References
Acker, T.S., Muscat, A.M., 1976. The Ecology of Craspedacusta sowerbii Lankester, a freshwater Hydrozoan. The American Midland Naturalist 95, 323–336. https://doi.org/10.2307/2424397
Álvarez, D., Nicieza, A.G., 2002. Effects of temperature and food quality on anuran larval growth and metamorphosis. Functional Ecology 16, 640–648. https://doi.org/10.1046/j.1365-2435.2002.00658.x
Anderson, J.T., 2016. Plant fitness in a rapidly changing world. New Phytologist 210, 81–87. https://doi.org/10.1111/nph.13693
Angilletta, M.J., 2009. Temperature and the life history, in: Angilletta Jr., M.J. (Ed.), Thermal adaptation: A theoretical and empirical synthesis. Oxford University Press, p. 157-180. https://doi.org/10.1093/acprof:oso/9780198570875.003.0006
Angilletta, M.J., Niewiarowski, P.H., Navas, C.A., 2002. The evolution of thermal physiology in ectotherms. Journal of Thermal Biology 27, 249–268. https://doi.org/10.1016/S0306-4565(01)00094-8
Arendt, J., 2015. Why get big in the cold? Size–fecundity relationships explain the temperature-size rule in a pulmonate snail (Physa ). Journal of Evolutionary Biology 28, 169–178. https://doi.org/10.1111/jeb.12554
Audzijonyte, A., Jakubavičiūtė, E., Lindmark, M., Richards, S.A., 2022. Mechanistic temperature-size rule explanation should reconcile physiological and mortality responses to temperature. The Biological Bulletin 000–000. https://doi.org/10.1086/722027
Blanchard, S., Lognay, G., Verheggen, F., Detrain, C., 2019. Today and tomorrow: impact of climate change on aphid biology and potential consequences on their mutualism with ants. Physiological Entomology 44, 77–86. https://doi.org/10.1111/phen.12275
Bosch, T.C., Krylow, S.M., Bode, H.R., Steele, R.E., 1988. Thermotolerance and synthesis of heat shock proteins: these responses are present in Hydra attenuata but absent in Hydra oligactis . Proceedings of the National Academy of Sciences 85, 7927–7931.
Boutry, J., Tissot, S., Mekaoui, N., Dujon, A.M., Meliani, J., Hamede, R., Ujvari, B., Roche, B., Nedelcu, A.M., Tokolyi, J., Thomas, F., 2022. Tumors alter life history traits in the freshwater cnidarian,Hydra oligactis . iScience 25, 105034. https://doi.org/10.1016/j.isci.2022.105034
Brooks, M., E., Kristensen, K., Benthem, K., J. ,van, Magnusson, A., Berg, C., W., Nielsen, A., Skaug, H., J., Mächler, M., Bolker, B., M., 2017. glmmTMB balances speed and flexibility among packages for Zero-inflated Generalized Linear Mixed Modeling. The R Journal 9, 378. https://doi.org/10.32614/RJ-2017-066
Brown, J.H., Gillooly, J.F., Allen, A.P., Savage, V.M., West, G.B., 2004. Toward a Metabolic Theory of Ecology. Ecology 85, 1771–1789. https://doi.org/10.1890/03-9000
Bryden, R.R., 1952. Ecology of Pelmatohydra oligactis in Kirkpatricks Lake, Tennessee. Ecological Monographs 22, 45–68. https://doi.org/10.2307/1948528
Cáceres, C.E., Schwalbach, M.S., 2001. How well do laboratory experiments explain field patterns of zooplankton emergence? Freshwater Biology 46, 1179–1189. https://doi.org/10.1046/j.1365-2427.2001.00737.x
Chamaillé-Jammes, S., Massot, M., Aragón, P., Clobert, J., 2006. Global warming and positive fitness response in mountain populations of common lizards Lacerta vivipara . Global Change Biology 12, 392–402. https://doi.org/10.1111/j.1365-2486.2005.01088.x
Cooley, J.M., 1971. The effect of temperature on the development of resting eggs of Diaptomus oregonensis Lillj (copepoda: Calanoida). Limnology and Oceanography 16, 921–926. https://doi.org/10.4319/lo.1971.16.6.0921
Decaestecker, E., De Meester, L., Mergeay, J., 2009. Cyclical parthenogenesis in Daphnia : sexual versus asexual reproduction, in: Schön, I., Martens, K., Dijk, P. (Eds.), Lost Sex: The Evolutionary Biology of Parthenogenesis. Springer Netherlands, Dordrecht, pp. 295–316. https://doi.org/10.1007/978-90-481-2770-2_15
Deutsch, C.A., Tewksbury, J.J., Huey, R.B., Sheldon, K.S., Ghalambor, C.K., Haak, D.C., Martin, P.R., 2008. Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences 105, 6668–6672. https://doi.org/10.1073/pnas.0709472105
Ekvall, M.K., Hansson, L.-A., 2012. Differences in recruitment and life-history strategy alter zooplankton spring dynamics under climate-change conditions. PLOS ONE 7, e44614. https://doi.org/10.1371/journal.pone.0044614
Franch-Gras, L., García-Roger, E.M., Serra, M., José Carmona, M., 2017. Adaptation in response to environmental unpredictability. Proceedings of the Royal Society B: Biological Sciences 284, 20170427. https://doi.org/10.1098/rspb.2017.0427
Fuchs, B., Wang, W., Graspeuntner, S., Li, Y., Insua, S., Herbst, E.-M., Dirksen, P., Böhm, A.-M., Hemmrich, G., Sommer, F., Domazet-Lošo, T., Klostermeier, U.C., Anton-Erxleben, F., Rosenstiel, P., Bosch, T.C.G., Khalturin, K., 2014. Regulation of Polyp-to-Jellyfish Transition in Aurelia aurita. Current Biology 24, 263–273. https://doi.org/10.1016/j.cub.2013.12.003
Gardner, J.L., Peters, A., Kearney, M.R., Joseph, L., Heinsohn, R., 2011. Declining body size: a third universal response to warming? Trends in Ecology & Evolution 26, 285–291.
Gergely, R, Tökölyi, J. in press . Resource availability modulates the effect of body size on reproductive development. Ecology and Evolution
Gilbert, J.J., 2017. Resting-egg hatching and early population development in rotifers: a review and a hypothesis for differences between shallow and deep waters. Hydrobiologia 796, 235–243. https://doi.org/10.1007/s10750-016-2867-7
Gillooly, J.F., Brown, J.H., West, G.B., Savage, V.M., Charnov, E.L., 2001. Effects of size and temperature on metabolic rate. Science 293, 2248–2251. https://doi.org/10.1126/science.1061967
Goldstein, J., Steiner, U.K., 2020. Ecological drivers of jellyfish blooms – The complex life history of a ‘well-known’ medusa (Aurelia aurita ). Journal of Animal Ecology 89, 910–920. https://doi.org/10.1111/1365-2656.13147
Green, J., 1966. Seasonal variation in egg production by Cladocera. Journal of Animal Ecology 35, 77–104. https://doi.org/10.2307/2691
Gulbrandsen, J., Johnsen, G.H., 1990. Temperature-dependent development of parthenogenetic embryos in Daphnia pulex de Geer. Journal of Plankton Research 12, 443–453. https://doi.org/10.1093/plankt/12.3.443
Gyllström, M., Hansson, L.-A., 2004. Dormancy in freshwater zooplankton: Induction, termination and the importance of benthic-pelagic coupling. Aquat. Sci. 66, 274–295. https://doi.org/10.1007/s00027-004-0712-y
Hairston, N.G., Kearns, C.M., 1995. The interaction of photoperiod and temperature in diapause timing: a copepod example. The Biological Bulletin 189, 42–48. https://doi.org/10.2307/1542200
Hartig, F., 2022. DHARMa: Residual diagnostics for hierarchical (Multi-Level/Mixed) Regression Models (0.4.5).
Holst, S., 2012. Effects of climate warming on strobilation and ephyra production of North Sea scyphozoan jellyfish, in: Purcell, J., Mianzan, H., Frost, J.R. (Eds.), Jellyfish Blooms IV: Interactions with Humans and Fisheries, Developments in Hydrobiology. Springer Netherlands, Dordrecht, pp. 127–140. https://doi.org/10.1007/978-94-007-5316-7_10
Huey, R.B., Kingsolver, J.G., 2019. Climate warming, resource availability, and the metabolic meltdown of ectotherms. The American Naturalist 194, E140–E150. https://doi.org/10.1086/705679
Huey, R.B., Kingsolver, J.G., 1989. Evolution of thermal sensitivity of ectotherm performance. Trends in Ecology & Evolution 4, 131–135. https://doi.org/10.1016/0169-5347(89)90211-5
Innes, D.J., 1997. Sexual reproduction of Daphnia pulex in a temporary habitat. Oecologia 111, 53–60. https://doi.org/10.1007/s004420050207
Jenni, L., Kéry, M., 2003. Timing of autumn bird migration under climate change: advances in long–distance migrants, delays in short–distance migrants. Proceedings of the Royal Society of London. Series B: Biological Sciences 270, 1467–1471. https://doi.org/10.1098/rspb.2003.2394
Kaliszewicz, A., 2015. Intensity-dependent response to temperature in Hydra clones. Zoological Sciences 32(1), 72-76. jzoo 32, 72–76. https://doi.org/10.2108/zs140052
Kingsolver, J.G., Diamond, S.E., Buckley, L.B., 2013. Heat stress and the fitness consequences of climate change for terrestrial ectotherms. Functional Ecology 27, 1415–1423. https://doi.org/10.1111/1365-2435.12145
Lee, K.P., Jang, T., Ravzanaadii, N., Rho, M.S., 2015. Macronutrient balance modulates the temperature-size rule in an ectotherm. The American Naturalist 186, 212–222. https://doi.org/10.1086/682072
Lenth, R., 2022. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.8.3.
Littlefield, C.L., 1991. Cell lineages in Hydra: Isolation and characterization of an interstitial stem cell restricted to egg production in Hydra oligactis . Developmental Biology 143, 378–388. https://doi.org/10.1016/0012-1606(91)90088-K
Littlefield, C.L., Finkemeier, C., Bode, H.R., 1991. Spermatogenesis inHydra oligactis : II. How temperature controls the reciprocity of sexual and asexual reproduction. Developmental Biology 146, 292–300. https://doi.org/10.1016/0012-1606(91)90231-Q
McCarty, J.P., 2001. Ecological consequences of recent climate change. Conservation Biology 15, 320–331. https://doi.org/10.1046/j.1523-1739.2001.015002320.x
McLean, K.D., Gowler, C.D., Dziuba, M.K., Zamani, H., Hall, S.R., Duffy, M.A., 2022. Sexual recombination and temporal gene flow maintain host resistance and genetic diversity. Evol Ecol. https://doi.org/10.1007/s10682-022-10193-6
McNamara, J.M., Houston, A.I., 2008. Optimal annual routines: behaviour in the context of physiology and ecology. Philosophical Transactions of the Royal Society B: Biological Sciences 363, 301–319. https://doi.org/10.1098/rstb.2007.2141
Meehl, G.A., Stocker, T.F., Collins, W.D., Friedlingstein, P., Gaye, A.T., Gregory, J.M., Kitoh, A., Knutti, R., Murphy, J.M., Noda, A., Raper, S.C.B., Watterson, I.G., Weaver, A.J., Zhao, Z.C., 2007. Global climate projections. Chapter 10.
Miklós, M., Laczkó, L., Sramkó, G., Barta, Z., Tökölyi, J., 2022. Seasonal variation of genotypes and reproductive plasticity in a facultative clonal freshwater invertebrate animal (Hydra oligactis ) living in a temperate lake. Ecology and Evolution 12, e9096. https://doi.org/10.1002/ece3.9096
Miklós, M., Laczkó, L., Sramkó, G., Sebestyén, F., Barta, Z., Tökölyi, J., 2021. Phenotypic plasticity rather than genotype drives reproductive choices in Hydra populations. Molecular Ecology 30, 1206–1222. https://doi.org/10.1111/mec.15810
Molnár V, A., Tökölyi, J., Végvári, Z., Sramkó, G., Sulyok, J., Barta, Z., 2012. Pollination mode predicts phenological response to climate change in terrestrial orchids: a case study from central Europe. Journal of Ecology 100, 1141–1152. https://doi.org/10.1111/j.1365-2745.2012.02003.x
Ngo, K.S., R-Almási, B., Barta, Z., Tökölyi, J., 2021. Experimental manipulation of body size alters life history in hydra. Ecology Letters 24, 728–738. https://doi.org/10.1111/ele.13698
Panov, V.E., Krylov, P.I., Riccardi, N., 2004. Role of diapause in dispersal and invasion success by aquatic invertebrates. J Limnol 63, 56. https://doi.org/10.4081/jlimnol.2004.s1.56
Pelini, S.L., Diamond, S.E., MacLean, H., Ellison, A.M., Gotelli, N.J., Sanders, N.J., Dunn, R.R., 2012. Common garden experiments reveal uncommon responses across temperatures, locations, and species of ants. Ecology and Evolution 2, 3009–3015. https://doi.org/10.1002/ece3.407
Purcell, J.E., Uye, S., Lo, W.-T., 2007. Anthropogenic causes of jellyfish blooms and their direct consequences for humans: a review. Marine Ecology Progress Series 350, 153–174. https://doi.org/10.3354/meps07093
R Core Team, 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
Reisa, J.J., 1973. Ecology of hydra, in: Biology of Hydra. Academic Press, New York and London, pp. 59–105.
Ribi, G., Tardent, R., Tardent, P., Scascighini, C., 1985. Dynamics of hydra populations in Lake Zürich, Switzerland, and Lake Maggiore, Italy. Schweiz. Z. Hydrol 47, 45–56. https://doi.org/10.1007/BF02538183
Roff, D., 1993. Evolution Of Life Histories: Theory and Analysis. Springer Science & Business Media.
Scheuerl, T., Stelzer, C.-P., 2019. Asexual reproduction changes predator population dynamics in a life predator–prey system. Population Ecology 61, 210–216. https://doi.org/10.1002/1438-390X.1017
Schröder, T., 2005. Diapause in monogonont rotifers. Hydrobiologia 546, 291–306. https://doi.org/10.1007/s10750-005-4235-x
Sebestyén, F., Barta, Z., Tökölyi, J., 2018. Reproductive mode, stem cells and regeneration in a freshwater cnidarian with postreproductive senescence. Functional Ecology 32, 2497–2508. https://doi.org/10.1111/1365-2435.13189
Sebestyén, F., Miklós, M., Iván, K., Tökölyi, J., 2020. Age-dependent plasticity in reproductive investment, regeneration capacity and survival in a partially clonal animal (Hydra oligactis ). Journal of Animal Ecology 89, 2246–2257. https://doi.org/10.1111/1365-2656.13287
Shaffer, M.R., Davy, S.K., Maldonado, M., Bell, J.J., 2020. Seasonally driven sexual and asexual reproduction in temperate Tethya species. Biol Bull 238, 89–105. https://doi.org/10.1086/708624
Sheridan, J.A., Bickford, D., 2011. Shrinking body size as an ecological response to climate change. Nature Climate Change 1, 401–406. https://doi.org/10.1038/nclimate1259
Simon, J.-C., Rispe, C., Sunnucks, P., 2002. Ecology and evolution of sex in aphids. Trends in Ecology & Evolution 17, 34–39. https://doi.org/10.1016/S0169-5347(01)02331-X
Sinclair, B.J., Marshall, K.E., Sewell, M.A., Levesque, D.L., Willett, C.S., Slotsbo, S., Dong, Y., Harley, C.D.G., Marshall, D.J., Helmuth, B.S., Huey, R.B., 2016. Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures? Ecology Letters 19, 1372–1385. https://doi.org/10.1111/ele.12686
Stearns, S.C., 1989. Trade-offs in life-history evolution. Functional Ecology 3, 259–268. https://doi.org/10.2307/2389364
Thomas, C.D., 2010. Climate, climate change and range boundaries. Diversity and Distributions 16, 488–495. https://doi.org/10.1111/j.1472-4642.2010.00642.x
Thommen, A., Werner, S., Frank, O., Philipp, J., Knittelfelder, O., Quek, Y., Fahmy, K., Shevchenko, A., Friedrich, B.M., Jülicher, F., Rink, J.C., 2019. Body size-dependent energy storage causes Kleiber’s law scaling of the metabolic rate in planarians. eLife 8, e38187. https://doi.org/10.7554/eLife.38187
Tökölyi, J., Ősz, Z., Sebestyén, F., Barta, Z., 2017. Resource allocation and post-reproductive degeneration in the freshwater cnidarian Hydra oligactis (Pallas, 1766). Zoology 120, 110–116. https://doi.org/10.1016/j.zool.2016.06.009
Tomczyk, S., Suknovic, N., Schenkelaars, Q., Wenger, Y., Ekundayo, K., Buzgariu, W., Bauer, C., Fischer, K., Austad, S., Galliot, B., 2020. Deficient autophagy in epithelial stem cells drives aging in the freshwater cnidarian Hydra. Development 147. https://doi.org/10.1242/dev.177840
van Baaren, J., Le Lann, C., JM van Alphen, J., 2010. Consequences of climate change for aphid-based multi-trophic systems, in: Kindlmann, P., Dixon, A.F.G., Michaud, J.P. (Eds.), Aphid biodiversity under environmental change: patterns and processes. Springer Netherlands, Dordrecht, pp. 55–68. https://doi.org/10.1007/978-90-481-8601-3_4
Vandekerkhove, J., Declerck, S., Brendonck, L., Conde-Porcuna, J.M., Jeppesen, E., Meester, L.D., 2005. Hatching of cladoceran resting eggs: temperature and photoperiod. Freshwater Biology 50, 96–104. https://doi.org/10.1111/j.1365-2427.2004.01312.x
Verberk, W.C.E.P., Atkinson, D., Hoefnagel, K.N., Hirst, A.G., Horne, C.R., Siepel, H., 2021. Shrinking body sizes in response to warming: explanations for the temperature–size rule with special emphasis on the role of oxygen. Biological Reviews 96, 247–268. https://doi.org/10.1111/brv.12653
Vowinckel, C., 1970. The role of illumination and temperature in the control of sexual reproduction in the planarian Dugesia tigrina(girard). The Biological Bulletin 138, 77–87. https://doi.org/10.2307/1540293
Walczyńska, A., Labecka, A.M., Sobczyk, M., Czarnoleski, M., Kozłowski, J., 2015. The Temperature–Size Rule in Lecane inermis (Rotifera) is adaptive and driven by nuclei size adjustment to temperature and oxygen combinations. Journal of Thermal Biology, What sets the limit? How thermal limits, performance and preference in ectotherms are influenced by water or energy balance 54, 78–85. https://doi.org/10.1016/j.jtherbio.2014.11.002
Walther, G.-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T.J.C., Fromentin, J.-M., Hoegh-Guldberg, O., Bairlein, F., 2002. Ecological responses to recent climate change. Nature 416, 389–395. https://doi.org/10.1038/416389a
Weitere, M., Vohmann, A., Schulz, N., Linn, C., Dietrich, D., Arndt, H., 2009. Linking environmental warming to the fitness of the invasive clamCorbicula fluminea . Global Change Biology 15, 2838–2851. https://doi.org/10.1111/j.1365-2486.2009.01925.x
Welch, P.S., Loomis, H.A., 1924. A limnological study of Hydra oligactis in Douglas Lake, Michigan. Transactions of the American Microscopical Society 43, 203–235. https://doi.org/10.2307/3221738
Winder, M., Schindler, D.E., 2004. Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology 85, 2100–2106. https://doi.org/10.1890/04-0151
Yoshida, K., Fujisawa, T., Hwang, J.S., Ikeo, K., Gojobori, T., 2006. Degeneration after sexual differentiation in hydra and its relevance to the evolution of aging. Gene, Evolutionary Genomics 385, 64–70. https://doi.org/10.1016/j.gene.2006.06.031
Table 1. Sexual development time, sexual fitness (number of gonads), asexual fitness (number of buds) and survival rate of male and femaleH. oligactis polyps exposed to simulated summer heatwave (WS-CW), elevated winter temperature (CS-WW), or both (WS-WW), compared to polyps exposed to a cold summer – cold winter scenario (CS-CW). The table shows estimated marginal means contrasts from Generalized Linear Mixed Models (GLMMs) that included treatment as a fixed effect, and strain ID and batch ID as random effects (see Methods for more detail). The type of model is indicated above the contrasts: Gaussian (“gaussian ”), Negative Binomial with linear parametrization (“nbinom1 ”), Negative Binomial with quadratic parametrization (“nbinom2 ”) or Binomial (“binomial ”). P-values are after Dunnett’s correction for multiple comparisons. Significant differences are highlighted in bold.