References
Abramov A, Davydov S, Ivashchenko A, Karelin D, Kholodov A, Kraev G, Lupachev A, Maslakov A, Ostroumov V, Rivkina E, Shmelev D, Sorokovikov V, Tregubov O, Veremeeva A, Zamolodchikov D, Zimov S. 2021. Two decades of active layer thickness monitoring in northeastern Asia. Polar Geography 44 : 186–202. DOI: 10.1080/1088937X.2019.1648581
Berezin E V., Konovalov IB, Gromov SA, Beekmann M, Schulze E-D. 2013. The model study of the wildfire impact on the spatial distribution of deposition of sulfur and nitrogen compounds in Siberia. Russian Meteorology and Hydrology 38 : 750–758. DOI: 10.3103/S1068373913110046
Bröder L, Davydova A, Davydov S, Zimov N, Haghipour N, Eglinton TI, Vonk JE. 2020. Particulate Organic Matter Dynamics in a Permafrost Headwater Stream and the Kolyma River Mainstem. Journal of Geophysical Research: Biogeosciences 125 . DOI: 10.1029/2019JG005511
Brubaker M, Chavan P, Berner PEJ, Black M, Warren J. 2012. Climate Change in Selawik, Alaska .
Campeau A, Eklöf K, Soerensen AL, Åkerblom S, Yuan S, Hintelmann H, Bieroza M, Köhler S, Zdanowicz C. 2022. Sources of riverine mercury across the Mackenzie River Basin; inferences from a combined Hg C isotopes and optical properties approach. Science of The Total Environment 806 : 150808. DOI: 10.1016/j.scitotenv.2021.150808
Chalov S, Moreido V, Ivanov V, Chalova A. 2022. Assessing suspended sediment fluxes with acoustic Doppler current profilers: case study from large rivers in Russia. Big Earth Data 1–23. DOI: 10.1080/20964471.2022.2116834
Chalov S, Prokopeva K, Habel M. 2021. North to South Variations in the Suspended Sediment Transport Budget within Large Siberian River Deltas Revealed by Remote Sensing Data. Remote Sensing 13 : 4549. DOI: 10.3390/rs13224549
Chalov SR, Liu S, Chalov RS, Chalova ER, Chernov A V., Promakhova E V., Berkovitch KM, Chalova AS, Zavadsky AS, Mikhailova N. 2018. Environmental and human impacts on sediment transport of the largest Asian rivers of Russia and China. Environmental Earth Sciences77 : 274. DOI: 10.1007/s12665-018-7448-9
Ci Z, Peng F, Xue X, Zhang X. 2020. Permafrost Thaw Dominates Mercury Emission in Tibetan Thermokarst Ponds. Environmental Science & Technology 54 : 5456–5466. DOI: 10.1021/acs.est.9b06712
Cochand M, Molson J, Lemieux J. 2019. Groundwater hydrogeochemistry in permafrost regions. Permafrost and Periglacial Processes30 : 90–103. DOI: 10.1002/ppp.1998
Douglas TA, Blum JD, Guo L, Keller K, Gleason JD. 2013. Hydrogeochemistry of seasonal flow regimes in the Chena River, a subarctic watershed draining discontinuous permafrost in interior Alaska (USA). Chemical Geology 335 : 48–62. DOI: 10.1016/j.chemgeo.2012.10.045
Dzhamalov RG, Safronova TI. 2018. Effect of Permafrost Rocks on Water Resources Formation in Eastern Siberia: Case Study of Some Rivers in Eastern Siberia. Water Resources 45 : 455–465. DOI: 10.1134/S0097807818040097
Edwards BA, Kushner DS, Outridge PM, Wang F. 2021. Fifty years of volcanic mercury emission research: Knowledge gaps and future directions. Science of The Total Environment 757 : 143800. DOI: 10.1016/j.scitotenv.2020.143800
Francisco López A, Heckenauer Barrón EG, Bello Bugallo PM. 2022. Contribution to understanding the influence of fires on the mercury cycle: Systematic review, dynamic modelling and application to sustainable hypothetical scenarios. Environmental Monitoring and Assessment 194 : 707. DOI: 10.1007/s10661-022-10208-3
Frey KE, Mcclelland JW. 2009. Impacts of permafrost degradation on arctic river biogeochemistry. 182 : 169–182. DOI: 10.1002/hyp
Grigoriev MN, Kunitsky VV, Chzhan RV, Shepelev VV. 2009. On the variation in geocryological, landscape and hydrological conditions in the Arctic zone of East Siberia in connection with climate warming.Geography and Natural Resources 30 : 101–106. DOI: 10.1016/j.gnr.2009.06.002
Grosse G, Goetz S, McGuire AD, Romanovsky VE, Schuur EAG. 2016. Changing permafrost in a warming world and feedbacks to the Earth system.Environmental Research Letters 11 : 040201. DOI: 10.1088/1748-9326/11/4/040201
Gunnarsdóttir MJ, Garðarsson SM, Andradóttir HÓ, Schiöth A. 2019. Áhrif Loftlagsbreytinga Á Vatnsveitur Og Vatnsgæði Á Íslandi – Áhættuþættir Og Aðgerðir. Icelandic Journal of Engineering 25 : 5–19. DOI: 10.33112/ije.25.5
Günther F, Overduin PP, Yakshina IA, Opel T, Baranskaya A V., Grigoriev MN. 2015. Observing Muostakh disappear: permafrost thaw subsidence and erosion of a ground-ice-rich island in response to arctic summer warming and sea ice reduction. The Cryosphere 9 : 151–178. DOI: 10.5194/tc-9-151-2015
Holmes RM, Mcclelland JW, Peterson BJ, Tank SE, Bulygina E, Eglinton TI, Gordeev V V, Gurtovaya TY, Raymond PA, Repeta DJ, Staples R, Striegl RG, Zhulidov A V, Zimov SA. 2012. Seasonal and Annual Fluxes of Nutrients and Organic Matter from Large Rivers to the Arctic Ocean and Surrounding Seas. 369–382. DOI: 10.1007/s12237-011-9386-6
in ’t Zandt MH, Liebner S, Welte CU. 2020. Roles of Thermokarst Lakes in a Warming World. Trends in Microbiology 28 : 769–779. DOI: 10.1016/j.tim.2020.04.002
Ji X, Abakumov E, Polyakov V, Xie X. 2021. Mobilization of Geochemical Elements to Surface Water in the Active Layer of Permafrost in the Russian Arctic. Water Resources Research 57 . DOI: 10.1029/2020WR028269
Jong D, Bröder L, Tesi T, Keskitalo K, Zimov N, Davydova A, Pika P, Haghipour N, Eglinton T, Vonk J. 2022. Contrasts in dissolved, particulate and sedimentary organic carbon from the Kolyma River to the East Siberian Shelf. preprint (EGUsphere) . DOI: 10.5194/egusphere-2022-516
Karlsson JM, Lyon SW, Destouni G. 2012. Thermokarst lake, hydrological flow and water balance indicators of permafrost change in Western Siberia. Journal of Hydrology 464465 : 459–466. DOI: 10.1016/j.jhydrol.2012.07.037
Keskitalo KH, Bröder L, Jong D, Zimov N, Davydova A, Davydov S, Tesi T, Mann PJ, Haghipour N, Eglinton TI, Vonk JE. 2022. Seasonal variability in particulate organic carbon degradation in the Kolyma River, Siberia.Environmental Research Letters 17 : 034007. DOI: 10.1088/1748-9326/ac4f8d
Kokelj S V., Lacelle D, Lantz TC, Tunnicliffe J, Malone L, Clark ID, Chin KS. 2013. Thawing of massive ground ice in mega slumps drives increases in stream sediment and solute flux across a range of watershed scales. Journal of Geophysical Research: Earth Surface118 : 681–692. DOI: 10.1002/jgrf.20063
Kosek K, Kozioł K, Luczkiewicz A, Jankowska K, Chmiel S, Polkowska Ż. 2019. Environmental characteristics of a tundra river system in Svalbard. Part 2: Chemical stress factors. Science of the Total Environment 653 . DOI: 10.1016/j.scitotenv.2018.11.012
Kuchmenko E V, Moloznikova Y V, Netsvetaeva OG, Kobeleva NA, Khodzher T V. 2002. Comparison of Experimental and Calculated Data on Ion Composition of Precipitation in the South of East Siberia. In: Barnes I (ed) Global Atmospheric Change and its Impact on Regional Air Quality . Springer Netherlands: Dordrecht, 223–228. DOI: 10.1007/978-94-010-0082-6_34
Lehmann-Konera S, Franczak Ł, Kociuba W, Szumińska D, Chmiel S, Polkowska Ż. 2018. Comparison of hydrochemistry and organic compound transport in two non-glaciated high Arctic catchments with a permafrost regime (Bellsund Fjord, Spitsbergen). Science of The Total Environment 613614 : 1037–1047. DOI: 10.1016/j.scitotenv.2017.09.064
Li Y, Zang S, Zhang K, Sun D, Sun L. 2020. Occurrence, sources and potential risks of polycyclic aromatic hydrocarbons in a permafrost soil core, northeast China. Ecotoxicology . DOI: 10.1007/s10646-020-02285-2
Lim AG, Sonke JE, Krickov I V, Manasypov RM, Loiko S V, Pokrovsky OS. 2019. Enhanced particulate Hg export at the permafrost boundary, western Siberia. Environmental Pollution 254 : 113083. DOI: https://doi.org/10.1016/j.envpol.2019.113083
Mann PJ, Davydova A, Zimov N, Spencer RGM, Davydov S, Bulygina E, Zimov S, Holmes RM. 2012. Controls on the composition and lability of dissolved organic matter in Siberia’s Kolyma River basin. Journal of Geophysical Research: Biogeosciences 117 . DOI: 10.1029/2011JG001798
Mann PJ, Strauss J, Palmtag J, Dowdy K, Ogneva O, Fuchs M, Bedington M, Torres R, Polimene L, Overduin P, Mollenhauer G, Grosse G, Rachold V, Sobczak W V., Spencer RGM, Juhls B. 2022. Degrading permafrost river catchments and their impact on Arctic Ocean nearshore processes.Ambio 51 : 439–455. DOI: 10.1007/s13280-021-01666-z
Monhonval A, Mauclet E, Pereira B, Vandeuren A, Strauss J, Grosse G, Schirrmeister L, Fuchs M, Kuhry P, Opfergelt S. 2021. Mineral Element Stocks in the Yedoma Domain: A Novel Method Applied to Ice-Rich Permafrost Regions. Frontiers in Earth Science 9 . DOI: 10.3389/feart.2021.703304
Morgenstern A, Overduin PP, Günther F, Stettner S, Ramage J, Schirrmeister L, Grigoriev MN, Grosse G. 2021. Thermo‐erosional valleys in Siberian ice‐rich permafrost. Permafrost and Periglacial Processes 32 : 59–75. DOI: 10.1002/ppp.2087
Mu C, Schuster PF, Abbott BW, Kang S, Guo J, Sun S, Wu Q, Zhang T. 2020. Permafrost degradation enhances the risk of mercury release on Qinghai-Tibetan Plateau. Science of The Total Environment708 : 135127. DOI: 10.1016/j.scitotenv.2019.135127
Nitzbon J, Westermann S, Langer M, Martin LCP, Strauss J, Laboor S, Boike J. 2020. Fast response of cold ice-rich permafrost in northeast Siberia to a warming climate. Nature Communications 11 : 2201. DOI: 10.1038/s41467-020-15725-8
Nitze I, Grosse G, Jones B, Arp C, Ulrich M, Fedorov A, Veremeeva A. 2017. Landsat-Based Trend Analysis of Lake Dynamics across Northern Permafrost Regions. Remote Sensing 9 : 640. DOI: 10.3390/rs9070640
Overland J. WJ. K V. 2017. Trends and feedbacks. In: Symon C. (ed)Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017 . Arctic Monitoring and Assessment Programme (AMAP): Oslo, Norway, 9–24
Overland JE, Wang M, Walsh JE, Stroeve JC. 2014. Future Arctic climate changes: Adaptation and mitigation time scales. Earth’s Future2 : 68–74. DOI: 10.1002/2013EF000162
Plug LJ, Walls C, Scott BM. 2008. Tundra lake changes from 1978 to 2001 on the Tuktoyaktuk Peninsula, western Canadian Arctic. Geophysical Research Letters 35 : L03502. DOI: 10.1029/2007GL032303
Potapowicz J, Szumińska D, Szopińska M, Polkowska Ż. 2019. The influence of global climate change on the environmental fate of anthropogenic pollution released from the permafrost: Part I. Case study of Antarctica. Science of the Total Environment . DOI: 10.1016/j.scitotenv.2018.09.168
Ran Y, Li X, Cheng G, Che J, Aalto J, Karjalainen O, Hjort J, Luoto M, Jin H, Obu J, Hori M, Yu Q, Chang X. 2022. New high-resolution estimates of the permafrost thermal state and hydrothermal conditions over the Northern Hemisphere. Earth System Science Data 14 : 865–884. DOI: 10.5194/essd-14-865-2022
Rubino M, D’Onofrio A, Seki O, Bendle JA. 2016. Ice-core records of biomass burning. The Anthropocene Review 3 : 140–162. DOI: 10.1177/2053019615605117
Rudy ACA, Lamoureux SF, Kokelj S V., Smith IR, England JH. 2017. Accelerating Thermokarst Transforms Ice-Cored Terrain Triggering a Downstream Cascade to the Ocean. Geophysical Research Letters44 : 11,080-11,087. DOI: 10.1002/2017GL074912
Sakai T, Matsunaga T, Maksyutov S, Gotovtsev S, Gagarin L, Hiyama T, Yamaguchi Y. 2016. Climate-Induced Extreme Hydrologic Events in the Arctic. Remote Sensing 8 : 971. DOI: 10.3390/rs8110971
Schuster PF, Schaefer KM, Aiken GR, Antweiler RC, Dewild JF, Gryziec JD, Gusmeroli A, Hugelius G, Jafarov E, Krabbenhoft DP, Liu L, Herman‐Mercer N, Mu C, Roth DA, Schaefer T, Striegl RG, Wickland KP, Zhang T. 2018. Permafrost Stores a Globally Significant Amount of Mercury.Geophysical Research Letters 45 : 1463–1471. DOI: 10.1002/2017GL075571
Smith SL, O’Neill HB, Isaksen K, Noetzli J, Romanovsky VE. 2022. The changing thermal state of permafrost. Nature Reviews Earth & Environment 3 : 10–23. DOI: 10.1038/s43017-021-00240-1
Stepanenko VM, Machul’skaya EE, Glagolev M V., Lykossov VN. 2011. Numerical modeling of methane emissions from lakes in the permafrost zone. Izvestiya, Atmospheric and Oceanic Physics 47 : 252–264. DOI: 10.1134/S0001433811020113
Strauss J, Laboor S, Schirrmeister L, Fedorov AN, Fortier D, Froese D, Fuchs M, Günther F, Grigoriev M, Harden J, Hugelius G, Jongejans LL, Kanevskiy M, Kholodov A, Kunitsky V, Kraev G, Lozhkin A, Rivkina E, Shur Y, Siegert C, Spektor V, Streletskaya I, Ulrich M, Vartanyan S, Veremeeva A, Anthony KW, Wetterich S, Zimov N, Grosse G. 2021. Circum-Arctic Map of the Yedoma Permafrost Domain. Frontiers in Earth Science 9 . DOI: 10.3389/feart.2021.758360
Streletskiy D. 2021. Permafrost degradation. Snow and Ice-Related Hazards, Risks, and Disasters . Elsevier, 297–322. DOI: 10.1016/B978-0-12-817129-5.00021-4
Streletskiy DA, Maslakov AA, Streletskaya ID, Nelson FE. 2021. Permafrost Regions In Transition: Introduction. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY 14 : 6–8. DOI: 10.24057/2071-9388-2021-081
Streletskiy DA, Sherstiukov AB, Frauenfeld OW, Nelson FE. 2015. Changes in the 1963–2013 shallow ground thermal regime in Russian permafrost regions. Environmental Research Letters 10 : 125005. DOI: 10.1088/1748-9326/10/12/125005
Suzuki K, Park H, Makarieva O, Kanamori H, Hori M, Matsuo K, Matsumura S, Nesterova N, Hiyama T. 2021. Effect of Permafrost Thawing on Discharge of the Kolyma River, Northeastern Siberia. Remote Sensing 13 : 4389. DOI: 10.3390/rs13214389
Szopińska M, Dymerski T, Polkowska Ż, Szumińska D, Wolska L. 2016. The chemistry of river–lake systems in the context of permafrost occurrence (Mongolia, Valley of the Lakes) Part II. Spatial trends and possible sources of organic composition. Sedimentary Geology 340 : 84–95. DOI: 10.1016/j.sedgeo.2016.03.001
Tananaev N, Isaev V, Sergeev D, Kotov P, Komarov O. 2021. Hydrological Connectivity in a Permafrost Tundra Landscape near Vorkuta, North-European Arctic Russia. Hydrology 8 : 106. DOI: 10.3390/hydrology8030106
Tananaev N, Lotsari E. 2022. Defrosting northern catchments: Fluvial effects of permafrost degradation. Earth-Science Reviews228 : 103996. DOI: 10.1016/j.earscirev.2022.103996
Taylor SR. 1964. Abundance of chemical elements in the continental crust: a new table. Geochimica et Cosmochimica Acta 28 : 1273–1285. DOI: 10.1016/0016-7037(64)90129-2
Teufel B, Sushama L. 2019. Abrupt changes across the Arctic permafrost region endanger northern development. Nature Climate Change9 : 858–862. DOI: 10.1038/s41558-019-0614-6
Toohey RC, Herman-Mercer NM, Schuster PF, Mutter EA, Koch JC. 2016. Multidecadal increases in the Yukon River Basin of chemical fluxes as indicators of changing flowpaths, groundwater, and permafrost.Geophysical Research Letters 43 : 12,120-12,130. DOI: 10.1002/2016GL070817
Veremeeva A, Nitze I, Günther F, Grosse G, Rivkina E. 2021. Geomorphological and Climatic Drivers of Thermokarst Lake Area Increase Trend (1999–2018) in the Kolyma Lowland Yedoma Region, North-Eastern Siberia. Remote Sensing 13 : 178. DOI: 10.3390/rs13020178
Viers J, Dupré B, Gaillardet J. 2009. Chemical composition of suspended sediments in World Rivers: New insights from a new database.Science of The Total Environment 407 : 853–868. DOI: 10.1016/j.scitotenv.2008.09.053
Vonk JE, Mann PJ, Davydov S, Davydova A, Spencer RGM, Schade J, Sobczak W V., Zimov N, Zimov S, Bulygina E, Eglinton TI, Holmes RM. 2013. High biolability of ancient permafrost carbon upon thaw. Geophysical Research Letters 40 : 2689–2693. DOI: 10.1002/grl.50348
Vonk JE, Tank SE, Bowden WB, Laurion I, Vincent WF, Alekseychik P, Amyot M, Billet MF, Canário J, Cory RM, Deshpande BN, Helbig M, Jammet M, Karlsson J, Larouche J, MacMillan G, Rautio M, Walter Anthony KM, Wickland KP. 2015. Reviews and syntheses: Effects of permafrost thaw on Arctic aquatic ecosystems. Biogeosciences 12 : 7129–7167. DOI: 10.5194/bg-12-7129-2015
Walling DE, Fang D. 2003. Recent trends in the suspended sediment loads of the world’s rivers. Global and Planetary Change 39 : 111–126. DOI: 10.1016/S0921-8181(03)00020-1
Walter KM, Zimov SA, Chanton JP, Verbyla D, Chapin FS. 2006. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443 : 71–75. DOI: 10.1038/nature05040
Wang W, Ji X, Abakumov E, Polyakov V, Li G, Wang D. 2022. Assessing Sources and Distribution of Heavy Metals in Environmental Media of the Tibetan Plateau: A Critical Review. Frontiers in Environmental Science 10 . DOI: 10.3389/fenvs.2022.874635
Wild B, Andersson A, Bröder L, Vonk J, Hugelius G, McClelland JW, Song W, Raymond PA, Gustafsson Ö. 2019. Rivers across the Siberian Arctic unearth the patterns of carbon release from thawing permafrost.Proceedings of the National Academy of Sciences 116 : 10280–10285. DOI: 10.1073/pnas.1811797116
Yershov ED, Kondratyeva KA, Loginov IK, Sychev IK. 1991. Geocryological map of Russia and neighbouring Republics, scale 1:2,500,000, 16 sheets [in Russian]. English translation of map symbols and legends: Williams, P.J., & Warren, I.M.T. (eds. 1999)
Zhang S, Yang G, Hou S, Zhang T, Li Z, Du W. 2021. Analysis of heavy metal-related indices in the Eboling permafrost on the Tibetan Plateau.CATENA 196 : 104907. DOI: 10.1016/j.catena.2020.104907