References
Andersson AA, Tilley HB, Lau W et al (2021) CITES and beyond: illuminating 20 years of global, legal wildlife trade. Global Ecology and Conservation 26: e01455.
Bennett E, Eves H, Robinson J, Wilkie D (2002) Why is eating bushmeat a biodiversity crisis. Conservation Biology in Practice 3: 28-29.
Bezerra-Santos MA, Mendoza-Roldan JA, Thompson RCA et al (2021) Illegal wildlife trade: A gateway to zoonotic infectious diseases. Trends in Parasitology 37: 181-184.https://doi.org/10.1016/j.pt.2020.12.005
Bi Gonedelé S, Koné I, Béné J et al (2017) Bushmeat hunting around a remnant coastal rainforest in Côte d’Ivoire. Oryx 51: 418-427.
Bi Gonedelé S, Kramoko B, Bené J et al (2022) Year-round longitudinal monitoring of a bushmeat market in central-western Côte d’Ivoire: implication for wildlife conservation. Journal for Nature Conservation.
Breiman L (2001) Random Forests. Machine Learning 45: 5-32. 10.1023/A:1010933404324
Csörgő M, Horváth L (1997) Limit theorems in change-point analysis. Hoboken, NJ, John Wiley and Sons
D’Cruze N, Green J, Elwin A, Schmidt-Burbach J (2020) Trading tactics: time to rethink the global trade in wildlife. Animals 10: 2456.
Dindé AO, Mobio AJ, Konan AG et al (2017) Response to the Ebola-related bushmeat consumption ban in rural Côte d’Ivoire. Agriculture & Food Security 6: 28. 10.1186/s40066-017-0105-9
Fa JE, van Vliet N, Nasi R (2016) Bushmeat, food security, and conservation in African rainforests. In: Aguirre AAS, Raman (ed) Tropical conservation: perspectives on local and global priorities. Oxford, UK: Oxford University Press, pp 331-344
Falola A, Ajewole OO, Ajibade TB et al (2015) Assessment of welfare status of bushmeat traders in the post-Ebola era in Kwara State, Nigeria. Journal of Multidisciplinary Studies 4: 1-26.
Fang G, Liu H, Wang Q (2021) Wildlife conservation legislation at a fork in the road. BioScience 72: 223-225. 10.1093/biosci/biab122
Funk SM, Fa JE, Ajong SN et al (2021) Impact of COVID-19 on wild meat trade in Nigerian markets. Conservation Science and Practice 4.
Funk SM, Fa JE, Ajong SN et al (2022) Impact of COVID-19 on wild meat trade in Nigerian markets. Conservation Science and Practice 4: e599.https://doi.org/10.1111/csp2.599
Genolini C, Ecochard R, Benghezal M et al (2016) kmlShape: an efficient method to cluster longitudinal data (time-series) according to their shapes. Plos One 11: e0150738.
Ghosh P, Neufeld A, Sahoo JK (2022) Forecasting directional movements of stock prices for intraday trading using LSTM and random forests. Finance Research Letters 46: 102280.
Gossé KJ, Gonedelé-Bi S, Justy F et al (2022) DNA-typing surveillance of the bushmeat in Côte d’Ivoire: a multi-faceted tool for wildlife trade management in West Africa. Conservation Genetics.
Harvey-Carroll J, Simo FT, Sonn-Juul T et al (2022) Continued availability and sale of pangolins in a major urban bushmeat market in Cameroon despite national bans and the COVID-19 outbreak. African Journal of Ecology 60: 146-152.https://doi.org/10.1111/aje.12969
Hughes AC (2021) Wildlife trade. Current Biology 31: R1218-R1224.https://doi.org/10.1016/j.cub.2021.08.056
Ingram DJ, Coad L, Milner-Gulland EJ et al (2021) Wild meat Is still on the menu: progress in wild meat research, policy, and practice from 2002 to 2020. Annual Review of Environment and Resources 46: 221-254. 10.1146/annurev-environ-041020-063132
Key N, Sadoulet E, De Janvry A (2000) Transactions costs and agricultural household supply response. American Journal of Agricultural Economics 82: 245-259.
Killick R, Fearnhead P, Eckley IA (2012) Optimal detection of changepoints with a linear computational cost. Journal of the American Statistical Association 107: 1590-1598.
Killick R, Eckley IA (2014) changepoint: an R package for changepoint analysis. Journal of Statistical Software 58: 1-19.
Marsaglia G, Tsang WW, Wang J (2003) Evaluating Kolmogorov’s distribution. Journal of Statistical Software 8: 1-4. 10.18637/jss.v008.i18
McNamara J, Robinson EJZ, Abernethy K et al (2020) COVID-19, systemic crisis, and possible implications for the wild meat trade in sub-Saharan Africa. Environmental and Resource Economics 76: 1045-1066. 10.1007/s10640-020-00474-5
Meseko C, Shittu I, Adedeji A (2020) The bush meat trade thrives in Nigeria despite anxiety over coronavirus. Transactions of the Royal Society of Tropical Medicine and Hygiene 114: 639-641. 10.1093/trstmh/traa060
Milleliri J-M, Coulibaly D, Lamontagne F (2021) La Covid-19 en Côte d’Ivoire (mars 2020-avril 2021) une année sous le sceau du coronavirus. Médecine Tropicale et Santé Internationale 102: 1-8.
Moritz S, Bartz-Beielstein T (2017) imputeTS: time series missing value imputation in R. The R Journal 9: 207.
Nasi R, Taber A, Van Vliet N (2011) Empty forests, empty stomachs? Bushmeat and livelihoods in the Congo and Amazon Basins. International Forestry Review 13: 355-368.
Reynolds MG, Doty JB, McCollum AM et al (2019) Monkeypox re-emergence in Africa: a call to expand the concept and practice of One Health. Expert Review of Anti-infective Therapy 17: 129-139. 10.1080/14787210.2019.1567330
Roe D, Dickman A, Kock R et al (2020) Beyond banning wildlife trade: COVID-19, conservation and development. World Development 136: 105121.https://doi.org/10.1016/j.worlddev.2020.105121
Sills J, Yang N, Liu P et al (2020) Permanently ban wildlife consumption. Science 367: 1434-1434. doi:10.1126/science.abb1938
Sprouffske K, Wagner A (2016) Growthcurver: an R package for obtaining interpretable metrics from microbial growth curves. BMC bioinformatics 17: 1-4.
van Vliet N, Schulte-Herbrüggen B, Muhindo J et al (2017) Trends in bushmeat trade in a postconflict forest town: implications for food security. Ecology and Society 22.
Table 1. Input variables and model fit results for the predictive models per bushmeat site.
The models were either constrained (grey row) by the highest number of sellers prior to COVID-19 for each site, or not constrained (no color). They were run under a machine learning approach using the Random Forest method in which we provided a training and testing dataset (ratio of around 80:20 of data, excluding missing data). Model fit was determined by percentage of variance explained and the Root Mean Square Error (RMSE), which was standardized by number of sellers per site (RMSE closer to zero equals more confidence).