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Abstract12

Computing the velocity field is an expensive process for mantle convection codes. This13

has implications for particle methods used to model the advection of quantities such as14

temperature or composition. A common choice for the numerical treatment of particle15

trajectories is classical fourth-order Runge–Kutta (ERK4) integration, which involves16

a velocity computation at each of its four stages. To reduce the cost per time step, it is17

possible to evaluate the velocity for a subset of the four time integration stages. We ex-18

plore two such alternative schemes, in which velocities are only computed for: a) stage19

1 on odd-numbered time steps and stages 2–4 for even-numbered time steps, and b) stage20

1 for all time steps. A theoretical analysis of stability and accuracy is presented for all21

schemes. It was found that the alternative schemes are first-order accurate with stabil-22

ity regions different from that of ERK4. The efficiency and accuracy of the alternate schemes23

were compared against ERK4 in four test problems covering isothermal, thermal, and24

thermochemical flows. Exact solutions were used as reference solutions when available.25

In agreement with theory, the alternate schemes were observed to be first-order accu-26

rate for all test problems. Accordingly, they may be used to efficiently compute solutions27

to within modest error tolerances. For small error tolerances, however, ERK4 was the28

most efficient.29

Plain Language Summary30

Computation of the flow velocity is an expensive process for mantle convection codes.31

For high-velocity flows, tracer particle methods can be used to model the transport of32

mantle material while minimizing model errors such as artificial diffusion. A major el-33

ement of tracer particle methods is the computation of particle trajectories, which is com-34

monly done using Runge–Kutta (RK) methods. A popular choice is the classical fourth-35

order accurate RK method, which is comprised of four stages per model time step. Strictly36

speaking, flow velocities are to be computed for each RK stage. However, flow veloci-37

ties can be computed less often in order to reduce computation time. In this study, we38

examine the impact of how often the flow velocities are computed during time integra-39

tion on accuracy and efficiency. We find that velocities can be computed less frequently40

to efficiently compute solutions to modest error tolerances. However, computing the ve-41

locities for every time integration stage is the most efficient way to find solutions with42

tight error tolerances.43

1 Introduction44

1.1 Motivation45

Numerical modeling of mantle convection can be a computationally intensive ven-46

ture. Modeling large domains over geologic time may require weeks of computation time.47

Accordingly, methods that are sufficiently accurate while being computationally efficient48

are of great value.49

Mantle convection is an advection-dominated process in two respects. First, for mod-50

els featuring distinct compositional components, compositional diffusion is extremely small51

and is often assumed to be zero (van Keken et al., 1997). Second, the effect of thermal52

diffusion is small relative to that of advection (except at thermal boundary layers), par-53

ticularly for high Rayleigh number convection (Schubert et al., 2001). In these situations,54

particles are often used to model the process of advection in order to minimize numer-55

ical diffusion and spurious oscillations in the numerical solution. However, to limit sta-56

tistical noise, many particles must be used, leading to a substantial computational cost.57

In previous mantle convection studies, the use of compositionally distinct mate-58

rials has been motivated by Large Low Shear wave Velocity Provinces (LLSVPs) (S. Trim59
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et al., 2014; S. J. Trim & Lowman, 2016; McNamara & Zhong, 2005), Ultra Low Veloc-60

ity Zones (ULVZs) (Li et al., 2017), oceanic crust (Brandenburg & Van Keken, 2007; Li61

& McNamara, 2013), and continents (Lenardic et al., 2003; Rolf & Tackley, 2011). Dis-62

tinct compositional components have also been used to approximate a free surface bound-63

ary condition (Crameri et al., 2012). Thermal buoyancy in the mantle is driven by ra-64

diogenic heating and the temperature contrast between the surface and the outer core65

that is approximately 4000 K (Schubert et al., 2001).66

As part of model time integration, particles must be numerically advected, with67

explicit Runge–Kutta (ERK) integrators being commonly used for this purpose. For in-68

stance, ERK integrators are available for particle advection in ASPECT (Gassmöller et69

al., 2018; Puckett et al., 2018; Gassmöller et al., 2019), CitcomS (Zhong & Hager, 2003;70

McNamara & Zhong, 2004), ConMan (Tackley & King, 2003), I2VIS (Gerya & Yuen,71

2003), MC3D (Gable et al., 1991), ProjecTracer (S. Trim et al., 2020), StagYY (Tackley72

& King, 2003; Tackley, 2008), and Underworld2 (Moresi et al., 2002, 2003). ERK meth-73

ods are self-starting and can offer high-order accuracy. The formal definition of ERK meth-74

ods requires the particle velocity be evaluated for each stage of the integration. This re-75

quirement can be problematic due to the substantial expense of evaluating the velocity76

field (by solving the momentum conservation and continuity equations) for the ERK stages.77

To reduce computation time, it is possible to contemplate the use of ERK meth-78

ods without computing the velocity via the governing equations for each stage, an ap-79

proach that has been used in previous studies (Puckett et al., 2018; Gerya & Yuen, 2003;80

S. Trim et al., 2014; S. J. Trim & Lowman, 2016). Although it is clear that order of ac-81

curacy is reduced by such an approach, the practical impact on simulation accuracy and82

efficiency is less clear and has not been deeply explored. In this paper, we examine the83

effect of different velocity update schemes (see section 2.3) on the classical fourth-order84

ERK time integrator, which has been widely used in prior work. In particular, we ex-85

amine the trade-offs between accuracy and efficiency of the ensuing time integrators for86

four distinct test problems, which we now describe.87

1.2 Test Problems88

We test the efficacy of different velocity update schemes under three convective regimes:89

compositional convection where composition drives buoyancy; thermal convection where90

temperature drives buoyancy; and thermochemical where both temperature and com-91

position drive buoyancy. Each convective regime is explored using a suite of four test prob-92

lems that we now outline (details appear in section 2.5).93

1. A compositional Rayleigh–Taylor (RT) problem from van Keken et al. (1997).94

2. A thermal RT problem, similar to the RT problem from van Keken et al. (1997)95

but with a thermal field in place of composition.96

3. A thermal convection problem with a variable internal heating rate and known97

exact solution.98

4. A thermochemical convection problem with a variable internal heating rate and99

known exact solution.100

2 Methods101

2.1 Governing Equations102

Although solid over short periods, the Earth’s mantle acts as a highly viscous fluid103

over geologic time (Schubert et al., 2001). Mathematically, the mantle is modeled us-104

ing a set of conservation equations obtained from fluid dynamics and thermodynamics.105

Specifically, the continuity equation specifies the conservation of mass, the Navier–Stokes106

equation models the conservation of momentum, and an advection-diffusion equation gov-107
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erns the conservation of energy. In addition, an advection equation is used to model com-108

positional transport of distinct mantle components. In this study, we employ the Boussi-109

nesq approximation to simplify the effect of compressibility. The infinite Prandtl num-110

ber approximation is also used, for which the inertial terms in the Navier–Stokes equa-111

tion are considered negligible (resulting in Stokes flow). These commonly used approx-112

imations result in time derivatives appearing in a subset of the conservation equations,113

leading to a set of partial differential-algebraic equations. The nondimensional conser-114

vation equations are115

∇ · v = 0, (1)116

117

∇ ·
(
2ηϵ̇
)
−∇P = (RaTT −RaCC) ĝ, (2)118

119

∂T

∂t
+ v · ∇T = ∇2T +H(r, t), (3)120

and121

∂C

∂t
+ v · ∇C = 0, (4)122

where r is the position; t is time; v is the velocity; η is the viscosity (set to unity in this123

study); ϵ̇ is the strain rate tensor; P is pressure; T is temperature; C is composition; H(r, t)124

is the internal heating rate; and ĝ is a unit vector opposite the direction of gravity. In125

two dimensions (2D), the strain rate tensor is given by126

ϵ̇ =

[
∂u
∂x

1
2

(
∂u
∂z + ∂w

∂x

)
1
2

(
∂u
∂z + ∂w

∂x

)
∂w
∂z

]
, (5)127

where x and z are the horizontal and vertical Cartesian coordinates, respectively, and128

u and w are the corresponding components of the velocity such that r = [x, z] and v =129

[u,w].130

The thermal Rayleigh number is131

RaT =
αρ0g∆TL

3

κη
, (6)132

where α is the thermal expansivity; ρ0 is surface density with C = T = 0; g is gravi-133

tational acceleration; ∆T is the temperature difference across the mantle; L is the man-134

tle thickness; and κ is thermal diffusivity. The compositional Rayleigh number is135

RaC =
∆ρCgL

3

κη
, (7)136

where ∆ρC is the compositional density contrast between enriched and ambient man-137

tle materials.138

2.2 Numerical Solutions139

We use the code ProjecTracer (S. Trim et al., 2020) for our numerical solutions (see140

Open Research section). The numerical methods of the code relevant to this study are141

described in sections 2.2.1–2.2.3.142

2.2.1 Alternate Forms of the Governing Equations143

Instead of directly solving equations 1–4, we numerically solve alternate forms of144

these governing equations that offer advantages for 2D incompressible advection-dominated145

flows.146

Using a stream function formulation, equations 1–2 (with η ≡ 1) can be recast147

as the biharmonic equation148

∂4ψ

∂x4
+

∂4ψ

∂x2∂z2
+
∂4ψ

∂z4
= RaT

∂T

∂x
−RaC

∂C

∂x
, (8)149
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where ψ is the stream function (Batchelor, 1967; van Keken et al., 1997). After solving150

equation 8 for the stream function, the velocity is computed using151

v =

(
∂ψ

∂z
,−∂ψ

∂x

)
. (9)152

The stream function formulation reduces the number of scalar equations to be solved and153

removes the need to solve for the pressure albeit at the expense of solving a higher-order154

equation.155

Equations 3 and 4 are written in the Eulerian reference frame. In the Lagrangian156

reference frame, the equations can be rewritten as157

DT

Dt
= ∇2T +H (10)158

and159

DC

Dt
= 0, (11)160

where D
Dt = d

dt + v · ∇ is the substantive derivative. Calculations in the Lagrangian161

frame are performed from the viewpoint of moving fluid parcels. Consequently, the tra-162

jectories of fluid parcels must be tracked. For a fluid parcel at position r, the trajectory163

equation is164

dr

dt
= v. (12)165

2.2.2 Spatial Discretization166

Calculations are performed using a combination of a fixed Eulerian grid and a mov-167

ing Lagrangian grid. Specifically, equation 8 is solved using the Eulerian grid, whereas168

equations 10–12 are solved using the Lagrangian grid. We employ an Eulerian grid that169

has constant horizontal and vertical spacings, denoted by ∆x and ∆z, respectively. Fur-170

ther, we use ∆x = α∆z, where α is the aspect ratio of the domain and chosen to be171

at or near unity for all problems (see section 2.5). The Lagrangian grid positions, known172

as tracer particles, correspond to moving fluid parcels. Spatial derivatives are approx-173

imated using centered finite differences with coefficients generated automatically from174

an algorithm developed by Fornberg (1988) (see also Larsen et al. (1997)) that permits175

the order of accuracy to be specified. Our results are based upon the use of fourth-order176

finite differences because experimentation revealed that fourth-order accuracy was the177

most effective choice for the problems considered. The system of equations obtained af-178

ter discretizing equation 8 is solved using banded LU factorization.179

In equation 10, the right-hand side is first calculated using centered finite differ-180

ences for the diffusion term on the Eulerian mesh. The value of the right-hand side for181

tracer q, denoted by
〈
∇2T +H

〉
q
, is calculated via interpolation using proximal values182

on the Eulerian mesh. The interpolation is carried out using Taylor polynomials with183

a sufficient number of terms to match the order of accuracy of the finite differences (see184

Appendix A of S. Trim et al. (2020) for an example).185

In equation 12, the fluid parcel velocity is approximated by the velocity of tracer186

q, denoted by ⟨v⟩q, which is computed using three steps. First, equation 8 is solved based187

on values of T and C on the Eulerian grid. Second, equation 9 is used to calculated the188

velocity at the Eulerian grid points. Third, Taylor polynomials (similar to the above)189

are used to interpolate nearby Eulerian velocity values to compute ⟨v⟩q.190

In order to calculate Eulerian values of T and C used in equation 8, the correspond-191

ing Lagrangian values must be interpolated to the Eulerian grid. This interpolation is192

done using bilinear shape functions as described in Tackley and King (2003).193
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We define particle density using the tracers per control volume (TPCV) at t = 0,194

where a control volume corresponds to a cell of the dual Eulerian mesh. Because the po-195

sitions of the tracer particles fluctuate with time, the particle density for t > 0 varies.196

However, the total number of particles is fixed for each calculation. Uneven particle cov-197

erage may benefit from the dynamic redistribution of tracers (S. Trim et al., 2020). How-198

ever, it was found that tracer repositioning did not significantly impact numerical results199

over the integration times used in this study. Accordingly, we do not employ tracer repo-200

sitioning for simplicity.201

2.2.3 Temporal Discretization202

Spatial discretization of the equations 10-12 according to section 2.2.2 results in203

the system of ordinary differential equations (ODEs) given by204

dyq/dt = F(t,yq) ≡ D(t,yq) +V(yq), (13)205

with206

yq = [Tq, Cq, rq]
⊺, (14)207

208

D(t,yq) = [
〈
∇2T +H

〉
q
, 0, 0]⊺, (15)209

and210

V(yq) = [0, 0, ⟨v⟩q]
⊺, (16)211

where q is the tracer number (ranging between 1 and the total number of tracer parti-212

cles, i.e., the product of the TPCV value and the number of control volumes). We write213

the right side of equation 13 in split form to better describe the time integration schemes214

that follow in section 2.3. We note that H can have explicit time dependence in general;215

see problems 3-4. In contrast, the velocity field does not explicitly depend on t.216

Time steps are performed using the classical four-stage, fourth-order explicit Runge–217

Kutta method (ERK4) and variations (outlined in section 2.3). To advance the approx-218

imate solution of equation 13 from time tn to time tn+1 = tn+∆t, the ERK4 method219

is220

ŷ
n+ 1

2
q = yn

q +
∆t

2
F(tn,yn

q ), (17)221

ỹ
n+ 1

2
q = yn

q +
∆t

2
F(tn+

1
2 , ŷ

n+ 1
2

q ), (18)222

yn+1
q = yn

q +∆tF(tn+
1
2 , ỹ

n+ 1
2

q ), (19)223

yn+1
q = yn

q +
∆t

6

{
F(tn,yn

q ) + 2F(tn+
1
2 , ŷ

n+ 1
2

q )

+2F(tn+
1
2 , ỹ

n+ 1
2

q ) + F(tn+1,yn+1
q )

}
,

(20)224

225

where the superscript n denotes the time step number and ∆t is the time step size. In226

this method, stages 1–4 correspond to equations 17–20, respectively.227

2.3 Velocity Update Schemes228

During each ERK4 time step, the velocity field is updated four times, correspond-229

ing to evaluations of V for each stage. In addition to ERK4, however, we also investi-230

gate two other schemes that do not update the velocity field (i.e., do not require distinct231

evaluations of V) at each stage.232
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For odd-numbered n, the first alternate scheme, which we denote by ODD, is given233

by234

ŷ
n+ 1

2
q = yn

q +
∆t

2

[
D(tn,yn

q ) +V(yn
q )
]
, (21)235

ỹ
n+ 1

2
q = yn

q +
∆t

2

[
D(tn+

1
2 , ŷ

n+ 1
2

q ) +V(yn
q ))
]
, (22)236

yn+1
q = yn

q +∆t
[
D(tn+

1
2 , ỹ

n+ 1
2

q ) +V(yn
q )
]
, (23)237

yn+1
q = yn

q +
∆t

6

{[
D(tn,yn

q ) +V(yn
q )
]
+ 2

[
D(tn+

1
2 , ŷ

n+ 1
2

q ) +V(yn
q )
]

+2
[
D(tn+

1
2 , ỹ

n+ 1
2

q ) +V(yn
q )
]
+
[
D(tn+1,yn+1

q ) +V(yn
q )
]}
,

(24)238

ŷ
n+ 3

2
q = yn+1

q +
∆t

2

[
D(tn+1,yn+1

q ) +V(yn
q )
]
, (25)239

ỹ
n+ 3

2
q = yn+1

q +
∆t

2

[
D(tn+

3
2 , ŷ

n+ 3
2

q ) +V(ŷ
n+ 3

2
q )

]
, (26)240

yn+2
q = yn+1

q +∆t
[
D(tn+

3
2 , ỹ

n+ 3
2

q ) +V(ỹ
n+ 3

2
q )

]
, (27)241

yn+2
q = yn+1

q +
∆t

6

{[
D(tn+1,yn+1

q ) +V(yn
q )
]
+ 2

[
D(tn+

3
2 , ŷ

n+ 3
2

q ) +V(ŷ
n+ 3

2
q )

]
+2
[
D(tn+

3
2 , ỹ

n+ 3
2

q ) +V(ỹ
n+ 3

2
q )

]
+
[
D(tn+2,yn+2

q ) +V(yn+2
q )

]}
,

(28)242

243

where yn+1
q and yn+2

q are values of yq at subsequent even- and odd-numbered time steps,244

respectively. We note that equations 21–28, corresponding to stages 1–8, apply to a time245

interval of 2∆t. We denote this scheme by ODD because stage-1 velocity updates only246

occur on odd-numbered time steps. Specifically, velocity updates occur for stages 1, 6,247

7, and 8. A similar scheme is available as an option in the mantle convection code MC3D248

(Gable et al., 1991), which utilizes an Eulerian solver for T and a particle method for249

C (see S. Trim (2017) for details on the numerical methods). We are unaware of any pub-250

lished studies that use this option. However, this velocity update scheme remains of in-251

terest due to the existence of an implementation in a published code.252

The second alternate scheme considered only updates the velocity field at the first253

stage of the method. We denote this scheme by SG1 (for “stage 1”). The SG1 scheme254

has been used in the mantle convection codes MC3D (S. Trim et al., 2014; S. J. Trim255

& Lowman, 2016) and I2VIS (Gerya & Yuen, 2003). This scheme may be easily adapted256

to other Runge–Kutta (RK) methods. The SG1 scheme is given by equations 21–24, cor-257

responding to stages 1–4 over a time interval of ∆t, for all n.258

The details for all schemes tested are summarized in table 1.259

Table 1. Velocity update schemesa

Scheme Number of Stages Stages With Velocity Updates Time Interval

ERK4 4 1,2,3,4 ∆t
ODD 8 1,6,7,8 2∆t
SG1 4 1 ∆t

a For the schemes named in the first column, the second column indicates the total number
of stages, the third column indicates which stages apply velocity updates, and the
fourth column indicates the time interval covered.
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2.4 Numerical analysis of the velocity update schemes260

2.4.1 General analysis261

To determine the accuracy and stability properties of the schemes presented in sec-262

tions 2.2.3 and 2.3, we apply them to a test ODE in eigenspace, analogous to the ODE263

governing the evolution of an arbitrarily selected tracer particle (see equation 13). For264

our schemes, the test ODE is given by265

dy/dt = F(t,y) = D(t,y) +V(y) = λy + aeµt (29)266

where the eigenvalue λ, vector a, and µ are complex constants. To accommodate the split-267

ting of derivative evaluations in the ODD and SG1 schemes, we apply the definitions268

D(t,y) = λDy + aeµt (30)269

and270

V(y) = λV y, (31)271

where λ = λD + λV . To quantify the proportions of λD and λV , we define λV = γλ272

and λD = (1 − γ)λ. With this definition, γ values of zero or unity indicate that λ is273

independent of λV or λD, respectively. Application of a time integration scheme to equa-274

tion 29 results in an ordinary difference equation (O∆E) that may be written in the form275

P (E)yn = Q(E)aeµ∆tn, (32)276

where E is the shift operator with the property yn+k = Ekyn, and P (E) and Q(E)277

are the characteristic and particular polynomials, respectively (Lomax et al., 2001). The278

roots of the characteristic polynomial, denoted by σj and satisfying P (σj) = 0, deter-279

mine numerical stability. Specifically, |σj | ≤ 1 for j = 1 . . . Nσ, where Nσ is the num-280

ber of roots, is required for numerical stability.281

The exact and approximate solutions of equation 29 are given by282

y(t) = deλ∆t +
aeµt

µ− λ
(33)283

and284

yn =

Nσ∑
j=1

dj(σj)
n + aeµ∆tnQ(eµ∆t)

P (eµ∆t)
, (34)285

respectively, where d and dj are constants. The first and second terms on the right sides286

of equations 33–34 correspond to the transient and particular solutions of the represen-287

tative equation. A comparison of equations 33–34 allows numerical accuracy to be quan-288

tified.289

For schemes with multiple σ-roots, σ1 is defined as the principal root and is the290

root that has the smallest difference with the Taylor series of eλ∆t about ∆t = 0. The291

corresponding local error in the transient solution is quantified by292

errλ = eλ∆t − σ1. (35)293

We note that only the principal σ-root contributes to equation 35 because it is presumed294

that the value of dj is near zero for j > 1. Similarly, the local error in the particular295

solution is quantified using296

errµ = ∆t

[
Q(eµ∆t)

P (eµ∆t)
(µ− λ)− 1

]
. (36)297

The lowest-order term in ∆t from equations 35–36 determines the theoretical order of298

accuracy of the time integration scheme. Specifically, if errλ = O(∆tpλ) and errµ =299

O(∆tpµ), then the theoretical global order of accuracy is min(pλ, pµ)− 1.300

–8–



manuscript submitted to Geochemistry, Geophysics, Geosystems

The characteristic polynomial for the ERK4 scheme is301

PERK4(E) = E − 1−∆tλ− 1

2
∆t2λ2 − 1

6
∆t3λ3 − 1

24
∆t4λ4, (37)302

and the corresponding particular polynomial is303

QERK4(E) =
1

24
∆t4λ3 +

1

12
∆t3λ2 +

1

6
∆t2λ+

1

6
(E + 1)∆t

+
1

12

(
∆t3λ2 + 4∆t2λ+ 8∆t

)√
E.

(38)304

From equation 37, we obtain a single σ-root given by305

σ1,ERK4 = 1 +∆tλ+
1

2
∆t2λ2 +

1

6
∆t3λ3 +

1

24
∆t4λ4, (39)306

from which the stability properties of the ERK4 scheme may be obtained. The stabil-307

ity region of the ERK4 scheme is shown for reference in figure 1 parts a and b.308

The local errors in the transient and particular solutions for the ERK4 scheme are309

errλ,ERK4 =
1

120
∆t5λ5 +O(∆t6) (40)310

and311

errµ,ERK4 =

(
30λ3 − 10λ2µ+ 5λµ2 − µ3

)
µ2

2880 (λ− µ)
∆t5 +O(∆t6), (41)312

respectively. Both errors have leading terms of magnitude O(∆t5). This gives a theo-313

retical global fourth-order accuracy for the ERK4 scheme. As expected, the stability and314

accuracy of the ERK4 scheme are unaffected by the value of γ.315

The characteristic polynomial for the ODD scheme is316

PODD(E) = E2 − 1− 2∆tλ+
2

3
(γ − 3)∆t2λ2 − 1

12

(
3 γ2 − 13 γ + 16

)
∆t3λ3

+
1

72

(
5 γ3 − 31 γ2 + 65 γ − 48

)
∆t4λ4 − 1

144

(
γ4 − 13 γ3 + 47 γ2 − 71 γ + 36

)
∆t5λ5

− 1

144

(
γ4 − 8 γ3 + 23 γ2 − 26 γ + 10

)
∆t6λ6 − 1

288

(
γ4 − 7 γ3 + 15 γ2 − 13 γ + 4

)
∆t7λ7

− 1

576

(
γ4 − 4 γ3 + 6 γ2 − 4 γ + 1

)
∆t8λ8,

(42)317

and its particular polynomial is318

QODD(E) =
1

576

(
γ4 − 4 γ3 + 6 γ2 − 4 γ + 1

)
∆t8λ7 +

1

288

(
γ4 − 6 γ3 + 12 γ2 − 10 γ + 3

)
∆t7λ6

+
1

144

(
γ4 − 7 γ3 + 17 γ2 − 17 γ + 6

)
∆t6λ5

+
1

144

(
γ4 − 11 γ3 − (E + 40)γ + 33 γ2 + E + 17

)
∆t5λ4

− 1

72

(
4 γ3 + (E + 31)γ − 19 γ2 − 5E − 17

)
∆t4λ3

− 1

36

(
(E + 14)γ − 4 γ2 − 6E − 12

)
∆t3λ2 − 1

36
((E + 7)γ − 12E − 12)∆t2λ

+
1

6

(
E2 + 2E + 1

)
∆t− 1

288

[(
γ3 − 3 γ2 + 3 γ − 1

)
∆t7λ6

+ 2
(
γ3 − 6 γ2 + 9 γ − 4

)
∆t6λ5 + 4

(
γ3 − 7 γ2 + 15 γ − 9

)
∆t5λ4

+ 4
(
γ3 − 12 γ2 + 33 γ − 26

)
∆t4λ3 − 8

(
5 γ2 + 3E − 24 γ + 27

)
∆t3λ2

− 32 (3E − 4 γ + 9)∆t2λ− 192 (E + 1)∆t
]√

E.

(43)319
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The characteristic polynomial PODD gives two σ-roots. The principal root is320

σ1,ODD =
1

24

[(
γ4 − 4 γ3 + 6 γ2 − 4 γ + 1

)
∆t8λ8 + 2

(
γ4 − 7 γ3 + 15 γ2 − 13 γ + 4

)
∆t7λ7

+ 4
(
γ4 − 8 γ3 + 23 γ2 − 26 γ + 10

)
∆t6λ6 + 4

(
γ4 − 13 γ3 + 47 γ2 − 71 γ + 36

)
∆t5λ5

− 8
(
5 γ3 − 31 γ2 + 65 γ − 48

)
∆t4λ4 + 48

(
3 γ2 − 13 γ + 16

)
∆t3λ3 − 384 (γ − 3)∆t2λ2

+ 1152∆tλ+ 576
]1/2

,

(44)321

and the second root is σ2,ODD = −σ1,ODD. We note that the moduli of both σ-roots322

are equal. Accordingly, we may define the stability region for the ODD scheme using equa-323

tion 44. Additionally, σ1,ODD is the amplification factor per time step. To obtain the am-324

plification factor for one iteration of the ODD scheme (i.e., over two successive time steps)325

one must take the square of equation 44. Figure 1a shows plots of the stability regions326

for several values of γ for the ODD scheme. We note that the stability region for the ODD327

scheme is equivalent to that of the ERK4 scheme when γ = 0 (it can be shown after328

some algebra that σ1,ODD = σ1,ERK4 if γ = 0).329

The local error in the transient solution for the ODD scheme is330

errλ,ODD = − 1

1440

(
5 γ4λ5 + 45 γ3λ5 − 5 γ2λ5 − 15 γλ5 − 12λ5

)
∆t5

+
1

144

(
5 γ3λ4 − 5 γ2λ4 + 11 γλ4

)
∆t4 − 1

24

(
3 γ2λ3 − 5 γλ3

)
∆t3 +

1

3
γ∆t2λ2

+O(∆t6),
(45)331

and the local error in the particular solution is332

errµ,ODD =
∆t2µ

25920 (λ− µ)
4

[
155 γ4∆t3λ7 − 660 γ4∆t3λ6µ+ 735 γ4∆t3λ5µ2 + 90 γ4∆t3λ4µ3

− 585 γ3∆t3λ7 + 2715 γ3∆t3λ6µ− 3945 γ3∆t3λ5µ2 + 1005 γ3∆t3λ4µ3

+ 810 γ3∆t3λ3µ4 + 780 γ2∆t3λ7 − 3870 γ2∆t3λ6µ+ 7530 γ2∆t3λ5µ2

− 6165 γ2∆t3λ4µ3 + 1320 γ2∆t3λ3µ4 + 405 γ2∆t3λ2µ5 − 300 γ3∆t2λ6

− 180 γ∆t3λ7 + 660 γ3∆t2λ5µ+ 1350 γ∆t3λ6µ+ 540 γ3∆t2λ4µ2

− 4410 γ∆t3λ5µ2 − 900 γ3∆t2λ3µ3 + 7290 γ∆t3λ4µ3 − 6210 γ∆t3λ3µ4

+ 2520 γ∆t3λ2µ5 − 360 γ∆t3λµ6 + 1080 γ2∆t2λ6 − 3060 γ2∆t2λ5µ+ 270∆t3λ6µ

+ 540 γ2∆t2λ4µ2 − 900∆t3λ5µ2 + 3780 γ2∆t2λ3µ3 + 1125∆t3λ4µ3

− 2340 γ2∆t2λ2µ4 − 684∆t3λ3µ4 + 252∆t3λ2µ5 − 72∆t3λµ6 + 9∆t3µ7

− 900 γ∆t2λ6 + 3960 γ∆t2λ5µ− 5940 γ∆t2λ4µ2 + 3060 γ∆t2λ3µ3 + 360 γ∆t2λ2µ4

− 540 γ∆t2λµ5 − 360 γ2∆tλ5 + 3960 γ2∆tλ4µ− 6840 γ2∆tλ3µ2 + 3240 γ2∆tλ2µ3

+ 2160 γ∆tλ5 − 11880 γ∆tλ4µ+ 22680 γ∆tλ3µ2 − 18360 γ∆tλ2µ3 + 5400 γ∆tλµ4

+ 8640 γλ4 − 25920 γλ3µ+ 25920 γλ2µ2 − 8640 γλµ3
]
+O(∆t6).

(46)333

For γ = 0, errλ,ODD ∼ O(∆t5) and errµ,ODD ∼ O(∆t5), giving global fourth-334

order accuracy. However, for γ ̸= 0, errλ,ODD ∼ O(∆t2) and errµ,ODD ∼ O(∆t2),335

corresponding to global first-order accuracy.336

The characteristic polynomial for the SG1 scheme is337

PSG1(E) = E − 1−∆tλ+
1

2
(γ − 1)∆t2λ2 − 1

6

(
γ2 − 2 γ + 1

)
∆t3λ3

+
1

24

(
γ3 − 3 γ2 + 3 γ − 1

)
∆t4λ4,

(47)338
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and the particular polynomial is339

QSG1(E) = − 1

24

(
γ3 − 3 γ2 + 3 γ − 1

)
∆t4λ3 +

1

12

(
γ2 − 2 γ + 1

)
∆t3λ2 − 1

6
(γ − 1)∆t2λ

+
1

6
(E + 1)∆t+

1

12

((
γ2 − 2 γ + 1

)
∆t3λ2 − 4 (γ − 1)∆t2λ+ 8∆t

)√
E.

(48)340

In this case, the characteristic polynomial only has a single σ-root given by341

σ1,SG1 = 1 +∆tλ− 1

2
(γ − 1)∆t2λ2 +

1

6

(
γ2 − 2 γ + 1

)
∆t3λ3

− 1

24

(
γ3 − 3 γ2 + 3 γ − 1

)
∆t4λ4,

(49)342

from which the stability region may be inferred. Figure 1b shows plots of the SG1 sta-343

bility region for several values of γ. Similar to the ODD scheme, γ = 0 results in the344

same stability region as the ERK4 scheme (it can be shown that σ1,SG1 = σ1,ERK4 if345

γ = 0). In addition, γ = 1 results in the same stability region as the forward Euler346

(FE) scheme.347

The local errors in the transient and particular solutions for the SG1 scheme are348

errλ,SG1 =
1

120
∆t5λ5 +

1

24

(
γ3λ4 − 3 γ2λ4 + 3 γλ4

)
∆t4 +

1

2
γ∆t2λ2 − 1

6

(
γ2λ3 − 2 γλ3

)
∆t3

+O(∆t6)
(50)349

and350

errµ,SG1 =
∆t2µ

2880 (λ− µ)
4

[
20 γ4∆t3λ7 − 40 γ4∆t3λ6µ+ 200 γ4∆t3λ5µ2 − 60 γ3∆t3λ7

+ 100 γ3∆t3λ6µ− 320 γ3∆t3λ5µ2 + 220 γ3∆t3λ4µ3 + 60 γ3∆t3λ3µ4 + 60 γ2∆t3λ7

− 50 γ2∆t3λ6µ− 20 γ2∆t3λ5µ2 − 40 γ2∆t3λ4µ3 + 40 γ2∆t3λ3µ4 + 10 γ2∆t3λ2µ5

− 20 γ∆t3λ7 + 240 γ3∆t2λ5µ− 40 γ∆t3λ6µ− 120 γ3∆t2λ4µ2 + 240 γ∆t3λ5µ2

− 120 γ3∆t2λ3µ3 − 280 γ∆t3λ4µ3 + 100 γ∆t3λ3µ4 − 360 γ2∆t2λ5µ+ 30∆t3λ6µ

+ 600 γ2∆t2λ4µ2 − 100∆t3λ5µ2 − 120 γ2∆t2λ3µ3 + 125∆t3λ4µ3 − 120 γ2∆t2λ2µ4

− 76∆t3λ3µ4 + 28∆t3λ2µ5 − 8∆t3λµ6 +∆t3µ7 + 120 γ∆t2λ5µ− 360 γ∆t2λ4µ2

+ 360 γ∆t2λ3µ3 − 120 γ∆t2λ2µ4 + 240 γ2∆tλ5 − 720 γ2∆tλ3µ2 + 480 γ2∆tλ2µ3

− 240 γ∆tλ5 + 480 γ∆tλ4µ− 480 γ∆tλ2µ3 + 240 γ∆tλµ4 + 1440 γλ4 − 4320 γλ3µ

+ 4320 γλ2µ2 − 1440 γλµ3
]
+O(∆t6),

(51)351

respectively. For γ = 0, the leading terms in errλ,SG1 and errµ,SG1 are of order O(∆t5),352

giving fourth-order global accuracy. However, if γ ̸= 0, the leading error terms are of353

order O(∆t2), giving first-order global accuracy.354

It is difficult to theoretically estimate the value of γ for two reasons. First, D and355

V involve quantities that are interpolated to tracer position q. Second, the velocity field356

is calculated from the stream function as the result of solving equation 8. Accordingly,357

the explicit dependence of V on y is not known. However, we did not encounter any ap-358

parent instabilities using a time step size corresponding to 99% of the ERK4 scheme Courant359

limit along the negative real axis (diffusion dominance was presumed) with the ODD and360

SG1 schemes. Based upon this observation, the value of Im[γ] may be small, while Re[γ]361

may lie in the approximate interval (0, 0.5] because the stability region along the neg-362

ative real axis does not deteriorate. In this situation, the theoretical expectation is that363

the ERK4 scheme is fourth-order accurate, while the ODD and SG1 schemes are first-364

order accurate. In the following sections, all Courant factors refer to the stability region365

of the ERK4 scheme along the negative real axis.366
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Figure 1. Plot showing the stability region for a) the ODD scheme and b) the SG1 scheme

for different values of γ. The stability curves for a and b are determined using |σ1,ODD|=1 and

|σ1,SG1|=1, respectively (see equations 44 and 49). For γ=0, the stability region in parts a

and b is equivalent to that of the ERK4 scheme. For part b, γ=1 results in a stability region

equivalent to that of the forward Euler (FE) scheme.
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2.4.2 Analysis in the context of additive Runge–Kutta methods367

Runge–Kutta methods may be summarized in the form of Butcher tables, which368

allow scheme details to be notated in a compact tabular form (Butcher, 2016). The Butcher369

tables for elemental RK methods take the following form:370

c A

b⊺
, (52)371

where A ∈ Rs×s is the RK matrix, c ∈ Rs is a vector of nodes (or abscissae), and b ∈372

Rs is a vector of quadrature weights, with s the total number of stages. Methods can373

be formed from the tableau entries using374

yn+1 = yn +∆t

s∑
i=1

biki, (53)375

with376

ki = F

tn + ci∆t,y
n +∆t

s∑
j=1

aijki

 , i = 1, 2, . . . , s. (54)377

The Butcher tableau for ERK4 is378

0
1
2

1
2

1
2 0 1

2

1 0 0 1

1
6

1
3

1
3

1
6

, (55)379

where blank entries take a value of zero. ERK methods are characterized by strictly lower380

triangular table matrices A. Accordingly for such methods, the upper bound of the sum381

in equation 54 can be replaced by i− 1.382

The ODD and SG1 schemes fall under the umbrella of 2–additive Runge–Kutta (ARK2)383

methods, which involve a combination of two elemental RK schemes. ARK2 methods384

may be summarized using the partitioned Butcher tableau given by385

c[1] A[1] c[2] A[2]

b[1]⊺ b[2]⊺
, (56)386

where A{[1],[2]} are the Runge–Kutta matrices, c{[1],[2]} are node vectors, b{[1],[2]} are387

the weight vectors, and bracketed superscripts correspond to each elemental scheme. ARK2388

schemes are defined using389

yn+1 = yn + ∆̃t

s∑
i=1

[
b
[1]
i k

[1]
i + b

[2]
i k

[2]
i

]
, (57)390

with391

k
{[1],[2]}
i = F{[1],[2]}

(
tn + c

{[1],[2]}
i ∆̃t,yn + ∆̃t

s∑
i=1

a
{[1],[2]}
ij k

{[1],[2]}
j

)
, i = 1, 2, . . . , s, (58)392

where ∆̃t is the time step size. In this study, F[1] = D and F[2] = V.393

ARK2 methods are most commonly used as implicit-explicit methods, where one394

term on the right side is considered stiff and treated implicitly, whereas the other term395
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is considered non-stiff and treated explicitly (Ascher et al., 1997). Such a strategy is em-396

ployed to enhance the overall feasibility or efficiency of performing a given time integra-397

tion.398

The Butcher tables corresponding to the ODD and SG1 schemes are399

0 0
1
4

1
4 0

1
4 0 1

4 0
1
2 0 0 1

2 0
1
2

1
12

1
6

1
6

1
12 0

3
4

1
12

1
6

1
6

1
12

1
4

3
4

1
12

1
6

1
6

1
12

1
4

3
4

1
12

1
6

1
6

1
12 0 1

4
3
4

1
12

1
6

1
6

1
12 0 1

4

1 1
12

1
6

1
6

1
12 0 0 1

2 1 1
12

1
6

1
6

1
12 0 0 1

2

1
12

1
6

1
6

1
12

1
12

1
6

1
6

1
12

1
12

1
6

1
6

1
12

1
12

1
6

1
6

1
12

(59)400

and401

0 0
1
2

1
2 0

1
2 0 1

2 0

1 0 0 1 0

1
6

1
3

1
3

1
6

1
6

1
3

1
3

1
6

. (60)402

Accordingly, both the ODD and SG1 schemes correspond to explicit-explicit ARK2 meth-403

ods.404

To simplify the theory that follows, the ODD tableau has been scaled so that nodal405

values range from zero to unity. However, the ODD scheme as presented in equations 21–406

28 can be recovered by applying a time step size of ∆̃t = 2∆t. In contrast, we have ∆̃t =407

∆t for SG1. We also note that the Butcher tables in equations 55, 59, and 60 do not re-408

quire V to be autonomous as in equation 13. However, we may apply these Butcher ta-409

bles for autonomous V without difficulty.410

The accuracy of elemental RK schemes depends on the satisfaction of certain or-411

der conditions (Butcher, 2016). We list the order conditions up to fourth order in table 2.412

The ERK4 scheme satisfies all order conditions in table 2 and accordingly is a fourth-413

order method.414

The order of accuracy of an ARK method depends on the order conditions of its415

constituent elemental schemes A[ℓ], b[ℓ], and c[ℓ], ℓ = 1, 2, . . . , N , as in equation 56 (for416

N = 2), as well as additional coupling conditions (Kennedy & Carpenter, 2003). We417

may apply the conditions in table 2 to the constituent Butcher tables in equations 59–418

60 to determine the orders of the elemental schemes for ODD and SG1. The left tables419

in equations 59–60 satisfy order conditions up to fourth order. This is expected because420

these elemental schemes correspond to ERK4. However, the right tables in equations 59–421

60 only satisfy order conditions up to first order. It can further be shown that an N -additive422

RK method will have at most second-order coupling error if b[1] = b[2] = · · · = b[N ]
423

or c[1] = c[2] = · · · = c[N ] (Kennedy & Carpenter, 2003). The ODD and SG1 schemes424

satisfy b[1] = b[2] (and c[1] ̸= c[2]), which permits second-order coupling. However,425

the accuracies of the ODD and SG1 schemes are limited by their first-order elemental426

schemes, which dominate their leading error terms. Accordingly, both ODD and SG1 are427

first-order accurate ARK2 methods.428

Formally, the order conditions are derived using the test equation dy/dt = λy.429

This differs from the analysis in section 2.4.1, where a non-linear time dependence was430
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Table 2. Order conditions of Runge–Kutta methodsa

Order Condition

1
∑
j

bj = 1

2
∑
j

bjcj =
1
2

3
∑
j

bjc
2
j = 1

3∑
jl

bjAjlcl =
1
6

4
∑
j

bjc
3
j = 1

4∑
jl

bjcjAjlcl =
1
8∑

jl

bjAjlc
2
l = 1

12∑
jlm

bjAjlAlmcm = 1
24

a Order conditions for elemental
Runge–Kutta methods up to
fourth order.

included. This distinction may be of importance for problems 3 and 4 due to a non-linear431

time-dependence for H.432

The stability function of an elemental RK method is433

σ(--z) =
det(I− --zA+ --zeb⊺)

det(I− --zA)
, (61)434

where --z = λ∆t and e is a vector of ones (Wanner & Hairer, 1996). For the ERK4 scheme,435

it can be shown that equation 61 produces a result equivalent to equation 39.436

The stability function for an ARK2 method is given by437

σ(--z[1], --z[2]) =
det(I− --z[1]A[1] − --z[2]A[2] + --z[1]eb[1]⊺ + --z[2]eb[2]⊺))

det(I− --z[1]A[1] − --z[2]A[2])
, (62)438

where --z[1],[2] = λ[1],[2]∆t, and λ[1],[2] are the eigenvalues of each elemental scheme (Kennedy439

& Carpenter, 2003). In this study, we have λ[1] = λD and λ[2] = λV . For the ODD440

scheme, equation 62 gives the square of equation 44 because the stability function de-441

termined via ARK theory corresponds to one iteration of the scheme (over two succes-442

sive time steps). For the SG1 scheme, equation 62 gives a result equivalent to equation 49.443

Accordingly, the stability functions from ARK analysis are consistent with those of the444

polynomial analysis in section 2.4.1.445

2.5 Test Problem Setup446

We examine the performance of the ERK4, ODD, and SG1 velocity update schemes447

on four test problems. All the problems are governed by equations 1–4. They differ in448

the choices of parameter values, boundary conditions, and initial conditions, as described449

in this section and corresponding to different physical situations. Details of these choices450

are now given.451
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2.5.1 Parameters452

Relevant physical parameters for all test problems are summarized in table 3, where453

the domain is given by [0, α]×[0, 1].

Table 3. Physical parameters for test problemsa

Problem RaT RaC α H

1 0 −1 0.9142 N/A
2 105 0 0.9142 0
3 105 0 1 H(x, z, t)
4 105 5×104 1 H(x, z, t)

a Problems 3 and 4 involve variable internal heating rates given by equation 76
and available via GitHub/Zenodo (see section 3.4.1), respectively.

454

2.5.2 Initial Conditions455

For problem 1, the initial composition field (van Keken et al., 1997) for tracer par-456

ticle q located at position r = (x, z) is457

Cq(x, z, t = 0) =

{
0, if z > 0.2 + 0.02 cos(πx/α),

1, otherwise.
(63)458

For problem 2, the initial temperature field for tracer particle q is459

Tq(x, z, t = 0) =
1

2

[
1 + tanh

(
0.2 + 0.04 cos(πx/α)− z

0.04

)]
. (64)460

This temperature function is similar to the function for composition in equation 63, but461

the interface between 0 and 1 is smoothed (Bangerth et al., 2020). Including a smooth462

interface in the initial temperature allows us to mitigate against numerical error when463

computing the thermal diffusion term.464

For problem 3, the initial temperature field corresponds to a conductive profile given465

by466

Tq(x, z, t = 0) = −z + 1. (65)467

In this problem, the lateral temperature gradients required to initiate covection are due468

to a variable internal heating rate.469

For problem 4, we compare our numerical solutions to an exact solution (S. J. Trim470

et al., 2023) that requires an initial composition field based upon the logistic function.471

Specifically, we have a two-layer initial composition field given by Cq(x, z, t = 0) = C0(z)472

with473

C0(z) = [1 + exp [−2k (zI − z)]]
−1
, (66)474

where k and zI control the thickness and vertical position of the material interface be-475

tween compositions. We note that Cq is defined using fractional values between zero and476

unity. This required some additional programming in the convection code used, which477

originally only allowed Cq values of 0 or 1. However, this update permitted precise match-478

ing of the gradient within the compositional interface.479
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The initial temperature field for problem 4 is given by480

Tq(x, z, t = 0) =
1

RaT

[
−
π3
(
α2 + 1

)2
α3

cos (πx/α) sin (πz) f (t = 0) +RaCC0(z)

+ (RaT −RaC)(1− z)

]
,

(67)481

where f(t) is a function that influences the time dependence of the solution (see equa-482

tion 77).483

2.5.3 Boundary Conditions484

For each problem, boundary conditions for temperature and velocity are required485

and are summarized in table 4. For problem 4, we have isothermal top and bottom bound-486

aries, with a basal temperature of487

Tbot =
RaC
RaT

[C0(0)− 1] + 1 (68)488

and a surface temperature of489

Ttop =
RaC
RaT

C0(1). (69)490

However, for the parameters used in this study, Tbot ≈ 1 and Ttop ≈ 0. Accordingly,491

we apply basal and surface temperatures of 1 and 0 in our calculations.492

Table 4. Boundary conditions for test problemsa

Problem z = 0 z = 1 x = 0 and x = α

1 v = 0 v = 0 u = 0, ∂w
∂x = 0

2 T = 1, v = 0 T = 0, v = 0 ∂T
∂x = 0, u = 0, ∂w

∂x = 0

3 T = 1, ∂u
∂z = 0, w = 0 T = 0, ∂u

∂z = 0, w = 0 ∂T
∂x = 0, u = 0, ∂w

∂x = 0

4 T = Tbot,
∂u
∂z = 0, w = 0 T = Ttop,

∂u
∂z = 0, w = 0 ∂T

∂x = 0, u = 0, ∂w
∂x = 0

aSummary of boundary conditions for temperature and velocity for all test problems.

As in section 2.1, the velocity field is expressed by the components u and w such that

v = [u,w].

Figure 2 shows snapshots of ψ, C, and T , where applicable, for each test problem.493

The times shown were selected in order to demonstrate the character of evolution for each494

problem. Exact solutions were not available for problems 1–2, so ProjecTracer was used495

with the ERK4 scheme to produce the data used in the plots. For problem 1, results were496

obtained using a 300×300 Eulerian mesh with 60TPCV using ∆t = 0.5. For problem 2,497

a 100×100 Eulerian mesh was used with 120 TPCV with a Courant factor of 0.495. For498

problems 3–4, exact solutions were used to generate the plots (see sections 3.3.1 and 3.4.1).499

500

2.5.4 Diagnostics501

The root-mean-square (RMS) velocity is defined as502

vRMS =

√
1

α

∫ 1

0

∫ α

0

[u2 + w2] dxdz, (70)503
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Figure 2. Snapshots of ψ, C, and T , where applicable, for test problems 1–4. Test problems

are separated by black lines. Time values are also indicated for each problem.

–18–



manuscript submitted to Geochemistry, Geophysics, Geosystems

and characterizes the overall vigor of convection.504

3 Results505

3.1 Problem 1: compositional RT506

3.1.1 Generation of the reference solution507

Our goal is to quantify the efficiency of the velocity update schemes. Accordingly,508

we require a time-accurate reference solution for comparison with our numerical solu-509

tions. Efficiency can then be measured in terms of the CPU time required to produce510

a solution with a given accuracy. From the literature, we have a theoretical value for the511

growth rate of the primary diapir at t = 0 (Ramberg, 1981; van Keken et al., 1997).512

Because this value does not involve time evolution, however, we cannot use it to quan-513

tify time accuracy. In the absence of an exact solution for t > 0, the next best alter-514

native is a numerical solution with a small error. We achieve such a solution by fixing515

a sufficiently fine spatial mesh and gradually refining the time step size using the ERK4516

scheme until convergence of the RMS velocity at t = 208 is achieved. We select t =517

208 because the peak RMS velocity, corresponding to the rise of the primary diapir, oc-518

curs around that time. We compare RMS velocities at a fixed t value rather than the519

observed peak time because the precise peak time likely occurs between time steps, thus520

requiring interpolation and introducing a confound. We isolate the effect of temporal dis-521

cretization by using a fixed spatial resolution while varying the time step size. Specif-522

ically, we use a 300×300 Eulerian mesh with TPCV = 60 at t = 0 for a total of 5 436 060523

tracers.524

RMS velocity data at t = 208 for all velocity update schemes are shown in table 5.525

Time step sizes were tested in decreasing factors of two ranging from 16 down to 0.0078125.526

Examining the vRMS results for the ERK4 scheme reveals convergence of approximately527

9 digits at the smallest time step size used. We use this value as our reference solution.528

529

3.1.2 Convergence properties530

The order of accuracy of a time-stepping method refers to the rate of convergence531

to a solution with perfect time accuracy as the time step size is decreased. Accordingly,532

the order of accuracy of each velocity update scheme can be estimated by using the ref-533

erence solution developed in section 3.1.1.534

Corresponding to the data in table 5, figure 3 shows a logarithmic plot of the RMS535

velocity error at t = 208 relative to the reference solution versus the time step size. The536

slope of a best-fit line can be used as an estimate of the rate of convergence to the ref-537

erence solution. For the ERK4 scheme, the theoretical convergence rate is expected to538

be of order four. A best-fit line through all data points gives a slope of about 2.2. The539

reduction in observed convergence may be due to the presence of statistical noise and540

roundoff error at smaller time step sizes. If we consider just the three largest time step541

sizes, a best-fit line has a slope of approximately 4.3.542

For the ODD scheme, a best-fit line through all data points results in a slope of543

0.9. However, oscillations in the vRMS(t = 208) value are present for larger time step544

sizes (see table 5). This may be due to limited temporal resolution in the velocity field545

at larger step sizes. Specifically, because the velocity field is only updated on odd-num-546

bered time steps, there is effectively half the temporal resolution in the RMS velocity547

time series compared to the ERK4 and SG1 schemes. A best-fit line through data points548

with ∆t ≤ 1 results in a slope of about 0.97. Overall, the observed order of accuracy549

is near unity for the ODD scheme, consistent with the theoretical results of section 2.4.550
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Table 5. Problem 1: vRMS(t = 208) a

∆t ERK4 ODD SG1

16 0.00309362096182427 0.00252405820744709 0.00277785683067033

8 0.00309303181796976 0.00309651423432836 0.00305160939785673

4 0.00309300102933752 0.00311164980347686 0.00310960787560614

2 0.00309300290188762 0.00310676676305127 0.00311091126105452

1 0.00309299863963776 0.00310094169178837 0.00310430901766157

0.5 0.00309299951606417 0.00309725893445424 0.00309918734358765

0.25 0.00309299945897165 0.00309519284649142 0.00309625268180455

0.125 0.00309299946739831 0.00309411400482291 0.00309466244897793

0.0625 0.00309299947117256 0.00309356192051190 0.00309384183391344

0.03125 0.00309299947117070 0.00309328268354388 0.00309342309407799

0.015625 0.00309299947156048 0.00309314150993983 0.00309321219426920

0.0078125 0.00309299947143122 0.00309307078015074 0.00309310626632360

reference 0.00309299947143122 0.00309299947143122 0.00309299947143122

aSummary of RMS velocities at t = 208 for different time step sizes using the velocity

update schemes of table 1. The reference value used for absolute difference error

calculations is indicated by “reference” in the first column.

Figure 3. Base-10 logarithmic plot showing the RMS velocity error magnitude versus the

time step size for problem 1. The RMS velocity error is the difference between numerical and ref-

erence values for vRMS at t=208. The ERK4, ODD, and SG1 schemes are shown using triangles,

diamonds, and squares, respectively.
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For the SG1 scheme, using all data points results in a best-fit slope of about 0.92.551

For ∆t ≤ 1, the best-fit slope is about 0.97. Similar to the ODD scheme, the SG1 scheme552

has an observed order of accuracy near unity, which is consistent with our theoretical553

findings.554

3.1.3 Accuracy versus computational expense555

The primary factors for computational expense in particle mantle convection mod-556

els are the costs of solving for the velocities and advecting the tracer particles. We dis-557

cuss the accuracy of the different velocity update schemes in both of these contexts.558

Figure 4a shows a plot of vRMS error relative to the reference solution versus the559

total number of velocity updates (i.e., over the entire model evolution) for all schemes.560

We see that the ERK4 scheme produces smaller errors compared to the other schemes561

for a given number of total velocity updates. The improvement becomes significant for562

a velocity update count greater than 100, with a maximum improvement of about 6 dig-563

its toward the reference solution.564

For a velocity update count greater than 100, the ODD and SG1 schemes have sim-565

ilar performance. Specifically, the SG1 produces slightly smaller errors. For a velocity566

update count less than 100, the ODD scheme has oscillatory behavior due to reduced567

temporal resolution in the vRMS time series.568

Figure 4b shows a plot of the vRMS error compared to the total number of time in-569

tegration stages (i.e., over the entire model duration), used to quantify the cost of par-570

ticle advection, in logarithmic space. We observe that the ERK4 scheme offers between571

2–6 digits of improvement toward the reference solution compared to the performance572

of the other schemes. As before, the ODD and SG1 schemes give similar errors. How-573

ever, the ODD scheme has a slight advantage for larger stage counts.574

3.2 Problem 2: thermal RT575

3.2.1 Reference solution576

Similar to problem 1, we require a time-accurate reference solution in order to an-577

alyze the accuracy of the velocity update schemes. An exact solution is not available,578

so we use a solution with a small temporal discretization error. As before, we use the579

ERK4 scheme and gradually decrease the time step size until convergence. For this prob-580

lem, we use a 100×100 Eulerian grid with 120 TPCV. Fixing the spatial resolution al-581

lows us to isolate the effect of varying the time step size and velocity update schemes.582

Due to thermal diffusion, the time step size is stability limited. Accordingly, we choose583

our largest time step size at 99% of the value predicted by stability analysis for the ERK4584

scheme, corresponding to a Courant number of 0.99. To find the reference solution, we585

reduce the time step size by factors of two until the RMS velocity at a specific time con-586

verges over multiple digits. We select t = 0.001987650065548, which is slightly after the587

first peak in the vRMS time series. This particular value of t is available without inter-588

polation for all time step sizes tested given the Courant limit for this spatial discretiza-589

tion. Results for all update schemes are shown in table 6. For the ERK4 scheme, we ob-590

serve 6 or 7 digits of convergence for the RMS velocity for a Courant number as low as591

0.007734375 and from which we take our reference solution.592

The reference solution should also not be sensitive to perturbations in spatial res-593

olution. Tests with a 200×200 Eulerian grid with 120 TPCV produced a vRMS value within594

about 0.01% of the reference value in table 6.595
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Figure 4. Base-10 logarithmic plots of RMS velocity error magnitude versus a) the total

number of velocity updates and b) the total number of time integration stages for problem 1.

The RMS velocity error is the difference between numerical and reference values for vRMS at

t=208. The ERK4, ODD, and SG1 schemes are shown using triangles, diamonds, and squares,

respectively.
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Table 6. Problem 2: vRMS(t = 0.001987650065548) a

Courant Number ERK4 ODD SG1

0.99 292.634869358049 297.882135309721 300.507923082747

0.495 292.634020001879 295.267843308958 296.587811356537

0.2475 292.633722486234 293.952636305863 294.613137896606

0.12375 292.633905954233 293.293840802325 293.624206364686

0.061875 292.633863109873 292.963909646566 293.129065316948

0.0309375 292.633862447062 292.798905424038 292.881467444705

0.01546875 292.633843171016 292.716374993738 292.757651607947

0.007734375 292.633851343382 292.675119792523 292.695752487351

0.0038671875 – 292.654483453064 292.664799916902

0.00193359375 – 292.644165807179 292.649324777993

reference 292.633851343382 292.633851343382 292.633851343382

aSummary of RMS velocities at t = 0.001987650065548 for different Courant

numbers using the velocity update schemes of table 1. The reference value

for error calculations is indicated by “reference” in the first column. Courant

numbers are relative to the ERK4 scheme.

3.2.2 Convergence rates596

Figure 5 shows a plot of the vRMS error compared to the reference value versus the597

time step size in logarithmic space for all velocity update schemes. The slope of a best-598

fit line in this plot can be used to estimate the observed convergence rate toward the ref-599

erence solution.600

The ERK4 scheme shows superlinear convergence. Specifically, considering the en-601

tire range of time step sizes, the observed order convergence is about 1.15. Unlike prob-602

lem 1, time step sizes in this problem are stability limited due to the presence of ther-603

mal diffusion. At the stability limit, the RMS velocity appears to be near a stagnant regime604

where noise begins to limit convergence to the reference solution. This difficulty is re-605

duced at larger time step sizes. For instance, if we only consider the two largest time step606

sizes, the estimated order of convergence for the ERK4 scheme increases to about 2.6.607

However, we cannot test larger time step sizes due to numerical instability.608

For this problem, we observe an order of convergence of approximately unity for609

both the ODD and SG1 schemes, consistent with our theoretical results.610

3.2.3 Accuracy and computational expense611

Figure 6a shows the RMS velocity error compared to the reference solution versus612

the total number of velocity updates used in logarithmic space for all velocity updates613

schemes. We observe that for a fixed number of velocity updates, the ERK4 scheme out-614

performs the other schemes by about four digits of accuracy compared to the reference615

solution. Also, the ODD and SG1 schemes achieve a similar level of accuracy given the616
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Figure 5. Base-10 logarithmic plot showing RMS velocity error magnitude versus the time

step size for problem 2. The RMS velocity error is the difference between numerical and reference

values for vRMS at t = 0.001987650065548. The ERK4, ODD, and SG1 schemes are shown using

triangles, diamonds, and squares, respectively.

same number of velocity updates. The SG1 scheme performs slightly better than the ODD617

scheme for all velocity update counts.618

Figure 6b shows the RMS velocity error against the total number of time integra-619

tion stages using a logarithmic scale. In the context of particle advection cost, the ERK4620

scheme is also superior to the other schemes. In this case, the ODD scheme produces slightly621

smaller errors compared to the SG1 scheme for a given advection cost.622

3.3 Problem 3: thermal convection623

3.3.1 Deriving an exact solution624

Our strategy for deriving a problem with an exact solution is to select a reason-625

able stream function and then use a corresponding variable internal heating rate to sat-626

isfy the governing equations. We begin by selecting a function for ψ that satisfies the627

boundary conditions for this problem (impermeable, free-slip boundaries), given by628

ψ(x, z, t) = 100 sin(100πt) sin(πx) sin(πz). (71)629

This function is based on the particle advection test described in Appendix C of van Keken630

et al. (1997). However, we have added a time-dependent amplitude with a period of 0.01631

nondimensional time units in order to establish a time-dependent flow. Using equation 9,632

the corresponding components of velocity are633

u(x, z, t) = 100π(100πt) sin(πx) cos(πz) (72)634

and635

w(x, z, t) = −100π sin(100πt) cos(πx) sin(πz). (73)636

Accordingly, the RMS velocity is637

vRMS(t) = 50π
√
2| sin(100πt)| (74)638
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Figure 6. Base-10 logarithmic plots of RMS velocity error magnitude versus a) the total

number of velocity updates and b) the total number of time integration stages for problem 2.

The RMS velocity error is the difference between numerical and reference values for vRMS at

t=0.001987650065548. The ERK4, ODD, and SG1 schemes are shown using triangles, diamonds,

and squares, respectively.
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Next, we substitute equation 71 into equation 8, solve for ∂T/∂x, and integrate to639

get an expression for T :640

T (x, z, t) = − π3

250
sin(100πt) cos(πx) sin(πz)− z + 1. (75)641

Because the variable of integration is x, it is permissible to add an arbitrary function of642

z (and possibly t). In this case, we choose to add −z + 1, corresponding to a conduc-643

tive profile, in order to satisfy the initial and boundary conditions for T .644

Now, we may substitute equations 72, 73, and 75 into equation 3 and solve for H,645

giving646

H(x, z, t) =
1

125

{
50π5 sin2(100πt) cos(πz)−

[
50π4 cos(100πt)

− (12500π − π5) sin(100πt)
]
cos(πx)

}
sin(πz).

(76)647

Numerical models for this problem were computed using a 300×300 Eulerian mesh648

with 240 TPCV. Simulations were run until t=9.8175×10−5, which was selected because649

it was available for all Courant numbers tested (0.0309375 to 0.99) without interpola-650

tion. We found that this simulation time was sufficient to observe the difference between651

the velocity update schemes.652

3.3.2 Convergence Rates653

For this problem (and problem 4), we define two reference values for RMS veloc-654

ity with which to compare model results: “exact” and “numerical”. The exact value is655

computed using equation 74 and incurs error only due to the use of finite-precision arith-656

metic. This error is negligible compared to discretization errors present in numerical mod-657

els. The numerical reference value is the most accurate value obtained with our convec-658

tion code, which was obtained using the ERK4 scheme with the smallest available time659

step size (corresponding to a Courant number of 0.0309375). RMS velocity values for660

t=9.8175×10−5 for all velocity update schemes, with Courant numbers ranging from661

0.0309375 to 0.99, and the reference values are included in table 7.662

For the ERK4 scheme, the numerical RMS velocity values agree to about 8 signif-663

icant figures as the Courant factor is reduced. However, the ODD and SG1 RMS veloc-664

ity values only agree to about three significant figures at the lowest Courant numbers665

considered because of larger temporal discretization errors. Comparing the lowest Courant666

number (0.0309375) values to the exact value shows an agreement of 4 digits for the ERK4667

scheme and 2–3 digits for the ODD and SG1 schemes. The ODD and SG1 schemes show668

similar agreement to the numerical reference value. Spatial discretization error ultimately669

limits the observed agreement between the model results and the exact value, even for670

small time step sizes.671

Figure 7 shows logarithmic plots of RMS velocity errors relative to a) exact and672

b) numerical reference values versus time. As before, the slopes of best fit lines may be673

used to compute rates of convergence to the reference values.674

For the ODD and SG1 schemes, the convergence rates are slightly less than unity675

(0.93 and 0.95 respectively) for the exact value and near unity for the numerical refer-676

ence value. Similar to the previous problems, near first-order convergence is observed677

for the ODD and SG1 schemes, consistent with section 2.4.678

For the ERK4 scheme, the convergence rates are near zero and 0.88 relative to the679

exact and numerical reference values, respectively. These rates are much lower than the680

theoretical fourth-order convergence because the time step sizes considered are so small681

that the temporal discretization error is insignificant compared to the spatial discretiza-682

tion error, giving stagnant behavior. As in problem 2, the maximum time step size is sta-683

bility limited due to the spatial discretization of thermal diffusion (see section 4.2), so684
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Figure 7. Base-10 logarithmic plot showing RMS velocity error magnitude versus the time

step size for problem 3. The RMS velocity error is the difference between vRMS model values and

either a) exact or b) numerical reference values for t=9.8175×10−5. The ERK4, ODD, and SG1

schemes are shown using triangles, diamonds, and squares, respectively.
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Table 7. Problem 3: vRMS(t=9.8175×10−5)a

Courant Number ERK4 ODD SG1

0.99 6.85023365134287 6.83131605759924 6.82193840707678

0.495 6.85023365052789 6.84076912701060 6.83605707015817

0.2475 6.85023369947449 6.84549992958774 6.84313811102065

0.12375 6.85023368616665 6.84786644620770 6.84668407594190

0.061875 6.85023369439422 6.84904998094178 6.84845843178892

0.0309375 6.85023369873922 6.84964181526977 6.84934595239669

numerical 6.85023369873922

exact 6.85041371419587

aSummary of RMS velocities at t=9.8175×10−5 for different Courant

numbers using the velocity update schemes of table 1. The numerical

reference value for error calculations is indicated by “numerical” in the

first column. The corresponding exact value is indicated as “exact”.

Courant numbers are relative to the ERK4 scheme.

we are unable to examine convergence rates for larger time steps. The time step size is685

significantly more restricted in this problem due to the higher spatial resolution required.686

Nonetheless, we observe that the ERK4 scheme provides a more accurate solution at its687

maximum stable time step size compared to the ODD and SG1 schemes at their small-688

est time step sizes.689

We note that it is expected that convergence rates relative to the exact value are690

less than those relative to the numerical reference values. As ∆t → 0, the numerical691

models converge to the exact solution of the method-of-lines ODEs given in equation 13,692

which deviates from the solution of equations 10–12 due to spatial discretization. Ac-693

cordingly, the numerical models converge more precisely to the numerical reference value,694

which contains the effect of spatial discretization.695

3.3.3 Accuracy and computational expense696

Figure 8 shows logarithmic plots of RMS velocity error relative to the exact value697

versus a) the number of velocity updates and b) the number of time integration stages698

for the ERK4, ODD, and SG1 schemes. For an equivalent number of velocity updates,699

the SG1 scheme has a slight advantage in RMS velocity error over the ODD scheme, while700

the ERK4 scheme has the smallest error magnitudes. Also, the least expensive model701

possible in terms of velocity updates is that with the SG1 scheme (although the error702

is the largest).703

For an equal number of time integration stages (proportional to particle advection704

cost), the ODD scheme has a slight advantage over the SG1 scheme. As before, the ERK4705

scheme results in the lowest errors for any number of stages. We note that there is no706

significant advantage of decreasing the time step size (i.e., increasing the number of ve-707

locity updates or stages) for the ERK4 scheme because all stable time step sizes fall within708

a stagnant regime.709
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Figure 8. Base-10 logarithmic plots of RMS velocity error magnitude versus a) the total num-

ber of velocity updates and b) the total number of time integration stages for problem 3. The

RMS velocity error is the difference between model and exact vRMS values for t=9.8175×10−5.

The ERK4, ODD, and SG1 schemes are shown using triangles, diamonds, and squares, respec-

tively.
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Figure 9 is similar to figure 8 except that the RMS velocity error is computed rel-710

ative to the numerical reference value. The behaviors of the ODD and SG1 schemes do711

not change significantly from that of figure 8 because the RMS velocity values are suf-712

ficiently far from both the exact and numerical reference values. Accordingly, trends for713

these schemes observed in figure 8 also hold for figure 9. However, the behavior of the714

ERK4 scheme relative to the numerical reference value differs from that relative to the715

exact value. This is because spatial discretization error is included in model results and716

the numerical reference value, allowing for more precise agreement.717

As in figure 8, we observe that the ERK4 scheme in figure 9 produces significantly718

smaller errors compared to the ODD and SG1 schemes for equal velocity cost or equal719

advection cost. However, the error magnitudes for the ERK4 scheme in figure 9 are at720

least three orders of magnitude lower than in figure 8. We also note that the ERK4 scheme721

has a greater minimum cost for velocity computation than the ODD and SG1 schemes.722

Additionally, we observe that there is a slight advantage in ERK4 scheme error for a larger723

number of velocity updates or stages.724

3.4 Problem 4: thermochemical convection725

3.4.1 The exact solution726

We employ the exact solution described in S. J. Trim et al. (2023). The derivation727

of the exact solution for the thermochemical case follows the same general strategy as728

that used for problem 3. However, the addition of equation 4 must be taken into account729

and adds considerable difficulty. Similar to problem 3, a stream function is first presumed730

for the flow. Next, a solution for composition is found using the method of character-731

istics. Subsequently, equation 8 is used to solve for temperature. Lastly, equation 3 is732

used to solve for the internal heating rate. Due to a large number of terms, computer733

algebra systems were used for the symbolic computation of H, which is available via GitHub734

(https://github.com/seantrim/exact-thermochem-solution) and Zenodo (S. Trim,735

2023a). Note that using the routines provided, H can be calculated for x ∈ (−α/2, 3α/2)736

and z ∈ (−1, 2). This allows H to be calculated on the domain boundaries and at ghost737

point positions if necessary.738

Construction of the exact solution may be summarized as follows. The presumed739

stream function is given by740

ψ(x, z, t) = sin(πx/α) sin(πz)f(t), (77)741

where f(t) describes the time dependence. Applying equations 9 and 70, we have742

vRMS(t) =
π
√
α2 + 1

2α
|f(t)|. (78)743

The initial composition field is given by C(x, z, t = 0) = C0(z) (see equation 66). Ap-744

plying the method of characteristics, the time-dependent composition field can be ex-745

pressed as a transformation of its initial condition, giving746

C(x, z, t) = C0(z0) = [1 + exp [−2k (zI − z0)]]
−1
, (79)747

where z0 is the initial vertical position of the fluid parcel located at (x, z) at time t. It748

can be shown that749

z0 =



z, if z = {0, 1} or (x, z) = (α/2, 1/2),
1
π arccot (Z0) , if x = {0, α} and Z0 ≥ 0,

1 + 1
π arccot (Z0) , if x = {0, α} and Z0 < 0,

1
π arccos

[
cn

{
F

(
πz

∣∣∣∣ 1
D2

)
− S(x) iπ

2D
α

∫ t

0
f(t′)dt′

∣∣∣∣ 1
D2

}]
, otherwise,

(80)750
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Figure 9. Base-10 logarithmic plots of RMS velocity error magnitude versus a) the total

number of velocity updates and b) the total number of time integration stages for problem 3.

The RMS velocity error is the difference between model and numerical reference vRMS values at

t=9.8175×10−5. The ERK4, ODD, and SG1 schemes are shown using triangles, diamonds, and

squares, respectively.
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where751

Z0 = −1

2

[
e−Q − eQ

]
(81)752

with753

Q(z, t) = ln | csc(πz) + cot(πz)| − π

α
S(xb)

∫ t

0

f(t′)dt′, (82)754

755

S(x) =

{
+1 if x ≤ α/2

−1 if x > α/2
, (83)756

757

D = | sin(πx/α) sin(πz)|, (84)758

and i is the imaginary unit. We note the use of the Jacobi elliptic function cn and the759

incomplete elliptic integral of the first kind F in equation 80. Additionally, the temper-760

ature is given by761

T (x, z, t) =
1

RaT

[
−
π3
(
α2 + 1

)2
α3

cos (πx/α) sin (πz) f (t) +RaCC + (RaT −RaC)(1− z)

]
.

(85)762

We take f(t)= 100 sin(100πt), which results in the same stream function used in763

problem 3. Parameters are given in table 3, with H values computed using the routines764

provided in the GitHub and Zenodo repositories described above.765

For this problem, we use a 600×600 Eulerian mesh with 240 TPCV. Due to sharp766

changes near the boundaries in the exact solution, we placed approximately half of the767

tracers in boundary adjacent cells directly on the boundaries. This allowed boundary768

behavior to be more effectively resolved. We investigate evolution until t=9.961875×10−5,769

which is a similar time interval considered for problem 3.770

3.4.2 Convergence Rates771

Table 8 shows the RMS velocity values for the ERK4, ODD, and SG1 velocity up-772

date schemes for Courant numbers ranging between 0.061875 and 0.99. Numerical ref-773

erence and exact values are also shown. For the ERK4 scheme, it was found that the RMS774

velocity converged to 9 significant figures over the three smallest Courant numbers. Ac-775

cordingly, we take the 0.061875 Courant number value using the ERK4 scheme as the776

numerical reference value. Conversely, the ODD and SG1 schemes converged to within777

four digits of the numerical reference value. The ERK4, ODD, and SG1 schemes match778

the exact value to within three significant figures. There is a larger discrepancy relative779

to the exact value due to spatial discretization error, which is not alleviated by decreas-780

ing the time step size. However, we note that the RMS velocity value of the ERK4 scheme781

is closer to the exact value compared to the other schemes for all Courant numbers con-782

sidered.783

Figure 10 shows logarithmic plots of RMS velocity error relative to a) exact and784

b) numerical reference values versus time step size. Convergence rates relative to the ex-785

act value are relatively low due to spatial discretization error. Specifically, the observed786

orders of convergence for the ERK4, ODD, and SG1 schemes are 0.0067, 0.2818, and 0.3608,787

respectively. Relative to the exact value, the ERK4 scheme does not significantly ben-788

efit from decreasing the time step size below the stability limit because spatial discretiza-789

tion errors are larger than temporal discretization errors. However, the ERK4 scheme790

at the largest stable time step size produces a smaller error than the other schemes at791

the smallest time step sizes considered. In contrast, the ODD and SG1 schemes do ben-792

efit from decreased time step sizes because the temporal discretization error is signifi-793

cant for larger Courant numbers.794

Relative to the numerical reference value, the ODD and SG1 schemes have observed795

orders of accuracy of 0.99987 and 0.99979, respectively. For the ERK4 scheme, the ob-796

served order of accuracy relative to the numerical reference value is approximately 4.8.797
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Figure 10. Base-10 logarithmic plot showing RMS velocity error magnitude versus the time

step size for problem 4. The RMS velocity error is the difference between model vRMS values and

either a) exact or b) numerical reference values for t=9.961875×10−5. The ERK4, ODD, and

SG1 schemes are shown using triangles, diamonds, and squares, respectively.
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Table 8. Problem 4: vRMS(t=9.961875×10−5)a

Courant Number ERK4 ODD SG1

0.99 6.94947596496731 6.94725994063769 6.94613422117755

0.495 6.94951362394697 6.94838669871076 6.94782350918055

0.2475 6.94951363193589 6.94895012736312 6.94866844863008

0.12375 6.94951363184592 6.94923185260553 6.94909099944699

0.061875 6.94951363296964 6.94937272486854 6.94930229335591

numerical 6.94951363296964

exact 6.95112243830231

aSummary of RMS velocities at t=9.961875×10−5 for different Courant

numbers using the velocity update schemes of table 1. The numerical

reference value for error calculations is indicated by “numerical” in the

first column. The corresponding exact value is indicated as “exact”.

Courant numbers are relative to the ERK4 scheme.

However, the rate of convergence slows as the time step size is reduced. These findings798

are consistent with those of section 2.4. Compared to both reference values, the ODD799

scheme is more accurate than SG1 for a given Courant number (although the ODD scheme800

involves twice as many velocity updates).801

3.4.3 Accuracy and computational expense802

Figure 11 shows logarithmic plots of the RMS velocity error relative to the exact803

value versus a) the total number of velocity updates and b) the total number of time in-804

tegration stages for all velocity update schemes. Relative to the exact value, there is lit-805

tle improvement for the ERK4 scheme as the total number of velocity updates or stages806

increase. However, the ERK4 scheme results in the smallest error for any number of ve-807

locity solves or stages. Accordingly, the ERK4 scheme is the most efficient scheme in terms808

of both velocity and advection costs for small error tolerances.809

In contrast, the ODD and SG1 schemes do show reduced errors as the total num-810

ber of velocity updates or stages increases. We observe that the SG1 scheme produces811

smaller errors than the ODD scheme for a fixed number of velocity updates. Conversely,812

the ODD scheme gives smaller errors than the SG1 scheme for a fixed number of stages.813

Figure 12 is similar to figure 11 except that the RMS velocity error is computed814

relative to the numerical reference value. The main difference compared to figure 11 is815

the behavior of the ERK4 scheme, which more closely approaches the numerical refer-816

ence value as the velocity or advection costs increase. Accordingly, low temporal discretiza-817

tion error tolerances can be met using the ERK4 scheme compared to the other schemes818

for equivalent velocity or advection costs.819
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Figure 11. Base-10 logarithmic plots of RMS velocity error magnitude versus a) the to-

tal number of velocity updates and b) the total number of time integration stages for prob-

lem 4. The RMS velocity error is the difference between model and exact vRMS values for

t=9.961875×10−5. The ERK4, ODD, and SG1 schemes are shown using triangles, diamonds,

and squares, respectively.
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Figure 12. Base-10 logarithmic plots of RMS velocity error magnitude versus a) the total

number of velocity updates and b) the total number of time integration stages for problem 4.

The RMS velocity error is the difference between model and numerical reference vRMS values for

t=9.961875×10−5. The ERK4, ODD, and SG1 schemes are shown using triangles, diamonds,

and squares, respectively.
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4 Discussion820

4.1 Observed computational cost821

Figure 13a shows the particle advection and velocity compute times as a fraction822

of the total run time for each test problem using the ERK4 scheme. Specifically, the tim-823

ing for particle advection includes the floating-point operations in equations 17–20 but824

does not include evaluations of ∇2T +H and v on the Eulerian grid and the interpo-825

lation of T and C from particle positions to the Eulerian grid between stages. The ve-826

locity compute times include the evaluation of v on the Eulerian mesh. This evaluation827

corresponds to the numerical solution of equation 8 via LU factorization and subsequent828

solutions of the resulting triangular systems (i.e., forward and back substitution). The829

ratio of the particle advection to the velocity compute time is shown in figure 13b.

Figure 13. Plots of a) particle advection and velocity compute times as a fraction of the total

compute time, and b) the ratio of advection to velocity compute times for all test problems using

the ERK4 scheme. The test problem number is given on the horizontal axes.
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For problem 1, we observe that the particle advection cost is slightly greater than830

that of velocity. For problems 2–4, we observe that particle advection cost dominates that831

of velocity. Specific behavior depends on both the Eulerian grid resolution and tracer832

particle density. For instance, the calculations for problem 1 required the lowest parti-833

cle density of the test problems, reducing the advection cost. Problem 2 required a greater834

particle density at a lower Eulerian resolution. These requirements resulted in an increase835

in advection cost and a reduction in velocity cost, giving rise to a large ratio in figure 13b.836

Problem 3 featured double the particle density and one-third of the Eulerian mesh spac-837

ing of problem 2. These settings increased the advection cost in absolute terms but re-838

duced it relative to the total computation time (due to a higher velocity cost). Problem 4839

featured the same particle density as problem 2 but with half the Eulerian mesh spac-840

ing. The high Eulerian resolution led to a significant increase in the velocity computa-841

tion cost, reducing the ratio observed in figure 13.842

Due to the relatively high advection cost in these conditions, the ODD scheme pro-843

duces a given error tolerance a bit more efficiently than the SG1 scheme (see section 4.3).844

However, the ERK4 scheme is the most efficient for achieving low error tolerances. It is845

important to note that the cost of particle advection relative to velocity computation de-846

pends on the numerical method used. Additionally, the cost of velocity computations847

increases significantly when considering variable viscosity flows.848

4.2 Suboptimal convergence of ERK4 scheme for RaT > 0849

For RaT > 0, the time step size is stability limited due to the presence of ther-850

mal diffusion. The theoretical temporal discretization error for the ERK4 scheme is Et ∼851

O((∆t)
4
). However, for a uniform grid, numerical stability requires that ∆t ≤ A(∆x)

2
852

where A depends on the order of accuracy of the finite differences used. Accordingly, we853

have Et ≲ O((∆x)
8
). Thus, our spatial discretization error must satisfy Es ≲ O((∆x)

8
)854

if we wish to see significant improvement in simulation accuracy relative to the exact so-855

lution as we decrease ∆t below the stability limit.856

We have the ability to increase the order of accuracy of the finite difference used857

to approximate spatial derivatives and the interpolants used to approximate Lagrangian858

values from neighboring Eulerian values. However, the interpolation from Lagrangian859

to Eulerian values is governed by bilinear shape functions, which we believe limits the860

convergence rate of the spatial discretization (Gassmöller et al., 2019). In future stud-861

ies, high-order shape functions should be explored to see whether the theoretical con-862

vergence rate of the ERK4 scheme can be fully achieved.863

If higher-order interpolants are not used for RaT > 0, ERK4 may not be as com-864

putationally efficient as ERK3 or ERK2. For thermochemical calculations with constant865

cell shape functions, ERK2 was found to be more efficient than ERK4 (S. Trim et al.,866

2020).867

4.3 Pros and cons of the different schemes868

For a given level of accuracy, the ERK4 scheme is the most efficient method in terms869

of both velocity solver and particle advection costs. The only limiting factor to the ERK4870

scheme is that its minimum cost is greater than the other schemes. For extremely large871

problems, this may make the ODD or SG1 schemes more attractive. Additionally, the872

choice of velocity update scheme may depend on the error level required. If high accu-873

racy is required, the ERK4 scheme is the winning choice. However, if it is acceptable to874

have larger errors, the ODD or SG1 schemes may achieve them more efficiently than the875

ERK4 scheme.876
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The ODD and SG1 schemes show similar performance for a given computational877

cost. However, for a fixed velocity solver cost, the SG1 scheme produces smaller errors878

than the ODD scheme. This observation may be useful if the velocity solver is the bot-879

tleneck. Conversely, for a given particle advection cost, the ODD scheme gives smaller880

errors than the SG1 scheme. This observation may be useful if particle advection is the881

bottleneck. The velocity computations may be a bottleneck for large spatial meshes (par-882

ticularly for direct solvers) or if viscosity variations are present. Tracer advection tends883

to be the bottleneck for isoviscous calculations at modest spatial resolutions.884

Unlike the ERK4 and SG1 schemes, the ODD scheme does not give a distinct ve-885

locity field for every time step. For larger time steps, this can cause oscillations in the886

vRMS value. However, for situations where particle advection is the bottleneck, the ODD887

scheme gives slightly smaller errors than the SG1 scheme.888

For steady-state flows, time accuracy is not necessarily required (Pulliam & Zingg,889

2014). In that case, using the ODD or SG1 schemes may reduce the computational cost890

involved in achieving a steady state.891

Additionally, the stability regions of the ODD and SG1 schemes differ from that892

of the ERK4 scheme for γ ̸= 0 (see figure 1). For γ near zero, the ODD and SG1 schemes893

have a similar stability region to the ERK4 scheme and at reduced computational cost.894

For γ near 0.5, ODD and SG1 have superior stability along the real axis compared to895

the ERK4 scheme. In this case, the SG1 scheme is the most stable along the real axis896

by a large margin. However, the stability regions of the ODD and SG1 schemes do not897

cover the imaginary axis for γ ̸= 0, unlike the ERK4 scheme. This is important for Eu-898

lerian solvers for T and C, which generally require greater stability along the imaginary899

axis due to the spatial discretization of advection terms.900

5 Conclusions901

5.1 Summary902

1. Computing the velocity field is computationally expensive in mantle convection903

models.904

2. To reduce expense, velocity fields can be computed for a subset of high-order Runge–905

Kutta stages, potentially resulting in a useful time integration scheme for steady-906

state problems or if larger error tolerances are acceptable.907

3. Theoretical stability regions and orders of accuracy were developed for the time908

integration schemes considered (ERK4, ODD, and SG1).909

4. In agreement with theory, computing velocities for a subset of time integration stages910

was observed to:911

(a) not adversely impact numerical stability for the problems considered912

(b) result in at most first-order time accuracy913

5. Computing velocities for every time integration stage resulted in:914

(a) substantially improved efficiency for small error tolerances915

(b) high-order convergence for isothermal and thermochemical flows916

6. For isocompositional flows, the theoretical high-order convergence of Runge–Kutta917

integration with velocities computed at every stage was difficult to observe due918

to the stability limit (see section 4.2)919

5.2 Future work920

It would be of interest to explore other velocity update schemes for particle advec-921

tion such as that used for the second-order Runge–Kutta method. We have focused on922

isoviscous models in 2D. However, the efficiency gains of the ERK4 scheme for time-accurate923
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calculations are likely to be even greater for variable viscosity and 3D flows due to the924

increased computational cost of solving for the velocity field. Direct testing of this hy-925

pothesis is a worthy direction for future effort.926

6 Open Research927

Source code and related files for ProjecTracer are available on GitHub (https://928

github.com/seantrim/ProjecTracer) and Zenodo (S. Trim, 2023b). The routines used929

to calculate H for problem 4 are also available on GitHub (https://github.com/seantrim/930

exact-thermochem-solution) and Zenodo (S. Trim, 2023a).931

Figures were created using LibreOffice (The Document Foundation, 2022), GIMP932

(GIMP: GNU Image Manipulation Program, 2021), and Gnuplot (Williams & Kelley,933

2021). LibreOffice (https://www.libreoffice.org/), GIMP (https://www.gimp.org)934

and Gnuplot (http://www.gnuplot.info/) are available via free licenses. Figures 1-2935

utilize the perceptually uniform batlow color scale (Crameri et al., 2020) available on Zen-936

odo (Crameri, 2021).937
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