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Abstract

In this write-up, we focus on pseudo-Hilfer-type fractional order delayed differential equations with
bounded definite integral initial conditions on the time interval [0,7]. We begin by establishing relevant
lemmas. Then, we derive the solution to the homogeneous pseudo-Hilfer-type fractional order retarded dif-
ferential equation that satisfies the appropriate initial condition using classical methods. Next, we obtain
explicit formulas for solutions to linear inhomogeneous pseudo-Hilfer-type fractional time retarded differen-
tial equations with constant coefficients, employing classical ideas. Furthermore, we investigate the existence
and uniqueness of the solution of the pseudo-Hilfer-type fractional order delayed differential equation, and
demonstrate the stability of the given differential equation in the Ulam-Hyers sense on the time interval
[0,T].

Keywords: Pseudo-fractional operator. Existence and uniqueness. Delayed analouge pseudo-Mittag-Leffler
type function. Fractional differential equations.

1. Introduction

Fractional differential equations (FDEs) are a generalized form of classical differential equations that
involve derivatives of fractional order. Fractional calculus is a mathematical field that deals with deriva-
tives and integrals of fractional order, and it includes important concepts such as fractional derivatives and
integrals. Fractional derivatives are defined using operators like Caputo, Riemann-Liouville, or Griinwald-
Letnikov, and exhibit non-local behavior. Fractional integrals, on the other hand, extend classical integrals
and can describe memory effects and long-range dependencies. FDEs find widespread applications in var-
ious scientific and engineering fields, such as physics, biology, finance, signal processing, control theory,
and image processing. Analytical methods like Laplace and Fourier transforms, as well as numerical meth-
ods like fractional-order numerical schemes and finite difference methods, are commonly used to solve FDEs.
Fractional calculus is also employed in control theory, signal processing, and optimization, with diverse appli-
cations in domains such as image processing, audio processing, communication systems, finance, economics,
and engineering.

Fractional differential equations (FDEs) have gained increasing attention in recent times due to their
wide-ranging applications in various fields such as mechanics, electrical circuits, and time-delay systems
stability analysis. FDEs are a generalization of classical differential equations, as they involve derivatives
of arbitrary (fractional) order. The use of fractional-order derivatives allows for modeling diverse behaviors
that cannot be captured by integer-order derivatives alone, making FDEs a powerful tool in engineering and
science.

Similarly, pseudo-analysis is a mathematical theory that generalizes classical analysis by using semicon-
ductors defined by pseudo-addition and pseudo-multiplication in the real range, instead of real numbers. This
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concept has piqued the interest of researchers from different fields such as functionality analysis, functional
equations, and variational calculus.

In recent times, many scholars have worked on new formulations of inequalities involving fractional
integrals and have investigated the properties of pseudo-fractional operators. For example, J. Vanterler da
C. Sousa, Rubens F. Camargo, E. Capelas de Oliveira Gastano S. F. Frederico have studied pseudo-Hilfer-
type FDEs([2]).

The existence and uniqueness problems of FDEs with constant delay and the stability of their solutions
are crucial topics in the field of fractional differential equations. Many renowned scientists, such as Ahmed
H.M., Ahmed A.M.S., Ragusa M.A ([39]), Moniri Z., Moghaddam B.P., Roudbaraki M.Z. ([40]), Vivek D.,
Kanagarajan K., Elsayed E.M. ([41]), Nazim I. Mahmudov, Ismail T. Huseynov, Arzu Ahmadova,([3],[7]-
[12],[17]-[20],[24]-[26]) Khusainov, D.Ya., Ivanov, A.F., Shuklin, G.V.,([15]), Podlubny, I.([21])., J.Vanterler
da C.Sousa, Gastao S.F. Frederico, E. Capelas de Oliveira([1],[2]) have made significant contributions to
these problems.

In conclusion, fractional differential equations and pseudo-analysis are fascinating areas of research with
wide-ranging applications in various fields. The works of renowned scientists in these fields have contributed
significantly to the advancement of mathematical theory and its applications in engineering and science.

For instance: J. Vanterler da C. Sousa, Rubens F. Camargo, E. Capelas de Oliveira Gastano S. F.
Frederico have looked following pseudo-Hilfer-type FDE([2]).

SEY () = Ay(t) & F(ty().t € J, m
fé,_g,t0+y(t) = Yo-

The authors of this study investigate the existence and uniqueness of the global solution for equation
(1.1). The equation involves the -Hilfer pseudo-fractional derivative denoted by H;gqfo +(+), where the
order is 0 < o < 1 and the type is 0 < 8 < 1. The parameter v is defined as v = o — B(1 — «). The function
f i [to, +00) x R™ x R™ — R™ is continuous. A is an n X n matrix.

It is worth mentioning that in a previous study by Sousa et al. in 2020 [6], the existence and uniqueness
of the global solution for the initial value problem associated with data (tg,yo) was researched. The general
form of any solution on the interval Z := [a, b] is given by the system of equations (1.2), where %y(t) denotes

the pseudo-fractional derivative of y(¢) and F(¢,y(t)) = f(¢,y(t)). The initial condition is y(to) = yo.

®

Gut) = F(ty), (1.2)
y(to) = vo.

with tg € I. Afterwards, in 2020, Sosa et al. ([6]), discussed the reachability of linear and non-linear systems

in the sense of the ¥-Hilfer pseudo-fractional derivative in g-calculus by means of the Mittag-Leffler functions
with the form

@0 y(t) = Ay(t) ® Bu(t),t € [to, t], 13)
I3 0+y(to) = 0
and .
HGZS y(t) = Ay(t) @ Bu(t) @ f(t,y(t), u(t)),t € [to, t], (1.4)
1—v _ .
@,@,o+y(t0) =0.

In these equations, H, g’g% 4 (+) represents the v-Hilfer pseudo-fractional derivative with order 0 < a <'1

and type 0 < 8 < 1. The parameter « is defined as v = a — (1 — «), and Ié};’,w() denotes the Riemann-
Liouvile pseudo-fractional integral with respect to another function 1 — . The state vector is denoted by
y € R™, the control vector by u € R™, and A and B are constant matrices of dimensions n x n and n x m,
respectively. The non-linear function f : J x R™ x R™ — R"™ is continuous in this context.

However, in this research article, we will be considering the following pseudo-Hilfer-type fractional delay
differential equation:

{H&gmy(t) =Aoyt)oBoyt—T1)® f(t),t € (0;T],7 >0, (15)

I3 20 y(t) = ¢(t),t € [-7,0].



wherem—1<a<m,0<g8<l,y=pF-1)(m—a)+k+1,k=0,....,m— 1.

To achieve our primary objective of obtaining an analytical solution for the pseudo-Hilfer-type fractional
time delay differential equation (1.5) with a constant delay using classical methods, we first need to obtain
the solution for the homogeneous pseudo-Hilfer-type fractional delay equations (1.6).

{Ha oooryt) =A0yt)o Boyt—71),t€ (0;T],7 >0, (1.6)

I@,@,o_yy( ) = ¢(t),t € [-7,0].
Subsequently, we employ conventional techniques to determine the explicit solution formula for linear
inhomogeneous pseudo-Hilfer-type fractional time-retarded differential equations with constant coefficients,

as presented in equation (1.5). We utilize well-established methods and refer to equation (1.7) to facilitate
the solution.

{ o8 ()= Aoyt)® Boyt—r)e f(i),t € (0;T],7 >0, W
I

615_6 O+y( ) = Ovt € [_7—7 O]

We make use of the solution of equation (1.7) as a particular solution to equation (1.5) in order to derive the
analytic solution, considering the conditions m—1<a<m,0< g <l,andy=(6—-1)(m—a)+k+1,k=
0,...,m—1. Moreover, we establish the existence and uniqueness of the solution in our study, and additionally
investigate the stability of the pseudo-Hilfer-type delay differential equation (DDE) (1.5) in the Ulam-Hyers
sense over the time interval [0, 7.

2. PRELIMINARIES

In this part, we mention that important information which it deals with pseudo-analysis, the elements of
the fractional analysis and some necessary lemmas which will use the proof of the theorem. ([16],[21])

e Gamma function:

IN{))] :/ T leTTdr, a>0.
0

e Beta function: )
B(t,s) = / 271 - 2)5 2, t,s > 0.
0

Let g : J — R4 be a monotone and continuous function, where J = [a,b] and Ry = [0, 400]. Then we
will defined Mittag-LefHler function as follow.

e The tree parametr Mittag-LefHer function:([22])

S & (). ) (9(2))°
Eaﬁg(z) = 2 I(as + /3 8[ ;} I(as -|— B8) s

e Delayed analogue of Mittag-Leffler type function generated by A, B € R of three parameters:([18])

Pronloa®it = 33 (7 ) e e

== T(na+qB+7)

e Exponentially bounded f : [0,00) — R holds an inequality of the form
IFOI < Le™, T,
for the real constants o, L > 0 and T" > 0.
e Laplace transform £{f(¢)} (s):

F(s)=£{f(®)}(s) = /000 e ' f(t)dt, seC,

where f : [0,00) — R is measurable and exponentially bounded on [0, c0), then the appointed by exists
and is an analytic function of s for Re(s) > 0.



e Time shift feature of the Laplace transform:
L{ft—a)H(t—a)}(s) = e *F(s).
e Convolution feature of Laplace transform:
L{(f=n)(6)} = L{f ()} (s)L{n(t)} (s),
where f,h:[0,00) — R are exponetially bounded functions.

e Riemann-Liouville fractional integral:
1 x
I =_— — > f(t)dt
2@ = o [ =00
e Hilfer fractional derivative Let m—1 < o < m, with m € N. The right-sided Hilfer fractional derivatives,

denoted by HDg‘f(-) of a function f of order o and type 0 < 3 < 1, are appointed by

(e m—o dm - m—o
"D, fla) = I S LT f (@), (2.1)

Taking the limit 5 — 0 in Eq.(2.1), we have the Rieman-Liouville derivative, given by:

(0% dm m—o
MEDg o) = o I f (@),

Taking the limit § — 1 in Eq.(2.1), we have the Caputo derivative, given by:

e, fla) = 17 Ly,

dz™

e For any linear and bounded operator ) appointed on a Banach space with [|Q2|]| < 1, the operator
(I —Q)~! is linear and bounded with property

=Y "ok (2.2)
k=0
Lemma 2.1. Let g : J — Ry be a monotone and continious function , where J = [a,b] and Ry =

[0, +00]. Then, for« >0,A€ R, n€ Ny=0,1,2,..., we have

271 { 1 } (t) i <n + q)( (A))q ta(n+q+1)*1 t(n+1)Oé 1E'7L+1 ( (A)ta) R ( ) S O
a _ n+1 = ) = — (n41)al9 , e(s .
(s> = g(A)"* =\ a Ila(n+q+1) wimhe
Proof. Using the expansion
_ —i ("+q>tq It < 1
_ f\n+1 ’ )
(L=t =\ g
for [t| = | L5
1 _ 1 1 i n+q\ (9(4) q:i n+q) _(g(4))
(s — g(A))ntl  sa(ntl) (1 _ g(A)>n+1 se(n+1) = q s@ = q sqata(n+1)

Taking inverse-Laplace transform of the above, we obtain that
- 1 N (nta) _(g(4)e — (n+q
N =g! — = A))?
< {(30‘ — g(A))nt1 } (t) =< {Z ( q > gaota(n+1) (1) Z q (9(A))

q=0 q=0
XE_l { 1( 5 } (t) _ (n + Q> (g(A)>qta(n+q+1)—1 — t(vn+1)a lEn+1
sanra n—+

q L(a(n+q+1)) o (n+1

M8

L (g(A)).
q=0



Lemma 2.2. Let g : J — R, be a monotone and continuous function, where J = [a,b] and Ry =
[0, 4+00]. Then, for a > 0, > v, we obtain.

L {SO‘ —9(4) —g(B)e—ST}( )= E;aa V(Q(A)79(B);t)'

Proof. According to the well-known Neumann series, W can be written through a series ex-

pansion as below:
s7 s7 1 i ne—snT i (g(B))ne—snTS'y

a __ _ —ST  e0r __ B)e—sT a __ n+1 "
5* —g(A) — g(B)e s*—g(A)1- LB 5o ) = AN = (s —g(A))

Then imposing Lemma 2.2 to the final consideration we get:

s7 n —SnT o > ne—SNT Y > n+q g(A) q
g — g(A) 6 ST _Z an+1) g(.:l n+1 7;) Sa(nJrl q;o( q )( s

0 (n + q) 9(A)"(g(B))"e* "

o
= Z a(n+1)+qa—y
n=0q q §

From the time delay feature of the Laplace integral transform, we have

Lot =)} () (H(t —7) = e L{g(t)} (s).
Then, by taking the Inverse Laplace transform of the aforementioned function, we get

o (o= (S e

n=0 ¢g=0

_ZZ (n+ q) (A)(g(B))"£~" (Sa(ni;:wy) (t)

n=0 q=0

n — pr)ent)+qa—y—1 o
_ZZ ( +Q) A))4(g(B))" (t ) H(t ) _ E;’a’aiv(g(A),g(B);t).

== I(a(n+1) +qa —7)

We need additional conditions on s, namely: s* > |A| and [s* — g(A)| > |Ble *" for convergence of the
series. But, these conditions can be removed at the end of the evaluation with analytical continuation, to
obtain the desired conclusion for all s € C with Re(s) > 0. O

2.1. PSEUDO-ANALYSIS

Assume ¢ : [, 8] — [0, 00] be monotone and continuous function. We will define pseudo operators as
follow. (see, e.g., [1],[2],[4],[27],[28])

e Pseudo operators:

a®f =g "(g(a)+9(B) and a©B =g "(g(@)g(B)),

a6 p =g\ 9(a)—g(8) and a®5=g‘1(ga))-

Suppose that f : [¢,d] — [a, b] is measurable function.

/[jd] fode = g‘1</cdg(f(:v))dx>.

e g-integral:



g-Laplace transform:

L {f (@)} (s) = g7 (&{g(f (@)} (5))-

Assuming that g is the generator function for the strict pseudo-addition @ on the interval [a, b], and g
is continuously differentiable on (a, b), the corresponding pseudo-multiplication ® is defined as z ©y =
g 1(g(2)g(y)). If a function f is differentiable on (c,d) and has the same monotonicity as the function
g, then the g-derivative of f at the point x € (¢, d) can be defined as follows:

g-derivative:

nth-g-derivative:

(n)® T n
I o (atstan)

Now we will give some essential information about Hilfer operator and Hilfer-type fractional derivative

Riemann-Liouville pseudo-fractional integral.

Assuming that g : [a,b] — [0,+00] is an increasing function that defines pseudo-addition ¢ and
pseudo-multiplication ® operations, the right-sided and left-sided Riemann-Liouville pseudo-fractional
integrals of a measurable function f : [a,b] — [a,b] with a positive order o > 0 can be defined in the
following manner:

12 o f) =g~ <I§“+g(f(x))> - /[ : | [g—l ((9‘";(2)) ° f(t)} ot

a,r

00 5@ =57 (120060) = [ o (E5 ) o o) o ar

]

and

Hilfer pseudo-fractional derivatives.

Consider a generator function g : [a,b] — [0, 0o] that is increasing, defining the pseudo-addition & and
pseudo-multiplication ® operations. The right-sided and left-sided Hilfer pseudo-fractional derivatives
of a measurable function f : [a,b] — [a, b], with orders m—1 < @ < m and type 0 < 8 < 1, respectively,
can be defined as follows:

o _ (e} — — dm —
HE G o f(@) = g7 (HDafgmx») =1Gass™ (dm) O L dar f ()

and
« — « m—ao) — dm —
13 01w = (D0 ) = 125500 () © 1 f(0)
Note that
HED L f@) =g <IJ+“RLDZ+g(f(:v))) I DY ()
and

HOS | fla) =g (z;-aRLDggw») — 1o, REDY L, f(w)

where v = a + 8(m — «).
For extra information about pseudo-analysis, see [29, 39, 40, 41].

In the following, we will first discuss the derivation of the formulas of the pseudo-Mittag-Leffler func-
tions and their definitions based on these calculations.



e The one parameter pseudo-Mittag-Leffler function::

EE() =g~ (Fagla)) =9 ( ras+1> ( 2 - é [ ((9()") 297 (Tas+1))]

=0

Where (0)s is the famous Pochhammer symbol denoting ((s(+) .

e The two parameter pseudo-Mittag-Lefler function:

pa =07 (Fasn)) =0 (X ool ) = B (it ) = Do (67) oo (rtoss)]

e The three parameter pseudo-Mittag-Leffler function:

oo

B30 -7 (E£a) o7 (5 1l 0) - B (2 4

& o (it /3))>g<91 (“PD| =B (i) o ()

= @ (5@ 29 s+ /) © (97 (9D @97

e The pseudo-bivariate Mittag-Leffler function:

o0 o0 a l s
B2 (00 =07 (Bt o) =57 (323 P S

1=0 ¢

—0 5=0
Oers (9@ 90)* | _ AN | -1 (0)i4-s 1 (g(a)(g(b))*
I‘(loz+s+ﬁ+’y) Is! ] B @690 [g <F(la+sﬁ+7)>®g ( I!s! )]

e Delayed analogue of pseudo-Mittag-Leffler type function generated by A, B € R of three parameters:
ELS (A Bit) = g7 (B2 5., (9(A), 9(B)i (1))

(n + q) (9(A))"(9(B))*

—nr na+qpf+y—1 —nr
o) I g1~ ) H(g(t >>)

CRR (g, (gl — nr)) Rt (g (4 )
- B Dy (( )@(A)) (4(B)) TRy )

DD [g‘l (("19)) oo (@) oo (wey)

o™ ((ate =m0t ) 0 g7 (H(gte - nr) ) 0 g7 (Tna-+a8 )

where H(-) : R — R is the Heaviside function appointed as follows

1 if ¢t >
Hiy =4 7
0, if t <O.



Theorem 2.1. ([1], p.254, theorem 27.)

Assume that g is the additive generator of the strict-pseudo-addition & on [a,b], so that g is continiously
differentiable on(a,b), 0 <m —1<a<m, 0<8<1ands € R Then, the g-Laplace transform of the
pseudo-Hilfer pseudo-fractional derivative of order « is given by:

,_.

m—

2o {3 o f@)} =197 (") @ £° {f(@)}] © EB g7 (smO=Pres=bty @ pU=Am= -k f ()] (23)
=0

3. EXPLICIT SOLUTIONS OF HOMOGENEOUS PSEUDO-HILFER-TYPE FRACTIONAL
DIFERENTIONAL EQUATION

In this part, we have proved the explicit solution given by following (3.1) pseudo-Hilfer-type fractional
differential equation system.

I .01 y(t) = o(t),t € [-7,0]. (3.1)

wherem —1<a<m,0< <1, y=B-1)(m—a)+k+1,k=0,....m—1.

{Ha®0+y() Aoyt)eBoylt—r1),te (0;T],7 >0,

Theorem 3.1. A unique analytical solution y € C™([—7,T], R) of the initial problem (3.1) has as shown
below:

(o to Dtz ©(A® B)® E” A B (k)
t = - .t_
y(t) <g L((B—1)(m—a)+k+1) (48 B) © By (5-1)moy o (4 B T)> © %

D
®ELE (A, Bit) oo™ Vo Bo / EP® (ABit —7—5)® ¢(s) © ds

a,o,a
[—7,min(t—7,0)]

Proof. Suppose that T' = co. Assume that (1.5) has a unique m times continuously differentiable solution
y and f are continuous and exponentially bounded, and Hea ©,0+Y 1s exponentially bounded on [0, 00), then
Laplace transforms of them exist. And we are going to receive an integral representation of the solution to
the linear homogeneous pseudo-Hilfer-type fractional differential equation.

First of all, we are imposing Laplace integral transform to both sides of (3.1) with the help of Theorem
2.1.

2o {32 00} ) :gllS{ (220000 } (5)1 :glls{HDo+ oo <>}]
e fawo)) (9 - Y. sm“-ﬂ)*“ﬁ—’f-l(féiﬁ)“”)’“g<y>)<o>]
=0
g (s) 0 L{u(D)} (5) © @) [ (- resmioty o [ Ak )]
k=

3

:g_

e

3

[}

m—1

—g ) OV ()0 @ g7 (s o g

SEHS D 0 y()](s) =g~ (s) OV (s) © [gfl(sm“*ﬁ)*af’*’“*l) ® ¢’g} : (3.2)



where, £% {y(t)} (s) = Y (s)
P {A0y(t)®BoOy(t— 1)) (s) =g~ (s {9 Aoy(t) @Byt - ﬂ})

=g! (2 {9(A)g(y(t)) + g(B)g(y(t — 7))} ) =A0L8@yt) e Bo L (y(t—1))

=AOY(s)®Bo Loyt — 7))

we get

P {A0yt) e Boyt -1} () =A0Y(s)® B L%yt — 1)) (3.3)

L0yt —7))(s) = g~ (Llg(t — 7))(s))
and by using substitution of ¢t — 7 = 6, we receive that

oo oo

L{gt—1)}(s) = /000 gt — T)B_Stdt _ / g(y(@))e_s(T+0)d9 — e—sr/ g(y(@))e_s(g)de

—T —T

e [ / T (e D + / h g<y<0>>es<">d0} -/ ig<y<e>>es<f+9>de

—T 0

+e T L(g(y(0))(s)) = /OT gly(t —))e™*"dt + e~ L(g(y(6))(s))

On the other hand, due to the integral property of the pseudo-Riemann-Liouville-fraction, we obtain the
following results. Let’s also note that the initial condition of the issue we are reviewing is manifested in the
following case.

19 o 0ey(t) = y(t) = y(t) = ¢(t),t € [-7,0]

in there é() : R — R is the unit-step function,which it has defined as bellow:

~ o(t) if —7<t<0
0 ift>0

Therefore we get following relations:

o0

S{g(t— )} (s) = / "oyt — et + L {g(w(0))} (s) = / g(d(t — )=t + e {g(y(0))} (5)

0
L2yt —))(s) = g () O Y (5) @ £2(J(t — 7)) (5) (3-4)
By using formula (3.2), (3.3), (3.4) we get the following results.

m—1

oY) 0 @ [ it 0 o] — a0 Y e e o e o V() 0.2 i -1} )]
k=0

Afterward, we write the above relation in the following explicit form

m—1

|:gl(8a) oAoB ®gl(esr):| @Y(S) _ @ [gfl(sm(lfﬁ)Jraﬁfkfl) ®¢Ig] @B ®£€B {&(t _ T)} (S)
k=0
(3.5)



Then, we solve (3.5) with respect to Y(s),

m—1

Y(s) = [ P (s P E Y o o) o Bo £ ot - )} (s)

k=0

g Yoy [T g(9F)] + g(B)g(£2(S(t — T))(s))
s —g(A) —g(B)e~*T

% {g_l(sa) ©ASBO g‘l(e—”)]

1 s sm(liﬁ)Jraﬂikilg(q&ék)) sfmﬁ+aﬁ (m—1) g(B) 7 s
- (k_o e B e =B ) — gt S (967
_ g(A) + g(B)e—T | T sm(-Drai—k-1g (b)) 9(B) o

|1+ 850 m) & i —am e e e}

k=0

In accordance with relation (2.2), we have

(s~ g(A)" f_oj 6 = ga) gz
= g(4) ~ g(B)e oy 5 () () (36)

n=0

If we replace the expression (3.6) in the Y(s) formula obtained above, we get the following results.

m—2 m—2
Y(s)=g! (( 3 sm=mras=h=lg (o)) + (g(A) + g(B)e*T) Y sm<15>+aﬁklg<¢ék>>)
k=0

k=0

3 [(5% = g B e | gl S (57 ) ()

=
+o(B)e {o(dlt— )} (5 i o - g<A>>—<"+1><g<B>>"e—5"*])
Imposing the inverse g-Laplace t;ansform to the above result, we get:
v =g (27 mz gr=A+a3k=1g(6(00) L (g(4) + g(B)e") mZ gmi=Arsad-k-tg(4(h)
x i 5 = g g8 ol i (5 = g(A) D ()T
+o(B) i_oj [ = gy D gl (gl - 7)) <s>] )

Taking inverse Laplace transform of the statement above and by using Lemma 2.1, Lemma 2.2 and time
shift and convolution property of the Laplace transform, we gain an explict representation of solution for a

10



initial issue (3.1)

m—2

y(t) :g—1(£—1 Z Sm,(l—ﬂ)+a[3—k—1g(¢(()k))
k=0
0o o n+q nS(l—B)(m—a)—l -
+ZZ ¢ (9(A) ™ (9(B)) ~atiierD € 9(0)

q - S(lfﬁ)(mfa)flefsn'r
(9(A)"(9(B)) S

(1-B)(m—a)—m+1le "7
nS

(")
("3")
L2 (Mt e el )
("3")
(")
("3")

(1-8)(m—a)—m+1 _,—snt
q ntl$ e —
(9(A) (9(B)"™ 9% )

n+q\ (9(A)"(g(B))"e"""" (60D
q go(n+g+1)—p(a—m) 0

n q n lefsn‘r ~
: ¢\ (9(4)) s(i(ﬁ% £(g(dlt - ﬂ))(s)] <t>)

y(t)y=g~" (£‘1 Tnz_zg"L(l—ﬁ)+aﬁ—k—19(¢(()k))
S () A
PSS () S
() A
+ii (" T ) B e o)
T () A
+ 22 <n ;r q) (g(A))Z((iJ((nliZ)J:ilefsm o {g(g,[t - T])} (s)] (t))
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Then we get following result.

) (1-8)(m—a)—k o
91<;OF 1- 3 k0%
S a) ey (L (D=
DO )y g e H - (0 1o
oo oo n+q . . (t— (n+1)7_)a(n+q+1)—(1—6)(m—a)

(0 + 1)r)entat)—(1=B) (m—a)+m—2 (o2

( <

o <
+§:i<nZq>(9(‘4))q+1(9(3))nr&(n+q+1)—(1—5)(m—a)+m—1)H(t_(n+1)7)g(¢° )

(2) <

(7)

(t—(n+ 1)T)a(n+q+1)—(1—6)(m—a)
Nan+q¢+1)—(1-8)(m—a)+1)
n+q . ., (t —nr)x(ntat)=Bla=m)—1 B (m—1)
L (t—nr — s)alntath)—1
IFa(n+qg+1))

H(t— (n+1)7)g(6d" )

H(t —nt—35)g(¢(s — T))ds)

$(1=B)(m—a)—k

=97 <r<<1 B F T T AW +9B)

(t—(n+ 1)7_)a(n+q+1)*(175)(m70¢)+k )) (¢(k))

k
n+q q n
> (" 1)ttt g

(t — nr)e(ntat)=Bla—m)=1

@
co 0o n+q q n o (m—1)
+ZZ( Jatanetae)r S - gl )

50 0) oy (L (0 D= 9 :
S (")t totm) O S H G 7= )a(306) s )

m=2 t(1=B)(m—a)—k
:g_l( Z <F((1 — ﬁ)(m — Oé) —k+ 1) + (g(A) + g(B))E;,a,oH»(ﬁf1)(m7a)+k+1(g(A)ag(B);t - T)¢ék)>
(m— 1) min(t—7,0) B
B ala g0 4 0B) [ Bl a(B)st — 7 - )g(3(6)ds)

m—2 . t(ﬁ 1) (m—a)+k . . (k)
=D (9 T((B—1)(m—a)+j+1) (A8 B) OB, (5-1)(m—a)ra+r (A Big™ (= T))) © ¢

k=0
D
SELE (A Big ) o i e Bo [ 70 (A, Big (- — 5)) © 6(s) © ds
[—7,min(t—7,0)]
We get
m—2 (B=1)(m—a)+k
- ! @ (Ae B)o E™® (A, B;g7'(t—71)) ) @ o
) = . B
y( ) N g F((ﬁ — 1)(m — 04) T k+ 1) a,a,(B—1)(m—a)+atk+1\*H ' 9 0

(3.7)
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(&)
®EL® (A Big ') oey Ve Bo / BlgalABigl(t—7—5)©¢(s) ©ds.  (3.8)

[—7,min(t—7,0)]

If we take ¢ > 7 then,

® B @
/ ET® (A Big ™ (t—7—5)) ® d(s) © ds = / ET9 (A Big \(t—7—5) @ (s) @ ds (3.9)
[—rt—] [=7,0)]
If we take t < 7 then,
® R ®
/ ELe (A, Big l(t—7—15)) ©d(s) Ods :/ ED® (A, B;g  (t—7 —5)) @ d(s) ©ds (3.10)
[=7t—7] [—T,t—7]
By using (3.8) and (3.9) we will get following result.
® ~ ®
/ E;’g’a(A, B; g (t—7—5))0d(s)Ods = / E;”ga(A, B;g ' (t—7—5))0d(s)Ods (3.11)
[=7,t—7] [=7,min(¢t—7,0)] i

O

4. INTEGRAL REPRESENTATION OF SOLLUTION TO LINEAR INHOMOGENEOUS
PSEUDO-HILFER-TYPE FRACTIONAL TIME DELAY DIFFERENTIAL EQUATIONS

In this part, by imposing the classical manners to solve (1.5), we will obtain the explicit formula for
the solutions of linear inhomogeneous fractional pseudo-Hilfer-type differential equations with invariable
coeflicients and time delay.

Let us examine the following two pseudo-Hilfer-type FDDEs with constant coefficients:

{H&gwy(t) = Aoy e Boylt-n) @ f(t)t e (0:T],7 >0, (4.1)
I3 2 opy(t) = 0,t € [-7,0]. .
and
{ ol ay(t) =Aoy(t)®Boy(t—71),t € (0;T],7 >0, w2
I 3 opy(t) = 8(t), t € [—7,0]. .

wherem —1<a<m,0< <1, y=B-1)(m—a)+k+1,k=0,....m—1.
The following lemma plays an important role in the proof of the subsequent theorem, which can be
obtained from classical ways about the solution of the system (1.5).

Lemma 4.1. If y; and yo are the solutions systems (4.1) and (4.2),respectively, then y(t) = y1 B yo is the
general solution of system (1.5).

Mention that the solution y, of (4.2) is investigated in paragraph 3. In other words, to reach our goal,
we need to find y; which is a particular solution of (1.5).

Lemma 4.2. Assumem —1<a<m,0< <1 form >2. Then, we have the following relation:

t
/ (t — s) A=A M=) =L (g _ 17 pyletpata—lgs — (¢ _ |7 — n)m_ﬁ(m_o‘)+l“+p°‘_23((1 - B)(m—a),(l+ 1) —I—pa)
n+ir

Proof. To prove the lemma, we use the definition of Beta function and substitution of v = t_tl;s_ 0 Conse-
quently, we obtain
t
/ (t o s)(lfﬁ)(mfa)fl(s —lr— 77)loH»pchraflds
n-+ir
1
:(t —lr - n)mfﬁ(mfa)JrlaerafZ‘/ u(lfﬁ)(mfa)fl(l . u)laJrO‘*ldu
0
—(t—Ir — n)m*ﬁ<m*a>+la+pa*23((1 —B)(m—a),(+1)a+ pa)
O
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We denote the following theorem for the particular solution of equation (1.5).

Theorem 4.1. A solution § € C™([0,T], R) of (1.5) holding zero initial conditions §(t) = 0, t € [-7,0),
g(k)(()) =0,0<k<m—1 has the following form:

[S]
3(t) = /[ L ERE (A BT ) 0 S s, 10 (4.3)

Proof. Using the method of variation of constants, any solution y of the inhomogeneous system must be
provided in the following shape:

g(t) = ET © (A, B;g ' (t—s)®h(s)@ds, t>0 (4.4)

[Ot] o,0 L,

where h(s), 0 < s <t is a sought vector function and g(0) = 0.

D t
() = /[ P2l Byt ) 0 h(s) 0ds =g~ ( | Erealot).g(mit - s)g(h(s))ds>
HEE () = g (PSP g(1))) = g (D3 / BT o (9(A), 9(B):t — s)g(h(s))ds))
D2 g(a(t)) = DS / ET . o (9(A), g(B):t — $)g(h(s))ds)

_Blm—a) ij [A=B)m—a) ( / BT oal9(A), 9(B)it - s)g(h(s))ds)

a2 ((1_5)1(m_a [t [ 6,008 s - matmyinas )
) (e [ [ 0P (), 03— mathn s
_ o ( /3)1 / / (=g 1E;w<g<A>,g<B>;s—n)g(h(n))dnds)

:[ﬁ(m—a)<r((15)1(ma))$ /Otgm(n))( / (t — 5)1=0m—e)- 122(“”) A)*(g(B))"

+nT n=0 ¢=0

) [ ) (e Zz(””) 4)"(g(B))"

I'(ga 4+ na + «) ==

dam [t (t—nrt— n)m’ﬁ(mfaH”a*qa’zH(t —nT —1n)
i | N (e o) dnB((1 = 5)m — ). -+ D+ gar)

—r (3 (M gy [ I =) )

== dtm I'(m — B(m — a) + na + ga — 1)

On the other hand, I#(m—a) & (f(4)) = ¢ phlatm) f(t) and according to formula between Riemann-
dz™ 0+ g
Luovile and Caputo fractlonal derivative, we have

M=l k—p(a+m)

I'(k - B(a+m))

—a am a+m a+m
[8(m )7f(t):CDgi+ )f(t):RLDgJ(r+ )f(t)f f(k)(O), t>0

dtm k=0
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With the help of following binomial identity.

(2 =07 ) 0t) ez
q q q—1

and imposing Leibniz rule for higher-order derivatives (Ismail T.Huseynov et al ., 2021)(see Theorem 3.2),
we achieve

050 = 170 (5 (M) oy

n=0 ¢g=0

t (t T — n)m—ﬁ(m—a)-{-na-}-qa 2H(t ot — 77)
></o I'(m—B(m—a)+na+qga—1) g(h(n))dn)

n t T — m—pB(m—a)+nat+pa—2 —nr —
_ CDﬁa m+m<zz< +Q) q(g(B))n/o (t F(T:Z)_ ﬂ(m_a)+na+2[joft_ 1) n)g(h(n))dn>

n=0 g=0
I A R e ¢ ()
7dt7m (m 5( ) 1) g(h(n))dﬁ
oo n-+q— ndl t (t _lr— n)mfﬁ(mfa)JrnaJrqafZH(t T — 7])
Jrnz::uz:o < > JotB) dtm /0 L'(m— B(m — a) +na+ qo— 1) g(h(n))dn
0o n+qg—1 am t t—nr — m—ﬁ(m—a)+na+qa—2H t—nr —
+Z;]z; ( : > (g<B>)ndt7m/o : F("Z) B(ma)+na+qa( 1) n)g(h(n))dn
= (n+qg—1 . n Lt —nr — n)eBtrataa=2 [t —pr — 1)
=g(h(t)) +;;< . )(g(A)) (9(B)) /0 N g(h(n))dn
n -+ q— 1 q " t (t —nr— n)a5+na+qa—2H(t —nr— 77)
i nz;) qz; < ) (A)*a(5)) /0 I'af+na+qga—1) g(h(n))dn
ntq w1 [1(E—nT — )Pt 2H(t — (n 4 1) — 1)
)t nz:oqzo < ) S aB)™ /0 MaB+ (n+ Da+qga—1) g(h(n))dn

_ n)aﬁ+na+(q+1)a72H(t —nr — ’I’])

n 1 " Lt —nT
+ZZ (ﬂf) )T (g(B)) /O ( L g(h(m))dn

n=0 q¢=0

—g(h(t) + g(A) / BT oo (9(A), g(B):t — m)g(h(n))dn + g(B) / T i (9(A) g(B):t — 7 — n)g(h(n)dn

HSY o i(t) = g (D5 g(5(t))) = g‘l(g(h(t)) +9(A)/0 E] 0.opra_1(9(A),9(B);t —n)g(h(n))dn

+9(B) /0 Eqoopra—1(9(A),9(B)it —7 — ﬂ)g(h(ﬂ))dﬂ) =Aoyt)® Byt —7)®h(t) =A@ y(t) © Byt —7) @ f(t)

Therefore, we obtain that h(t) = f(¢) for t € [0, T]. O

Eventually, we obtain the next theorem for the unique analytical solution of the Cauchy problem (1.5).
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Theorem 4.2. A unique analytical solution y € C™([—7,T|,R) of the initial issue (1.1) has the following
form:

m—2 —1)(m—a)+k
_ -1 £ i T,® e (k)
y(t) - g (g (F((ﬁ . 1)(m _ Oé) + k‘ + 1) @(A@B)QEma’(571)(m7Q)+a+k+1(AaBag (t T)) ®¢O
L @
BELS (A Big ' (1) oo Ve Bo / ELS (A Big (t =7 —5)) © 6(s) O ds
[—7,min(¢t—7,0)]

®
@/ EDE (ABig ' (t—s))© f(s) ©ds, t>0.
[0,%]

Proof. The proof of the theorem is immediate. Therefore, we pass above it. O

5. EXISTENCE AND UNIQUNESS PROBLEM FOR NONLINIEAR TIME RETARDED
PSEUDO-HILFER-TYPE FRACTIONAL DIFFERENTIONAL EQUATIONS

In the following section, we will look the initial issue for a nonlinear pseudo-Hilfer-type fractional differ-
ential equation with constant delay.

So0ry(t) =A@ y(t) ® Boy(t—1) @ f(ty(h),t € (0;T),7 >0,
Iy 30+ y(t) = (1), t € [-7,0].
Where m —1 <a<m,0< <1, y() €R, f(,L4(-)) : [0,00) x R — R is a nonlinear perturbation and

also a continuous function. And we will also suppose that (t — f(¢,0)) € C(]0,00), R). Then, according to
Theorem 4.2, we obtain the solution of the nonlinear Hilfer-type FDE (5.1) as follows:

(5.1)

- 75 » {(B=1)(m—a)+k o (A B)© B (4, Big 7 (t—7)) | @y
=D\ D TR ek R 0

(&)
®ELE (A, Big ') oo Ve Bo / ED9 (A, Big ' (t—7—35)) @ ¢(s) @ ds

[—7,min(t—7,0)]

[S2]
o / BT (A, Big~\(t—5)) ® f(s,y(s)) @ ds, 0.
[0,t]

First of all, we denote following lemmas and notes: For z(-) : [a,b] — R, we will define the norm of the

function as a follow:
lz(®)llg = 9~ (lg(z(0)])

Lemma 5.1. (/3/, page 12, lemma 5.1) The following estimation satisfies true:
B3 a—pask(As Bit)] <t Lexp(JAft™ + [ B|t*~7) (5.2)

[e3%

fork=0,1,... m—1

Corollary 5.1. (/3], page 12, corollary 5.1)
For m > 2, the following conclusion satisfies:

| Bfapm (A, Bit)| <t Lexp(|Aft™ +|BJt~7). (5:3)

Analogously, we will get the following results for pseudo-Mittag-LefHler functions.

Lemma 5.2. Assume a generator g : [a,b] — [0,00] and A, B € R. For following delayed pseudo-Mittag-
Leffler function  estimation  holds  true:

B oA B g (1))l < g7H (1) © g™ Hexp(| At + |BJt*7)) (5:4)

fork=0,1,... m—1
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Proof.
BT A B )]y =g (g (E;:%,a+k<A, B: g-1<t>>|))

0 (B2 sasslal) (B30 ) < 97 (15 expllalle + (B)e )

<g7 () © g exp(Ale + |Bli))

Then, we can denote analogously following corollary.

Corollary 5.2. Let a generator g : [a,b] — [0,00] and A, B € R. For m > 2, the following inequality holds:

BT (A Big (0)]y < g~ (tm-l) og! (exp<|A|t“ T B|ta—ﬁ>). (5.5)

Theorem 5.1. Assume that the following hypothesises are true:

(H)f:[0,T]x R— R be a continious function :
(Ha)there exisit C >0 such that f holds the Lipschitz condition :

|f(t7y)@f(t70')|g S C® |y60'|g, v(t7y)7(t70') € [07T] X R7 (56)
Then, the problem (5.1) has a unique global continuous solution on [0,T].

Proof. Assume that a ball be appointed as Br :=y € C([0,T], R) : ||y||w < R,w > 0 where R > 0 with

R> [W@ 63, @ g (T @S ooy V@56 ¢ (T() ® B [|¢]]w @D} 2 (g (W eSeg (T(a) o)
(5.7)

where

m—2 -1 (m—a
W= @ g_1< T(B=1)( )+k ) o (14| @ |B|) @g_l(T(/a_1>(m_a)+a+k) o
par T(B—1)(m—a)+k+1)

D= mas {17(0,0), 0 expl)} 5§ = exp (<g<A>| n |g<B>|>Ta)

Now, we set an integral operator F on Bg as below:
F:C([0,T],R) > Br 3y — F(y) := (t = (Fy)(t)) € C([0,T], R),

through the following formula

m2 H(B=D)(m—a)+k
_ -1 T,® o=l (k)
(Fy)(t) - g (g (F((ﬁ — 1)(m — Oé) ¥ L + 1)) S (A @ B) © Ea’a,(ﬁfl)(mfa)+a+k+1(147 Bag (t T))) © (b()

@
OELS (A Big () 0dy" @B e / Efaa(ABig (t =7 —9)) 0 ¢s) O ds

[=7,min(¢t—7,0)]

©®
@/ EL® (A B;g ' (t—5)) O f(s,y(s)) ©ds, te[0,T].

We can establish that the operator F' is well-defined based on condition (H7), and thus, the existence of a
solution to the initial issue (5.1) is equivalent to the existence of a fixed point for the integral operator F'
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on the set Br. To prove the uniqueness of the fixed point, we will apply the contraction mapping principle.
However, instead of using the maximum norm C([0,T], R), which only yields a local solution within the
subinterval [0, 7], we will consider equipping C([0,T], R) with the weighted maximum norm || - ||, with
respect to the exponential function, defined as:

ke 2= max. {lu(t)ly @ exp(wt)}, ¥y € CO.71. B).

Since two norms || - ||oc and || - ||, are equivalent, C([0,T], R,|| - ||») is also a Banach space. The proof is
separated into two parts.
Step 1: We prove that F(Br) C Bg. In this part, we look following estimation.

_1(91(Py)(@)] 1 1(Pg(y)(t)
Fy)(t)], © exp(wt) = g~ ! (g = — 5.8
First of all, we denote the following notes for use in process of proof.
m—2 (8—1)(m—a)+k *)
(ST ey s D) * )+ IV EL 5 m-rsarin (0(4) 9Bt = ) (6}
k=0

min(t—r,0)
a0l 0), 0B 096" ) a(B) [ B o). g(By e~ 7 - 9)g(0(9)ds

-7

+ / BT o(9(A), g(B):t — 8)g(f(s, y(s)))ds. t € 0.7

Then, we will get.

Flaw)(®)] 5~ tw Dtk gy 4 19l +le(B)]
g(exp(wt)) ~ g(exp(wt)) = IN( m—a)+k+1) 0 g(exp(wt))
# 2 1ELommpsanin 0008 = D96 + s o) 9B o6
0
g("f{;(it))/ 57 0 (0(A),0(B): £ = 7 = 5)}g(65)
bt [ 1B o). 0B )l 5, 9(6)) ~ o (50D + b7 5,0
mz2 H(B=1)(m—a)+k m—2
<X F((ﬂ_l)(m_mkﬂ)m( o)+ (lg(A)] + |9(B M 2 1B gy (904): 9 (Bt = 7)llg( o)l
0
+m|E;,a,a<g< g Olla(o" )+ s [ 1L o) Bt = 7 = s)lg(o(9)ds
+ o) / E7 9(B):t = 8)llg(f (5, 4(s)) — 9(f(.0))| + |g(f(s,0))]ds
m—2 5 1) (m—a)+k m—2
DI e D)+ (g(A)] + lg(B D 1 o oy (9(4), 9B =l o)
1 i (m—1) 9B [0 . RN IC. JCO I
+—g(exp(wt))|Ea,a,a<g< 19 BiDllg(@f" )+ s 1Bz alald).o(B)s (s 7¢Ol
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1 - s s u(s)) — of F(s.ony LEXPWs)) ;o
+7g(exp(wt))/0 1B 0.0 (9(A) 9(B)it = )llg(f(5,y(5))) = 9(F (s O)IFrrmnd

+/ 1B a,a(9(A),9(B);t — s)||g(f(s,0))‘wds
’ )

g(exp(ws)
By using from this formula and (5.8) we obtain
m2 H(B=1)(m—a)+k

(ol 0 e < B o (s ey 7)) ©

=0

- _ k
(|4l & |B) @@\E & e Dmearrasis (A Big T =)y @ (6]
|E;%Q<A,B;g-1( Ny © 165" ]y @ exp(wt)

®
®|B[ @ exp(wt) © / |EL e a(A Big ' (t =7 = 5))|g © exp(ws) © |6(s)]; © exp(ws) © ds
[=7.0]

®
@/[ } [ELE (A, Big  (t—9))lg © | f(s,9(5)) © f(5.0)|y © exp(ws) © exp(ws) @ ds @ exp(wt)
0,

o / D8 (A, Big ™ (t — )]s © | £(5, 0)] @ cxplws) © exp(ws) @ ds
[0,t]

Now take Vt € [0,T] and Yy € Bg. By using (Hz) by means of Lemma 5.2, we receive:

H(B=1)(m—a)+k X
) © |¢E) )‘g

—(m—a)+k+1)

(Fy)(®)ly @ explwt) < @g (

=0
m—2

(4] [Bl) o @ g7 ((t - 1)@= Dm=eteth) o o= (exp(|A] + Bt~ 7)) @16,
k=0

g~ (t*71) © g™ ((exp( |A\+|B|)ta)®|¢om Dy @ exp(wt)
@
@|B| @ exp(wt) @/

o’ t—T—S) )®9‘1((eXP(IA|+IBI)(t—T—S)O‘)®exp(w8)®|¢(8)Ig®exp(w)®d8

0
&
69/ ( (t—s)*" 1) ® g ((exp(JA] + |B))(t — 5)*) ® C ® |y(s)|, © exp(ws) @ exp(ws) © ds @ exp(wt)
[0, t]

(&)
ea/ (=9 ) g (exp(A] + B - 5)*) © 1f(5,0)], @ explws) © exp(ws) © ds
[Ot]
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Using the substitution » — s = u and Lipschitz condition (Hs), we get

m—2 H(B=1)(m—a)+k

(POl oexten) < P () ©

=0

m—2
m—o« « — (0% k
a(4l@ |Bl) o @) g7 (oDt @ gL (exp(|4] + | Be) © 167,
k=0

@9~ (t*7") @ g~ ((exp(|A] + [B)E) @ 66" ], @ exp(ewt)

53]
@|B| @ exp(wt @/

[70]
52

t -7 = )“‘1) ® [¢(s)]g @ exp(ws) © exp(ws) © ds © g~ ((exp(|A] + |B])(£))

&C @ exp(wt) © / 9! ((t - s)"“l) © ly(s)ly © exp(ws) @ exp(ws) @ ds @ g~ ((exp(|A| + | B])(£)*)

. [0,2]
@ [ 7 ((=977) 15,00 0 explion) 0 explion) 0 ds 07! (exp(4] + B0 © explet

- . T(B—1)(m—a)+k
- g (F((ﬁ—l)(m—a)+k+1)

Oy~ ((exp(|4] + [BNT) @ 194"y & g~ (T*71) © g~ (exp(|A] + |BNT) @ 65" ]

m—2
k — -1 (m—a)+a
)oll o alois) o @ g (10D
k=0
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®

®|B| @ exp(wt) ® /
[0,7]

&

gt ((t — S)"‘l) ©exp(w(s — 7)) © ds © % {lo(t)lg @ exp(wt)} © g~ ((exp(|A| + | B|)(T)%)

g7 ((1=5)°7") © explws) © ds © mac {ly(Dl, @ explwi)} © g~ (exp(| 4] + [ B)(T)")

tel0,T"

@®C @ exp(wt) ® /
[0,¢]

2]

@ a7 (=) ©explen) 0 ds© mas (17(5,0)ly @ explen)} © g7 (exp(14] + B)(T)) @ explet)

T(B=1)(m—a)+k
“Dm—-a)+k+1)

(Fy)(t)], © explwt) < @g (

m—2
k (m—a)+a
)olole a1 B) o @ g (10 m-eres)
=0 k=0
S

S @6, @ g (T © S ey V|, @ Bl © S 0 exp(wt) © /

g7 ((t=5)°") @ exp(ws) @ ds © [l¢].
(0,¢]

&

®C © S © exp(wt) @/
[0,¢]

g ! ((t - 8)a_1> © exp(ws) © ds

g7 ((t=9)"71) © exp(ws) @ ds © [y

S

®D © S © exp(wt) /
0,2]

m—2
T(,Bfl)(mfa)+lc
= - Al® |B|) © g~ (TP Dim—errark) 6 6 ) 6 o)
st (g (F((ﬁ—l)(m—a)+k+1)>@( l@lB)og ( )® @190l

53]

oy (1) 05 0165" P, @ |B|© S @ exp(wt) © / g7 (1) © explwt) © exp(—wu) ® du © [|6].
[0,¢]

52

@C o S ©exp(wt) ® / g ! (ua_l) © exp(wt) ® exp(—wu) ® du @ ||yl|w
[0,¢]

&

@D © S @ exp(wt) / g ! (ua_l) © exp(wt) ® exp(—wu) @ du
(0,2]
(k) 1 1 (m—1) ¢ 1
=W olgly g (T osoli" Ve Blose /[ - (w") @ exp(—wu) © du © [l
0.t
@
eCOSo /

S2]
g ! (ua_l) © exp(—wu) © du © ||y|le ® D © S/ g ! (u"_1> © exp(—wu) © du
[0,] [0,]

52

W ol ey @ oS0l 0lB0Sos W) e [

g7 (v7 1) @ exp(—v) @ dv @ |6l
[0,wt]
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52 52

eCo®Sog Hw) @/ gt (vo‘_l) ©exp(—v) © dv O ||yllw @D@S@g‘l(wo‘)/ gt (vo‘_l) © exp(—v) © dv
[0,wt]

[0,wt]
(k) P (m—1) ) ©
W oM, 00 (T o5 V0500 <wa>/

g ! (an) ©® exp(—v) © dv
[0,wt]

@(|B| o 16l C O [l & D)

®
gW@|¢g’“>|g@g—1(Ta—1>@5@|¢g’"1>|g@5@g—1(w>/[ ]g‘l( 1) © exp(~v) ® dv
0,00

o(1B10 6l o Colbll o D) = Wols), 0 T o s o),
©5§~ (T(a) @ g~ (W) © (|B| ©ll¢l ®C o vl © D)
<o lofl, 0 ) o 50"V, © 857 (0) 097w © (1810 el e Co Re D)

Taking the maximum over [0, T] and using inequality (5.6), we obtain the following relation:
[Fyllo < R

For this reason, F' : Bg — Bpg. In other words, F is well-defined on Bpg.
Step 2.In this step, we will represent that F is a contractive mapping. We should demonstrate that F is
a contraction over Bg. To see this, let Yy, o € Br. Mention that

®
(Fy)(t) © (Fo)(t) = /[0 ) ELEa(ABig ™t —5) @ (f(s,9(5)) © f(s,0(5)) ©ds, t>0. (5.9)
Thus, for any ¢t € [0,T], from Lemma 5.2 and (Hs)-Lipschitz condition, it follows that
_1<|(F9(y))(t) - (FQ(U))(t)|>
g(exp(wt))

[(Fy)(t) © (Fo)(t)]y @ exp(wt) = g

-1 1 ! T ] S S — S,0 S
< (g(exp(wt)) |1z (o). (B)st = )l 0. (5)) = (5 <>>>|d)
&

_ -1 1 7D Y s, y(s s,0(s s
=0 (o) @ [, 1ERalA B (= 9y © 115, 9(6) & £ o)) 0 d

S5}
<(C @ exp((|A] + |B|)tY)) @ exp(wt @/ g~

) O ly(s) ©o(s)|g @ exp(ws) ® exp(ws) ® ds
0.1

[0,¢] t€[0.7]

( t— s
<(C ® exp((|A| + [BI)t)) @ exp(wt) © / g (t—s )@exp<ws>@ds@ max {|y(t) — o(t)], © exp(wt)}
< (t— s

—(C ® exp((|4] + | B)t)) © exp(wt) ® / v

) © exp(ws) @ ds © ||y — o]l
[0,¢]
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D

~(C ®exp((|4] + | B)t%)) @ exp(wt) © /

g ! (ua_1> © exp(wt) @ exp(—wu) @ du @ ||y — 0w
[0,t]

D
~coep((d+ B e [ g (u) © exp(—wu) ® du ® [y - ol
[0,t]
D
~(Coep((l4]+ B o g o | g(> © exp(—v) @ dv & Iy — o]l
[0,wt]

D
<(Coexp((|A+ [B)*) 0 g~ (@) © /[

=exp((|A] + [B)t*) © Co g~ (M) 2 g7 () © |ly = ol
<exp((|A] + B)T*) © C o g~ (T(a) @9~ (w) @y —ollu =80 Cog  (T(a) 0y (w) @y - ol

gt <v°‘1) Oexp(—v) ©dv O ||y — o|w
]

Then, we get.

[(Fy)(t) © (Fo)(t)]y @ exp(wt) < S©Co g (T(a) 2 g~ (W) O lly — ol

Taking maximum on [0, 7], we will get the following conclusion:
IF(y) e Flo)lle < SOCog I ()29 (w) Oy — ol (5.10)

If we choose w > (S ® C ® g ' (I'(e)) ® g~'(w®))a, then F is a contraction. Thus, by Banach’s fixed
point theorem, there exists a unique fixed point of F' which is just the unique global continuous solution of
(5.1). O

Remark 5.1. If the assumptions (H7) and (Hs) are satisfied for all ¢ € [0, 00), then the claim of this theorem
holds on the half-real line R, i.e. for any (m—1)-times continuously differentiable initial data ¢ : [-7,0] — R,
the non-linear pseudo-Hilfer equation type equation of fractional order with a constant delay (5.1) has a
unique global continuous solution on [0, 00).

6. ULAM-HYERS STABILITY ANALYSIS ON PSEUDO-HILFER TYPE FRACTIONAL
DIFFERENTIONAL EQUATION WITH A CONSTANT DELAY

In the following part, we debate the stability of the pseudo-Hilfer-type DDE (5.1) in the Ulam-Hyers
sense on [0, 7.

Suppose that € > 0. Let us imagine the pseudo-Hilfer type fractional delay differential equation (5.1) and
the Initial issue for the following inequality:

HE G 0s0() 0 A@o()e Boot—1)& f(to(t))ly<e for t€(0,T] (6.1)

Definition 6.1. Equation (6.1) is Ulam-Hyers stable if there is # > 0 such that for every e > 0 and for every
solution o € C([0,T], R) of inequality (6.1), there is a solution y € C([0,T], R) of equation (5.1) that holds
the inequality due to a weighted norm:

||y 9 UHW S € @ 97 t S [OvT] (62)

Remark 6.1. A function o € C([0,T], R) is a solution of the inequality (6.1) if and only if there is a function
f € C([0,T], R) which fulfills the following conditions:

1) [f(t)ly < &
2) HYY o) 0 AGo(t) o Boo(t — 1) O flt,a(t) = f(t),t € [0, .
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Due to the Remark 6.1, the solution of following equation:
HSY o) ©AGa(t) o Boa(t—1) = f(t,o(t) @ f(t),t € [0,T]. (6.3)

can be demonstrate by

m—2
- ) HB=1)(m—a)+k e g (k)
"= D (g <F((ﬂ— Do 1511 ) EAEB) O Ela i nm-aran (4 Big— (E=7)) | ©dg

k=0
1 (&)
DELE (A Big ) 0oV o Bo [ ELalABig (1= 7= 9) ©6(s) 0 ds
[—7,min(t—7,0)]
(&) (&)
@ | ELYL(AB;g ! (t—s) @ f(s,0(s) ©ds @/ E}S (A B;g ' (t—5)) O f(s) ©ds
[0,¢] [0,]

&)
—(F(o))(H) & /[0 T A B =) 0 S 0 ds, te[0.T)

To use Lemma 5.2, the difference o(t) © (F(z))(t) can be evaluated as follows:

2]
BT (A Big (0= 9) 0 f9) 0dsly < [ ETE(ABig (= 9)ly @ ()], o ds

[0,t]

@
lo(t) © (F(a))(®)lg = |

0.4
@
<e@g (") © g Hexp((JA] + [B))tY)) © /[O . ds <e® g™ (T*) © g~ (exp((|A] + [B)T*)) =@ g~ (T*) © S.
7 (6.4)

Finally, with constant delay, we are ready to assert and prove the Ulam-Hyers stability result for pseudo-
Hilfer FDE.

Theorem 6.1. Suppose that (Hy and Hs) are satisfied. Then the equation (5.1) is Ulam-Hyers stable on
[0,T7].

Proof. Assume that o € C[0,T], R is a solution of the inequality (6.1). Let y be a unique solution of the
Cauchy problem for pseudo-Hilfer type fractional-order DDE(5.1), that is

m—2
~1 B~ D(m—a)tk ™, B -1 (k)
= ®A®B)OE” A, B; — ®
vt @ <g (F((ﬂ —1)(m—a)+k+1) ( ) a7a,(l3—1)(m—a)+a+k+1( ,Big™(t =) P

k=0
D
BELS (A Big () 0oy Ve Bo / EL8 (A Big™ (t =7 —5)) © 6(s) © ds
[—7,min(t—7,0)]
D
® / ELS (A Big ! (t = 5) © f(s,0(s)) @ ds == (Fy)(t), t€[0,T] (6.5)
0,¢]

By using estimation (5.9) and (6.5), we obtain

2
ly(t) © o(t)ly @ exp(wt) = |(Fy)(t) © (Fo)(t) © /[0 ) B oA Big™ (t —5)) © f(s) ©ds|y © exp(wt)
52
<I(Fy)(t) © (Fo)(t)ly @ exp(wt) @ /[O ] BLG oA Big™ (t = 5)lg @1 f(s)]g © ds

<Cog (o)) @ exp((|A| + |BNT*) 0 g7 (w*) O ly = ollw ® e @ g7 (T%) © g~ (exp((|A] + | B))T*))
=S0Cog (M) oy w)oly-ol.®cog (T%) 08
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We take maximum on [0, 7], then we obtain
ly—ollo <SOLEOg ' (T(a) @9 ' (w) Olly—oll. @0 g™ (T*)© S
that gives that

ly—clle<eco (g (T oS olesSoCog (o) @y (@)

Q=

By choosing w > (g(S oCo g_l(F(a)))> which implies that

ly —ollo <e®b (6.6)

where

0:=(g ' (T") oS o(lesSeCog () og H(w))

7. An Example

In this section, we present an example that serves as a validation of the major theoretical results stated
in Sections 5 and 6. The demonstration of the existence, uniqueness, and stability analysis of solutions in
the following example relies on the application of Theorem 6.1.

Let a =14, =05m = 2,7 =2, and T = 2. Consider the following pseudo-Hilfer delay diferential
equation with a constant delay:

{Hé'fg%iy(t) =30yt @70yt -2) o % e (0;2], (7.1)

I3 owy(t) =t+5, te[-2,0].

with constants A = 3,B = 7 and ¢(¢) = t + 5 is continuously differentiable function for ¢ € [—2,0] and
ct(.i&) is continuous on a Cartesian product [—2,0] x R. Let g(t) = 2t+1, Vte
R be be monotone and continuous function. Such that the inverse of g(t) be g~!(t) = 1. And we will
denote ¢(t) =t + 5,and we have ¢g =5, ¢y = 1.

Let’s clarify the notation: « is defined as (8 — 1)(m — «) + k + 1, where k = 0,...,m — 1. Now, if we
substitute o = 1.4, # = 0.5, and m = 2 into the expression for 7, we obtain v = k + 0.7, where k takes the
values 0 and 1.

Since y(0) = 5, and 3/(0) = 1, the exact analytical representation of solution of (7.1) can be represented
as follows:

nonlinear perturbationf(t) =

403 ,
y(t) = <g_1 (F((O.?)) OB E1.7§?1.4,2.1(37 T (- 2))) ©5

@
@Ef.’f1.4,1.4(3a g (1) 0 eTo /[ ( ) Ef.’f1.4,1.4(3a Tig ' (t—2—5)) © ¢(s) @ ds
—2,min(t—-2,0
@ cos(y(s))
D E>® 3,7; —t— O —"—2>0d
0.4 1.4,1.4,1.4( g ( s)) 211 S

25



By using some basic pseudo-operations and above conditions, we can simplify the exact solution of (7.1).

—0.3 t 0.3 1
367=9"(9(3) +9(7) =g '(22) =105, g (F((o.ﬂ) T a0n) 2

1050 B340 (3,70 (0= 2) = 07 [9010.9) x (B2, 40 3. Tsg 7 0 - 2)

.....

=g ! [22 X E%_471_4,241 (9(3)a9(7);t — 2)] =g {22 X Ef_471_472_1 (7, 15;¢ — 2)]

1
:11Ef.4,1.4,2.1 (7a 1558 — 2) 3

t*°~3 1
T0. 69{111?141421

7) a 2

—0.3 1 t_O'S
—— L 11E? 7,15t —2) —~ | 05 =g g =er
[2F(0.7) + 1~4’1~472~1( P ) 2} o=y [g(zr(o 7)

a0 2 11703
=9 [(r(oy)*22El~471~47241(7’15;t—2) -11] =g {r(o 5 + 24258 41 424 (7150~ 2)

11t_0'3 .
=——— +121E} (7 154 — 2) 1
2I'(0.7) + 14,104,220 1195 5
Eff$1.4,144(37 g () Oy =gt [E%,471.4,1.4(9(3)>9(7)§t) ~9(1)} =

3
=2 Blanana(T15:0) -

e -2) = 3] =0~ o(grgm ~ 3) Fo(1F s (1150 -2) - 5)]
—0.3 1

t
+ 22E7 41421 (77 15:t — 2)] = ar(0.7) +11EY 41400 (77 15t — 2) -3

/N

1
+ 11]512.471.4,2.1 (7, 15;t — 2) - 5) '9(5)]

- {3 “EY 41.4,1.4(T, 155 t)}

53]
7@/ Efjfl.4’1'4(3,7;g_1(t—2—s))®¢(s)®ds
[—2,min(¢t—2,0)]

Inm (t—2,0)
lg E1244,1.4,1.4(9(3)a g(7); (t—2— 5))9(¢(5))d5]

min(t—2,0)
g1 [15 / B2y a7, 15 (=2 — 5))(25 + ll)ds}

min(t—2,0) 1
=15- / Ef 4 1.41.4(7,15; (?f—2—8))(5—1—5.5)ds—5

2

min(t—2,0)
—15. / E141414(7 15; (t—2—s))sd3

2

165 min(t—2,0) 1

T E12.4)1,4)1,4(7, 15: (t — 2 — s))ds -3

2
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®
: - cos(y(s))
E12z?141.4(3a7§9 Lt —s)) 0 222

O ds
o4 s2+1
t
=g ! E? 15: (t — Q.M 1
) [/0 1.4,1.4,1.4(7a 5; ( 5))( 241 + )ds
‘ cos(y(s 1 1
:/ E1244,1.4,1.4(77 15; (t — 5)) (% + §>ds ~3
cos(y(s
= [ Bupanatn 15 ) 5Dy

1
+’/ E? 4 1.41.4(7,15;(t — s))ds — =
3 J, “rara, 2

—0.3 1 3 1

2T(0.7) + 111*712.4,144,2.1 (77 1558 — 2) - 5} @ b : E12.4,1.4,1.4(7a 155t) — 5}
min(t—2,0) 165 min(t—2,0) 1
@ 15 / E24 1414 (7, 15, (t — 2 — s))sds + 5 / F24 1414 (7, 15 (t— 2 — s))ds - ﬂ

-2
cos(y(s)) I 1
@ / E1,4,1.4,1.4 (7,155 (t = 8)) —5——ds + 5 E12.4,1,4,1.4(7» 15; (t — s))ds — *]
211 2 J, )

oo 1 3, 1
=g 9<2F(0.7) + 11E1.4,1.4,2.1(7 15;t — 2) 2) +9<§ BT 41.4,1.4(7,15;t) — 5)

min(t—2,0) 165
+g(15 / E12.4,1.4,1.4 (7v 15;(t —2 — 8))Sds + X /

-2

min(t—2,0)

1
E12.4,1A4,1.4 (75 15;(t—2— S))ds — 5)

/ B 41.4,0.4(7, 15 ( — ))ijii(?)ds—k 1/ B3 41.41.4(7,15;(t — s))ds — ;)]

2
t—03 11 1 3
+ Ef41421(7715;t—2)—§+2 E141414(715t)

1
2I‘(0 7)
min(t—2,0) 165 [min(t—2,0) .
+15 - /2 E%_4,1.4,1‘4 (7, 15;(t—2— 8)) sds + - , E1.4,1V4’1_4 (7 15;(t—2— s))ds -3

cos(y(s))

1
D g+ 5 /E141414<7 15: (1 — 8))ds — 2

¢
+/o E%4,1.4,1.4(77 15; (t — s))

03 L u 3
:m* E141421(715t* ) 3 E141414(715t)
min(t—2,0) 165 min(t—2,0)
+15-/ E141414(7 15; t—2—s)sds+— E12.4,1.4’1,4(7,15;(t—2_5))d5
t
cos(y(s)) 1
+/0 B} 41.41.4(7,15; (t = 5)) (W + §)d3

Finally, we will obtain the following result for the solution of pseudo-Hilfer delay diferensial equation, which
it is equivalent with exact solution, so that it can express pseudo-operations.

t70.3 11 ) 3 )
:21"(07) -2 + ?E1.4,1.4,2.1 (77 155 t— 2) + 5 . E1.4,1.4,144(7? 157 t)

min(t—2,0) 165
+/ Bf4ra04 (77 155 (t —2 — s)) (155 + T)ds

—2

/ E1,4,1.4,1‘4(7 15; (t — ))(M + %)ds

s2+1

y(t)
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It is not difficult to see that condition H(2) holds. By mean value theorem, for any y,z € R, there exists
¢ € (y, z)such that

fty) o ft2)ly <lyozly

The statement H(2) is valid with C' being equivalent to 1, as per Theorem 6.1 and equation (5.1). This
implies that the pseudo-Hilfer differential equation with a constant delay, as given in equation (7.1), has a
single solution that is stable in the Ulam-Hyers sense over the interval [0, 2].

References

[1]

[10]

[11]

J.Vanterler da C.Sousa, Gastao S.F. Frederico, E. Capelas de Oliveira, ¥-Hilfer pseudo-fractional oper-
ator: new results about fractional calculs, Computational and Applied Mathematics, Volume 39, issue
4, p.1-33 https ://doi.org/10.1007 /s40314- 020-01304-6

J.Vanterler da C.Sousa, Rubens F.Camargo, E. Capelas de Oliveira, Gastao S.F. Frederico. Pseudo-
fractional differentional equations and generalized g-Laplace transform, J. Pseudo-Differ. Oper. Appl.
(2021) 12:44, volume 12. https://doi.org/10.1007 /s11868-021-00416-9

Ismail T. Huseynov, Nazim I. Mahmudov. A class of Langevin time-delay differential equations with
general fractional orders and their applications to vibration theory,Journal of King Saud University-
Science, volume 33, issue 8.

D. S. Oliveira. ¥-Mittag—Leffler pseudo-fractional operators,Journal of Pseudo-Differential Operators
and Applications volume 12, Article number: 40 (2021)

Vanterler da C Sousa, J., Vellappandi, M., Govindaraj, V., and Frederico, G. S. (2021). Reachability
of fractional dynamical systems using -Hilfer pseudo-fractional derivative. Journal of Mathematical
Physics, 62(8).

Ahmad, B., Nieto, J.J., Alsaedi, A., El-Shahed, M., 2012. A study of nonlinear Langevin equation
involving two fractional orders in different intervals. Nonlinear Anal.Real. World. Appl. 13, 599-606.

Ahmadova, A., Mahmudov, N.I., 2020. Existence and uniqueness results for a class of fractional stochas-
tic neutral differential equations. Chaos Soliton Fract. 139.https://doi.org/10.1016/j.chaos.2020.110253

Ahmadova, A., Mahmudov, N.I., 2021. Langevin differential equations with general fractional order and
their applications to electric circuit theory. J. Comput. Appl.Math. 388,.

Ahmadova, A., Mahmudov, N.I., 2021. Ulam-Hyers stability of Caputo type stochastic neutral differen-
tial equations Statist. Prob. Lett. 108949. https://doi.org/10.1016/j.spl.2020.108949.

Ahmadova, A., Huseynov, I.T., Fernandez, A., Mahmudov, N.I., 2021. Trivariate Mittag-Leffler func-
tions used to solve multi-order systems of fractional differential equations. Commun. Nonlinear Sci.
Numer. Simul. 97C, 105735.

Huseynov, I.T., Mahmudov, N.I., 2020. Delayed analogue of three-parameter Mittag-Leffler functions
and their applications to Caputo type fractional time-delay differential equations. Math. Meth. Appl.
Sci. 1-25. https://doi.org/10.1002/mma.6761.

Huseynov, I.T., Ahmadova, A., Fernandez, A., Mahmudov, N.I, 2020. Explict analytic solutions of
incommensurate fractional differential equation system. Appl.Math. Comp. 125590.

Arran Fernandez, Cemaliye Kiirt, Mehmet Ali Ozarslan, 2021. A naturally emerging bivariate Mittag-
Leffler function and associated fractional-calculus operators. Computational and Applied Mathematics
volume 39, Article number: 200 (2020) .

Huseynov, I.T., Ahmadova, A., Mahmudov, N.I., 2021. Fractional Leibniz integral rules for Riemann-
Liouville and Caputo fractional derivatives and their applications. arXiv:2012.11360.

28



[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

32]
[33]

[34]

Khusainov, D.Ya., Ivanov, A.F., Shuklin, G.V., 2005. On a representation of solutions of linear delay
systems. Dif. Eq. 41, 1054-1058.

Kilbas, A.A., Srivastava, H.M., Trujillo, J.J., 2006. Theory and Applications of Fractional Differential
Equations. Elsevier, Amsterdam.

Mahmudov, N.I., 2018. Delayed perturbation of Mittag-Leffler functions and their applications to frac-
tional linear delay differential equations. Math. Meth. Appl.Sei. 1-9. https://doi.org/10.1002/mma.5446.

Mahmudov, N.I., 2020. Fractional Langevin type delay equations with two fractional derivatives. Appl.
Math. Lett. 103,. https: //doi.org /10.1016/j.aml1.2020.106215106215.

Mahmudov, N.I.; Al-Khateeb, A., 2020. Existence and stability results on Hadamard type fractional
time-delay semilinear differential equations. Mathematics 8,1242.

Mahmudov, N.I.; Huseynov, I.T., Aliyev, N.A., Aliyev, F.A., 2020. Analytical approach to a class of
Bagley-Torvik equations TWMS. J. Pure Appl. Math. 11, 238-258.

Podlubny, 1., 1999. Fractional Differential Equations. Academic Press, New York.

Prabhakar, T.R., 1971. A singular integral equation with a generalized Mittag-Leffler function in the
kernel. Yokohama. Math. J. 19, 7-15.

Whittaker, E.T., Watson, G.N., 1927. A course of modern analysis. Cambridge University Press, Cam-
bridge.

I T Huseynov, A Ahmadova, A Fernandez, NI Mahmudov,Explicit analytical solutions of incommensu-
rate fractional differential equation systems, Applied Mathematics and Computation 390, 125590, Vol-
ume 390 Pages 125590 (Publisher Elsevier).

A Ahmadova, I.T Huseynov, N.I. Mahmudov,Controllability of fractional stochastic delay dynamical
systems, Journal Proceedings of the Institute of Mathematics and Mechanics National Academy of
Sciences of Azerbaijan,2020,Volum 46,Issue 2,Pages 294-320.

Nazim I Mahmudov, Arzu Ahmadova, Ismail T Huseynov,A novel technique for solving Sobolev-type
fractional multi-order evolution equations, Computational and Applied Mathematics Volume 41, Issue
2, Pages 1-35 (Springer International Publishing)

Azizollah Babakhani, Milad Yadollahzadeh, Abdolali Neamaty,Some properties of pseudo-fractional
operators, Journal of Pseudo-Differential Operators and Applications volume 9, pages677-700 (2018)

D. S. Oliveira, J. Vanterler da C. Sousa, Gastao S. F. Frederico ,Pseudo-fractional operators of variable
order and applications, Soft Computing volume 26, pages4587—4605 (2022)

R.Sakthivela.Revath S.Marshal Anthoni, Existence of pseudo almost automorphic mild solutions to
stochastic fractional differential equations, Nonlinear Analysis: Theory, Methods Applications,Volume
75, Issue 7, May 2012, Pages 3339-3347, https://doi.org/10.1016/j.na.2011.12.028

Ismail T Huseynov, Arzu Ahmadova, Nazim I Mahmudov, Perturbation properties of fractional strongly
continuous cosine and sine family operators,Electronic Research Archive(2022),volume 30, issue 8

Herrmann R. Fractional calculus: an introduction for physicists. 2nd ed. Singapore: World Scientific;
2014.

Hilfer R. Applications of fractional calculus in physics. Singapore: World Scientific; 2000.

Hilfer R, Luchko Y, Tomovski Z. Operational method for the solution of fractional differential equations
with generalized Riemann-Liouville fractional derivatives. Fract Calc Appl Anal 2009;12:299-318

da Sousa, J.V.C., Frederico, G.S., Babakhani, A.: Existence and uniqueness of global solution in gvari-
ational calculus. HAL Id: hal-02955494, https://hal.archives-ouvertes.fr/hal-02955494

29



[35]

[36]

[37]

[38]

[39]

Ozarslan, M.A., Fernandez, A., 2021. On the fractional calculus of multivariate Mittag-Leffler functions.
Int. J. Appl. Comput. Math. https://doi.org/10.1080/00207160.2021.1906869.

Pap, E.: Pseudo-additive measures and their applications. Handbook of measure theory, North-Holland
1403-1468(2020).

Pap, E.: Applications of the generated pseudo-analysis to nonlinear partial differential equations. Con-
temp. Math. 377,239-260(2005).

Hosseini.M., Babakhani.A., Agahi.H., Rasouli.S.H.; On pseudo-fractional integral inequalities related to
Hermite-Harmand type. Soft Comput. 20(7), 2521-2529(2016).

Ahmed H.M., Ahmed A.M.S., Ragusa M.A., On some non-instantaneous impulsive differential equations
with fractional brownian motion and Poisson jumps, TWMS Journal of Pure and Applied Mathematics,
14 (1), 125-140, (2023);

Moniri Z., Moghaddam B.P., Roudbaraki M.Z., An efficient and robust numerical solver for impulsive
control of fractional chaotic systems, Journal of Function Spaces, vol.2023, art.n.9077924, (2023);

Vivek D., Kanagarajan K., Elsayed E.M., Attractivity and Ulam-Hyers stability results for fractional
delay differential equations, Filomat, 36 (17), 5707-5724, (2022);

30



