Reference
1. Shih CF, Zhang T, Li J, Bai C. Powering the future with liquid
sunshine. Joule . 2018;2(10):1925-1949.
2. Goeppert A, Czaun M, Prakash GS, Olah GA. Air as the renewable carbon
source of the future: an overview of CO2 capture from
the atmosphere. Energy Environ Sci . 2012;5(7):7833-7853.
3. Dinh C-T, Burdyny T, Kibria MG, et al. CO2electroreduction to ethylene via hydroxide-mediated copper catalysis at
an abrupt interface. Science . 2018;360(6390):783-787.
4. García de Arquer FP, Dinh C-T, Ozden A, et al. CO2electrolysis to multicarbon products at activities greater than 1 A
cm-2. Science . 2020;367(6478):661-666.
5. Li F, Li YC, Wang Z, et al. Cooperative
CO2-to-ethanol conversion via enriched intermediates at
molecule–metal catalyst interfaces. Nat Catal . 2020;3(1):75-82.
6. Wang X, Wang Z, García de Arquer FP, et al. Efficient electrically
powered CO2-to-ethanol via suppression of deoxygenation.Nat Energy . 2020;5(6):478-486.
7. Nitopi S, Bertheussen E, Scott SB, et al. Progress and perspectives
of electrochemical CO2 reduction on copper in aqueous
electrolyte. Chem Rev . 2019;119(12):7610-7672.
8. Hori Y, Murata A, Takahashi R. Formation of hydrocarbons in the
electrochemical reduction of carbon dioxide at a copper electrode in
aqueous solution. J Chem Soc . 1989;85(8):2309-2326.
9. Morales-Guio CG, Cave ER, Nitopi SA, et al. Improved
CO2 reduction activity towards C2+alcohols on a tandem gold on copper electrocatalyst. Nat Catal .
2018;1(10):764-771.
10. Scholten F, Sinev I, Bernal M, Roldan Cuenya B. Plasma-modified
dendritic Cu catalyst for CO2 electroreduction.ACS Catal . 2019;9(6):5496-5502.
11. Liu J, Fu J, Zhou Y, Zhu W, Jiang L-P, Lin Y. Controlled synthesis
of EDTA-modified porous hollow copper microspheres for high-efficiency
conversion of CO2 to multicarbon products. Nano
Lett . 2020;20(7):4823-4828.
12. Grosse P, Gao D, Scholten F, Sinev I, Mistry H, Roldan Cuenya B.
Dynamic changes in the structure, chemical state and catalytic
selectivity of Cu nanocubes during CO2 electroreduction:
size and support effects. Angew Chem Int Ed .
2018;57(21):6192-6197.
13. Franco F, Rettenmaier C, Jeon HS, Cuenya BR. Transition metal-based
catalysts for the electrochemical CO2 reduction: from
atoms and molecules to nanostructured materials. Chem Soc Rev .
2020;49(19):6884-6946.
14. Zou L, Zhong G, Nie Y, et al. Porous Carbon Nanosheets Derived from
ZIF‐8 Treated with KCl as Highly Efficient Electrocatalysts for the
Oxygen Reduction Reaction. Energy Technol . 2021;9(4):2100035.
15. Zhao Q, Wang Y, Li M, et al. Organic frameworks confined Cu single
atoms and nanoclusters for tandem electrocatalytic CO2reduction to methane. SmartMat . 2022;3(1):183-193.
16. Li Y, Sun Q. Recent advances in breaking scaling relations for
effective electrochemical conversion of CO2. Adv
Energy Mater . 2016;6(17):1600463.
17. Eilert A, Cavalca F, Roberts FS, et al. Subsurface oxygen in
oxide-derived copper electrocatalysts for carbon dioxide reduction.J Phys Chem Lett . 2017;8(1):285-290.
18. Dutta A, Rahaman M, Luedi NC, Mohos M, Broekmann P. Morphology
matters: tuning the product distribution of CO2electroreduction on oxide-derived Cu foam catalysts. ACS Catal .
2016;6(6):3804-3814.
19. Lyu Z, Zhu S, Xie M, et al. Controlling the surface oxidation of Cu
nanowires improves their catalytic selectivity and stability toward
C2+ products in CO2 reduction.Angew Chem Int Ed . 2021;60(4):1909-1915.
20. Gao D, Zegkinoglou I, Divins NJ, et al. Plasma-activated copper
nanocube catalysts for efficient carbon dioxide electroreduction to
hydrocarbons and alcohols. ACS nano . 2017;11(5):4825-4831.
21. Piqué O, Vines F, Illas F, Calle-Vallejo F. Elucidating the
structure of ethanol-producing active sites at oxide-derived Cu
electrocatalysts. ACS Catal . 2020;10(18):10488-10494.
22. Dattila F, Garcı́a-Muelas R, López Nr. Active and selective ensembles
in oxide-derived copper catalysts for CO2 reduction.ACS Energy Lett . 2020;5(10):3176-3184.
23. Sun S, Kong C, You H, Song X, Ding B, Yang Z. Facet-selective growth
of Cu–Cu2O heterogeneous architectures.CrystEngComm . 2012;14(1):40-43.
24. Choi C, Kwon S, Cheng T, et al. Highly active and stable stepped Cu
surface for enhanced electrochemical CO2 reduction to
C2H4. Nat Catal .
2020;3(10):804-812.
25. Kim T, Palmore GTR. A scalable method for preparing Cu
electrocatalysts that convert CO2 into
C2+ products. Nat Commun . 2020;11(1):1-11.
26. Raciti D, Livi KJ, Wang C. Highly dense Cu nanowires for
low-overpotential CO2 reduction. Nano Lett .
2015;15(10):6829-6835.
27. Jiang K, Huang Y, Zeng G, Toma FM, Goddard III WA, Bell AT. Effects
of surface roughness on the electrochemical reduction of
CO2 over Cu. ACS Energy Lett .
2020;5(4):1206-1214.
28. Lei Q, Zhu H, Song K, et al. Investigating the origin of enhanced
C2+ selectivity in oxide-/hydroxide-derived copper
electrodes during CO2 electroreduction. J Am Chem
Soc . 2020;142(9):4213-4222.
29. Zhang B, Zhang J, Hua M, et al. Highly electrocatalytic ethylene
production from CO2 on nanodefective Cu nanosheets.J Am Chem Soc . 2020;142(31):13606-13613.
30. Li X, Chen W-X, Zhao J, Xing W, Xu Z-D. Microwave polyol synthesis
of Pt/CNTs catalysts: effects of pH on particle size and
electrocatalytic activity for methanol electrooxidization.Carbon . 2005;43(10):2168-2174.
31. Zhu H-t, Zhang C-y, Yin Y-s. Rapid synthesis of copper nanoparticles
by sodium hypophosphite reduction in ethylene glycol under microwave
irradiation. J Cryst Growth . 2004;270(3-4):722-728.
32. Teichert J, Doert T, Ruck M. Mechanisms of the polyol reduction of
copper (II) salts depending on the anion type and diol chain length.Dalton trans . 2018;47(39):14085-14093.
33. Yin M, Wu C-K, Lou Y, et al. Copper oxide nanocrystals. J Am
Chem Soc . 2005;127(26):9506-9511.
34. Chusuei CC, Brookshier M, Goodman D. Correlation of relative X-ray
photoelectron spectroscopy shake-up intensity with CuO particle size.Langmuir . 1999;15(8):2806-2808.
35. Kim J, Choi W, Park JW, Kim C, Kim M, Song H. Branched copper oxide
nanoparticles induce highly selective ethylene production by
electrochemical carbon dioxide reduction. J Am Chem Soc .
2019;141(17):6986-6994.
36. Park PW, Ledford JS. The influence of surface structure on the
catalytic activity of alumina supported copper oxide catalysts.
Oxidation of carbon monoxide and methane. Appl Catal B .
1998;15(3-4):221-231.
37. Andersson K, Ketteler G, Bluhm H, et al. Autocatalytic water
dissociation on Cu (110) at near ambient conditions. J Am Chem
Soc . 2008;130(9):2793-2797.
38. Han J, Chang J, Wei R, et al. Mechanistic investigation on tuning
the conductivity type of cuprous oxide (Cu2O) thin films
via deposition potential. Int J Hydrog Energy .
2018;43(30):13764-13777.
39. Gao Y, Yang F, Yu Q, et al. Three-dimensional porous Cu@
Cu2O aerogels for direct voltammetric sensing of
glucose. Microchim Acta . 2019;186(3):1-9.
40. Li F, Thevenon A, Rosas-Hernández A, et al. Molecular tuning of
CO2-to-ethylene conversion. Nature .
2020;577(7791):509-513.
41. Jin Z, Wang L, Zuidema E, et al. Hydrophobic zeolite modification
for in situ peroxide formation in methane oxidation to methanol.Science . 2020;367(6474):193-197.
42. Velasco-Vélez J-J, Jones T, Gao D, et al. The role of the copper
oxidation state in the electrocatalytic reduction of CO2into valuable hydrocarbons. ACS Sustain Chem Eng .
2018;7(1):1485-1492.
43. Liu X, Sun L, Deng W-Q. Theoretical investigation of
CO2 adsorption and dissociation on low index surfaces of
transition metals. J Phys Chem C . 2018;122(15):8306-8314.
44. Hori Y, Takahashi I, Koga O, Hoshi N. Selective formation of
C2 compounds from electrochemical reduction of
CO2 at a series of copper single crystal electrodes.J Phys Chem B . 2002;106(1):15-17.
45. Calle‐Vallejo F, Koper MT. Theoretical considerations on the
electroreduction of CO to C2 species on Cu (100)
electrodes. Angew Chem . 2013;125(28):7423-7426.
46. Lei F, Liu W, Sun Y, et al. Metallic tin quantum sheets confined in
graphene toward high-efficiency carbon dioxide electroreduction.Nat Commun . 2016;7(1):1-8.
47. Becerra JG, Salvarezza RC, Arvia AJ. The influence of slow
Cu(OH)2 phase formation on the electrochemical behaviour
of copper in alkaline solutions. Electrochim Acta .
1988;33(5):613-621.
48. Strehblow H-H, Maurice V, Marcus P. Initial and later stages of
anodic oxide formation on Cu, chemical aspects, structure and electronic
properties. Electrochim Acta . 2001;46(24-25):3755-3766.
49. Soon A, Todorova M, Delley B, Stampfl C. Oxygen adsorption and
stability of surface oxides on Cu (111): A first-principles
investigation. Phys Rev B . 2006;73(16):165424.
Figure 1. TEM images of (a-b) CuO NS, OD-Cu NSs (c) Cu-30, and
(d) Cu-100 (the marks of white circles mean the nano-domains.),
respectively. (e) XRD patterns of CuO NS, Cu-30, and Cu-100 (the label
of star (*) and hashtag (#) represent metallic Cu and CuO phase,
respectively)
Figure 2 . XPS spectra at (a) Cu 2p2/3 and (b)
Cu LMM Auger region of commercial Cu NP, CuO NS, Cu-30, and Cu-100
Figure 3. Electrochemical CO2RR performance of
commercial Cu NP, CuO NS, Cu-30, and Cu-100. (a) LSV curves of Cu-30 in
the CO2- and Ar- saturated 0.1 M KHCO3electrolyte after 1hr electrolysis. (b) Overall Faradaic efficiencies at
a potential of −1.1 V vs. RHE, partial faradaic efficiency (FE) for (c)
C2H4 and (d) C2+products, (e) partial current density of total C2+products.
Figure 4. (a) Double layer charge capacitance in
CO2-saturated 0.1 M KHCO3 electrolyte
and (b) OHads peaks from LSV curves obtained in
Ar-saturated 0.1 M KOH electrolyte of commercial Cu NP, pristine CuO NS,
Cu-30, and Cu-100. The inset image shows a magnified section of the
(111) shoulder peak between 0.42-0.53 VRHE.