References
Beck, A. T., Ward, C. H.,
Mendelson, M., Mock, J., & Erbaugh, J. (1961). An inventory for
measuring depression. Archives of General Psychiatry, 4,
561–571.
Benarroch, E. E. (1993). The
central autonomic network: functional organization, dysfunction, and
perspective. Mayo Clinic Proceedings. Mayo Clinic, 68(10),
988–1001.
Blumberger, D. M.,
Vila-Rodriguez, F., Thorpe, K. E., Feffer, K., Noda, Y., Giacobbe, P.,
Knyahnytska, Y., Kennedy, S. H., Lam, R. W., Daskalakis, Z. J., &
Downar, J. (2018). Effectiveness of theta burst versus high-frequency
repetitive transcranial magnetic stimulation in patients with depression
(THREE-D): a randomised non-inferiority trial. The Lancet,391(10131), 1683–1692.
Borrione, L., Brunoni, A. R.,
Sampaio-Junior, B., Aparicio, L. M., Kemp, A. H., Benseñor, I., Lotufo,
P. A., & Fraguas, R. (2018). Associations between symptoms of
depression and heart rate variability: An exploratory study.Psychiatry Research, 262, 482–487.
Cameron, O. G. (2009).
Visceral brain-body information transfer. NeuroImage,47(3), 787–794.
Cash, R. F. H., Cocchi, L.,
Lv, J., Wu, Y., Fitzgerald, P. B., & Zalesky, A. (2021). Personalized
connectivity-guided DLPFC-TMS for depression: Advancing computational
feasibility, precision and reproducibility. Human Brain Mapping,42(13), 4155–4172.
Caulfield, K. A.,
Indahlastari, A., Nissim, N. R., Lopez, J. W., Fleischmann, H. H.,
Woods, A. J., & George, M. S. (2022). Electric Field Strength From
Prefrontal Transcranial Direct Current Stimulation Determines Degree of
Working Memory Response: A Potential Application of Reverse-Calculation
Modeling? Neuromodulation: Journal of the International
Neuromodulation Society, 25(4), 578–587.
Fan, L., Li, H., Zhuo, J.,
Zhang, Y., Wang, J., Chen, L., Yang, Z., Chu, C., Xie, S., Laird, A. R.,
Fox, P. T., Eickhoff, S. B., Yu, C., & Jiang, T. (2016). The Human
Brainnetome Atlas: A New Brain Atlas Based on Connectional Architecture.Cerebral Cortex , 26(8), 3508–3526.
Fox, M. D., Buckner, R. L.,
White, M. P., Greicius, M. D., & Pascual-Leone, A. (2012). Efficacy of
transcranial magnetic stimulation targets for depression is related to
intrinsic functional connectivity with the subgenual cingulate.Biological Psychiatry, 72(7), 595–603.
Francis, J. (2016). ECG
monitoring leads and special leads. Indian Pacing and
Electrophysiology Journal, 16(3), 92–95.
Goldsworthy, M. R., &
Hordacre, B. (2017). Dose dependency of transcranial direct current
stimulation: implications for neuroplasticity induction in health and
disease [Review of Dose dependency of transcranial direct
current stimulation: implications for neuroplasticity induction in
health and disease]. The Journal of Physiology,595(11), 3265–3266.
Koch, C., Wilhelm, M.,
Salzmann, S., Rief, W., & Euteneuer, F. (2019). A meta-analysis of
heart rate variability in major depression. Psychological
Medicine, 49(12), 1948–1957.
Lefaucheur, J.-P., &
Wendling, F. (2019). Mechanisms of action of tDCS: A brief and practical
overview. Neurophysiologie Clinique = Clinical Neurophysiology,49(4), 269–275.
Makovac, E., Thayer, J. F., &
Ottaviani, C. (2017). A meta-analysis of non-invasive brain stimulation
and autonomic functioning: Implications for brain-heart pathways to
cardiovascular disease. Neuroscience and Biobehavioral Reviews,74(Pt B), 330–341.
Malik, M., Bigger, J. T.,
Camm, A. J., Kleiger, R. E., Malliani, A., Moss, A. J., & Schwartz, P.
J. (1996). Heart rate variability: Standards of measurement,
physiological interpretation, and clinical use. European Heart
Journal, 17(3), 354–381.
Mulcahy, J. S., Larsson, D. E.
O., Garfinkel, S. N., & Critchley, H. D. (2019). Heart rate variability
as a biomarker in health and affective disorders: A perspective on
neuroimaging studies. NeuroImage, 202, 116072.
Nikolin, S., Boonstra, T. W.,
Loo, C. K., & Martin, D. (2017). Combined effect of prefrontal
transcranial direct current stimulation and a working memory task on
heart rate variability. PloS One, 12(8), e0181833.
Polanía, R., Nitsche, M. A.,
& Ruff, C. C. (2018). Studying and modifying brain function with
non-invasive brain stimulation. Nature Neuroscience,21(2), 174–187.
Puonti, O., Van Leemput, K.,
Saturnino, G. B., Siebner, H. R., Madsen, K. H., & Thielscher, A.
(2020). Accurate and robust whole-head segmentation from magnetic
resonance images for individualized head modeling. NeuroImage,219, 117044.
Razza, L. B., da Silva, P. H.
R., Busatto, G. F., Duran, F. L. de S., Pereira, J., De Smet, S., Klein,
I., Zanão, T. A., Luethi, M. S., Baeken, C., Vanderhasselt, M.-A.,
Buchpiguel, C. A., & Brunoni, A. R. (2022). Brain Perfusion Alterations
Induced by Standalone and Combined Non-Invasive Brain Stimulation over
the Dorsolateral Prefrontal Cortex. Biomedicines, 10(10).
https://doi.org/10.3390/biomedicines10102410
Razza, L. B., De Smet, S., Van
Hoornweder, S., De Witte, S., Luethi, M. S., Baeken, C., Brunoni, A. R.,
& Vanderhasselt, M.-A. (2023). The effects of prefrontal tDCS on
working memory associate with the magnitude of the individual electric
field in the brain.
https://doi.org/10.1101/2023.06.13.544810
Razza, L. B., Wischnewski, M.,
Suen, P., De Smet, S., da Silva, P. H. R., Catoira, B., Brunoni, A. R.,
& Vanderhasselt, M.-A. (2023). A meta-analysis and electric field
modeling to understand the antidepressant effects of tDCS. Revista
Brasileira de Psiquiatria (Sao Paulo, Brazil : 1999).
https://doi.org/10.47626/1516-4446-2023-3116
Sallet, J., Mars, R. B.,
Noonan, M. P., Neubert, F.-X., Jbabdi, S., O’Reilly, J. X., Filippini,
N., Thomas, A. G., & Rushworth, M. F. (2013). The organization of
dorsal frontal cortex in humans and macaques. The Journal of
Neuroscience: The Official Journal of the Society for Neuroscience,33(30), 12255–12274.
Saturnino, G. B., Puonti, O.,
Nielsen, J. D., Antonenko, D., Madsen, K. H., & Thielscher, A. (2019).
SimNIBS 2.1: A Comprehensive Pipeline for Individualized Electric Field
Modelling for Transcranial Brain Stimulation. In S. Makarov, M. Horner,
& G. Noetscher (Eds.), Brain and Human Body Modeling:
Computational Human Modeling at EMBC 2018. Springer.
Schmaußer, M., Hoffmann, S.,
Raab, M., & Laborde, S. (2022). The effects of noninvasive brain
stimulation on heart rate and heart rate variability: A systematic
review and meta-analysis. Journal of Neuroscience Research,100(9), 1664–1694.
Shaffer, F., McCraty, R., &
Zerr, C. L. (2014). A healthy heart is not a metronome: an integrative
review of the heart’s anatomy and heart rate variability.Frontiers in Psychology, 5, 1040.
Spielberger, C. D., Gorsuch,
R. L., & Lushene, R. E. (1970). STAI Manual for the State-trait
Anxiety Inventory (“Self-evaluation Questionnaire”).
Suen, P. J. C., Doll, S.,
Batistuzzo, M. C., Busatto, G., Razza, L. B., Padberg, F., Mezger, E.,
Bulubas, L., Keeser, D., Deng, Z.-D., & Brunoni, A. R. (2020).
Association between tDCS computational modeling and clinical outcomes in
depression: data from the ELECT-TDCS trial. European Archives of
Psychiatry and Clinical Neuroscience.
https://doi.org/10.1007/s00406-020-01127-w
Tarvainen, M. P., Ranta-Aho,
P. O., & Karjalainen, P. A. (2002). An advanced detrending method with
application to HRV analysis. IEEE Transactions on Bio-Medical
Engineering, 49(2), 172–175.
Thomas, B. L., Claassen, N.,
Becker, P., & Viljoen, M. (2019). Validity of Commonly Used Heart Rate
Variability Markers of Autonomic Nervous System Function.Neuropsychobiology, 78(1), 14–26.
Vanderhasselt, M.-A., &
Ottaviani, C. (2022). Combining top-down and bottom-up interventions
targeting the vagus nerve to increase resilience. Neuroscience and
Biobehavioral Reviews, 132, 725–729.
Vöröslakos, M., Takeuchi, Y.,
Brinyiczki, K., Zombori, T., Oliva, A., Fernández-Ruiz, A., Kozák, G.,
Kincses, Z. T., Iványi, B., Buzsáki, G., & Berényi, A. (2018). Direct
effects of transcranial electric stimulation on brain circuits in rats
and humans. Nature Communications, 9(1), 483.
Wei, L., Chen, H., & Wu,
G.-R. (2018). Heart rate variability associated with grey matter volumes
in striatal and limbic structures of the central autonomic network.Brain Research, 1681, 14–20.
Wischnewski, M., Mantell, K.
E., & Opitz, A. (2021). Identifying regions in prefrontal cortex
related to working memory improvement: A novel meta-analytic method
using electric field modeling. Neuroscience and Biobehavioral
Reviews, 130, 147–161.