mean sections of (A) ΔCant for each ocean basin (columns) and two decades (rows),
comparing the eMLR(C*)-based reconstructions with the model truth. White contour lines indicate a
ΔCant leval of 5 µmol kg-1 per decade. (B) Bias in the eMLR(C*)-based reconstructions compared to
the model truth as shown in (A).



Fig. S17: (A) Mean profiles and (B) 500m depth layer inventories of the changes in anthropogenic
carbon content (ΔCant) for each hemispheric basin and the global ocean (columns) as well as the two
decades since 1994 (rows). Colours distinguish the eMLR(C*)-based reconstructions and the model



truth. Thick lines represent the standard case reconstruction and the model truth of ΔCant, while
ribbons indicate the 1𝜎- and 2𝜎-uncertainty ranges of the reconstructions based on an ensemble of
reconstructions. Note that the model truth estimates do not have an uncertainty ribbon.

Fig. S18: Biases in the ΔCant inventories for each ocean basin and the global ocean, and the decades
1994–2004 and 2004–2014. White symbols represent the standard case of our ΔCant reconstructions
and error bars the 1𝜎- and 2𝜎-uncertainty ranges. Coloured points represent ΔCant reconstructions
considered in the uncertainty assessment (red: configuration changes of the eMLR(C*) method; blue:
regional clustering).



S6 Comparison of regional ΔCant inventories to previous studies

In the following, we provide a detailed comparison of our ΔCant inventories for each
hemisphere of the main ocean basins (Table 1) to previous regional estimates. The selected
regional studies rely — like our reconstructions — on ocean interior biogeochemical
observations, apply an MLR approach, and cover multiple time periods. All regional analyses
compare individual reoccupied sections as a first step and subsequently extrapolate the
ΔCant reconstruction from a single or multiple sections to the whole basin. This stands in
contrast to our global eMLR(C*) approach, which uses all observations from one spatial
cluster together in a single MLR fitting procedure. In general, it can thus be assumed that the
global eMLR(C*) approach is less sensitive to measurement biases of individual cruises but
also less sensitive to small scale ΔCant signals (Carter et al., 2019). For consistency with our
reporting, we converted the uncertainty estimates of the regional studies to 1σ uncertainty
ranges whenever possible, while potential differences in the exact spatial coverage are
neglected.

In the North Atlantic Ocean, Woosley et al. (2016) found a significant increase in Cant storage
rates from 1.9 ± 0.4 Pg C dec-1 for the 1989–2003 period to 4.4 ± 0.9 Pg C dec-1 for
2003–2014. While the latter estimate is indistinguishable from our storage rate for the
2004–2014 decade (3.9 ± 0.4 Pg C dec-1), their sink estimate for the first period is drastically
lower than ours for the 1994–2004 decade (4.8 ± 0.2 Pg C dec-1). This leads to opposite
interpretations of the North Atlantic as a Cant sink that is strongly increasing (Woosley et al.,
2016) or moderately decreasing (this study) in strength. The changes reported by Woosley
et al. (2016) rely on the comparison to a previous study by Wanninkhof et al. (2010) and are
based on the reoccupation of a single north-south transect (A16) which covers the eastern
basin of the North Atlantic Ocean. Thus, one likely cause for the different findings lies in their
use of a single section in contrast to our use of data from all available cruises. Studies that
compared ΔCant estimates for the Atlantic Ocean based on the analysis of single vs multiple
reoccupied cruise lines indeed found that the inventories for whole hemispheric basins differ
by around 30% (Gao et al., 2022; Woosley et al., 2016), which was attributed to insufficient
observational coverage of east-west ΔCant gradients (Fig.1) by a single north-south oriented
hydrographic section. Another reason why our inventories may differ from the regional
analysis is the integration depth. While our study provides integrals over the top 3000m,
Woosley et al. (2016) restricted their inventory calculation to water masses with ΔCant

exceeding 3 µmol kg-1, a threshold that is mostly located shallower than 2000m along the
A16 section in the North Atlantic. Indeed, the depth layers that contribute to the decadal
decrease of our inventories range from 1500 to 3000m (Fig. 3B). In contrast, our inventories
over the top 1000m also show a tendency towards slightly higher Cant storage changes in the
more recent decade. Thus, whether we interpret the sink strength of the North Atlantic as
increasing or decreasing depends among others on the chosen integration threshold.

For the South Atlantic Ocean, Woosley et al. (2016) reported a rather steady uptake rate
(3.7 ± 0.8 and 3.2 ± 0.7 Pg C dec-1) based on the analysis of a single reoccupied cruise
section (A16S). In contrast, Gao et al. (2022) found that the rate of Cant storage accelerated
from 3.1 ± 0.2 Pg C dec-1 for the 1989–2005 period to 4.9 ± 0.3 Pg C dec-1 for the
2005–2013 period when extrapolating from the same A16S section to the whole South
Atlantic basin. The most important difference between these two regional studies is again
the choice of the vertical integration depth. While Woosley et al. (2016) restricted their
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inventory calculation to ΔCant exceeding 3 µmol kg-1, Gao et al. (2022) provided upon request
integrated ΔCant over the top 3000 m (H. Gao and W.-J. Cai, pers. comm.). Our storage rates
determined for the two decades of our analysis (3.9 ± 0.5 and 5.4 ± 0.6 Pg C dec-1) agree
with the regional estimates in the ranges of their uncertainty, but support the finding of an
increasing rather than a constant or moderately decreasing basin wide storage rate. When
interpreting the regional inventories in the Atlantic Ocean, it should be noted that the
uncertainties provided by Woosley et al. (2016) are bulk uncertainties representing 20% of
the absolute values, while those of Gao et al. (2022) are based on the latitudinal variability of
column inventory estimates within 10° latitude bins. Neither uncertainty range is directly
comparable to ours.

For the Pacific Ocean, the most recent regional study found that the basin-wide storage of
Cant over the top 1500 m accelerated from the first to the second decade of the 1995 to 2015
period (Carter et al., 2019). This increase was detected primarily in the Southern
Hemisphere, where the ΔCant inventory increased from 5.4 ± 0.6 Pg C dec-1 (1995–2005) to
7.8 ± 0.6 Pg C dec-1 (2005–2015). In contrast, the Northern Hemisphere revealed a rather
steady sink strength during these two periods (3.4 ± 0.5 and 4.0 ± 0.5 Pg C dec-1). Within the
Southern Hemisphere, the accelerated Cant storage in the recent decade was found primarily
on the equatorward side of the Southern Hemisphere Subtropical Gyre. This pattern is
consistent with the slightly higher zonal mean content of ΔCant (around +2 µmol kg-1 dec-1)
that we find for our second decade (2004–2014) in the upper 1000m between the equator
and 30°S (Fig. 3). Likewise, our decadal ΔCant inventories over the top 3000m in the South
(8.6 ± 1.2 and 7.4 ± 1.0 Pg C dec-1) and North Pacific (2.9 ± 0.8 to 3.2 ± 1.8 Pg C dec-1) are
similar to those of Carter et al. (2019). However, we do find an insignificant slow-down rather
than an acceleration of the Cant storage changes in the South Pacific, due to our higher
storage changes during the first decade. This is partly due to our integration across small
negative decadal differences in ΔCant located between 1500–3000m (Fig. 2B), a depth range
which was not considered by Carter et al. (2019). In addition, there are notable differences in
the observations incorporated in our analysis. In this study, we do not use the P16 cruise
from 1991 due to missing TA data, but we do use calculated TA data from the South East
Pacific in the 1990s (Fig. 1 and Table S1). The calculated TA data were adjusted by +3 µmol
kg-1 according to crossover analysis with directly measured TA data. This positive adjustment
of TA data from the 1990s sampling period increases our South Pacific ΔCant inventory for
the 1994–2004 decade by about 1 Pg C (Fig. S11). The most important differences,
however, is our consideration of TA for the calculation of C*, whereas Carter et al. (2019)
derived C* from DIC by accounting for the effect of organic matter production and
remineralization through changes in the oxygen content, but neglected TA changes due to
the formation or dissolution of calcium carbonate minerals. If we remove TA from our C*
calculation as well, this reduces the ΔCant column inventories (Fig. S11) and leads to an
inventory that is about 3 Pg C dec-1 lower in the South Pacific for the 1994–2004 decade.
However, according to our reassessment of the GLODAP crossover (Fig. S3) we do not
have clear indications that this difference might primarily be due to data inconsistencies. We
thus conclude that it might capture a real signal in the calcium carbonate cycle.

For the Indian Ocean, no multi-decadal regional studies are available for comparison to our
ΔCant inventories (7.2 ± 0.9 and 5.7 ± 0.6 Pg C). Still, our inventories agree with the expected
steady-state storage change (Fig. 5) based on the total Cant inventory determined for the
mid-1990s (Sabine et al., 2004, 1999). An intensified Cant storage was previously described
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for the decade around 2000, albeit based on a single reoccupied east-west section at around
20° and without deriving a whole basin ΔCant inventory (Murata et al., 2010). This is in
agreement with our elevated reconstructed ΔCant inventories for our first decade 1994 –
2004.

We conclude from this comparison that the patterns and trends in our ΔCant reconstructions
agree with those determined in regional studies, and that differences can — where they exist
— be attributed to differences in the chosen integration depth, differences in the definition of
the target variable C*, and sometimes most likely also to the uncertainty associated with the
computation of a whole basin inventory from a single reoccupied transect (Woosley et al.,
2016; Gao et al., 2022).
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