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Abstract 16 

Phytoplankton primary production is a crucial component of Arctic Ocean (AO) 17 

biogeochemistry, playing a pivotal role in the carbon cycling by supporting higher trophic levels 18 

and removing atmospheric carbon dioxide. The advent of satellite observations measuring 19 

chlorophyll a concentration (Chl_ a) has yielded unprecedented insights into the distribution of 20 

AO phytoplankton, enhancing our ability to assess oceanic productivity. However, the optical 21 

properties of AO waters differ significantly from those of lower‐latitude waters, and standard 22 

Chl_a algorithms perform poorly in the AO. In particular, Chl_a retrievals are challenged by 23 

interferences from other marine constituents including higher pigment packaging and higher 24 

proportion of light absorption by colored dissolved organic matter. To derive phytoplankton-25 

originating signature as well as mitigate those effects, solar-induced chlorophyll fluorescence 26 

(SIF) emerges as a valuable tool for acquiring physiological insights into the direct 27 

photosynthetic processes in the AO. In this study, we leverage satellite-based SIF measurements 28 

to assess their correlation with a set of predictive factors influencing phytoplankton 29 

photosynthesis. We extend the temporal coverage of AO SIF data to cover the period 2004 - 30 

2020. This novel dataset offers a pathway to monitor the physiological interactions of 31 

phytoplankton with changes in climate, promising to significantly improve our understanding of 32 

the Arctic water’s productivity. The application of this data is expected to provide insights into 33 

how phytoplankton respond to shifts in environmental changes, contributing to a more nuanced 34 

understanding of their role in High-Latitude Northern Oceans ecosystems. 35 

 36 

Key Points 37 

 We extrapolated red SIF over the period of 2004-2020 using a set of predictive variables 38 

influencing photosynthesis over the Arctic Ocean. 39 

 The reconstructed SIF data demonstrates a strong correlation with independent data 40 

records. 41 
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 Data produced is expected to provide a new insight into assessment of Arctic Ocean 42 

productivity. 43 

 44 

 45 

Plain Language Summary 46 

Phytoplankton communities, via means of photosynthesis, play a crucial role in the global carbon 47 

cycle by transforming carbon dioxide into organic matter. Recognizing the importance of ocean 48 

productivity is essential for effectively managing and conserving marine ecosystems, promoting 49 

sustainable fisheries, and comprehending the broader ramifications of climate change on the 50 

world's oceans. Alterations in ocean productivity, especially shifts in the abundance and 51 

composition of phytoplankton, can serve as early indicators of the health of aquatic ecosystems. 52 

While satellite observations have provided an unprecedented overview of phytoplankton 53 

distribution by estimating chlorophyll concentrations over oceans, uncertainties persist regarding 54 

the accurate estimation of the total photosynthetic activity of organisms in the ocean. Recently, 55 

the TROPOMI satellite instrument has made solar-induced chlorophyll fluorescence (SIF) data 56 

available, offering another metric for understanding photosynthetic activity. However, the short 57 

latency of the data record makes it challenging to assess the impact of rapid climate change in 58 

the Arctic domain. In this paper, we employ a modeling framework to extend SIF data over a 59 

more extended period, facilitating a more comprehensive assessment of ocean productivity. 60 

1- Introduction 61 

Increasing atmospheric growth rate of CO2 represents a higher proportion of fossil fuel emission 62 

relative to natural compensation and negative feedback of terrestrial and aquatic ecosystems 63 

through photosynthesis. While global ocean productivity is estimated to be ~50–60 Pg yr
-1

 64 

(Johnson and Bif 2021, Buitenhuis et al 2013), oceans are responsible for an annual carbon sink 65 

of 2.9±0.4 Pg (Friedlingstein et al 2023). Oceanic primary productivity model estimates rely on 66 

satellite estimation of phytoplankton biomass (mg C m
−3

) and the phytoplankton growth rate (μ, 67 

d
−1

), integrated over the euphotic depth (Westberry et al 2008, Silsbe et al 2016, Behrenfeld and 68 

Falkowski 1997). Apart from limitation of the models, there are uncertainties arise from satellite 69 

observed reflectance band employed to retrieve chlorophyll-a (Chl_a) concentration estimates 70 

that rely on empirical to semi-analytical relationships derived from the correlations between in-71 

situ measurements and satellite reflectance bands in the blue-to-green region of the visible 72 

spectrum (Hu et al 2019, 2012, Li et al 2023). These algorithms have been implemented by 73 

multiple satellite instruments (e.g. CZCS; SeaWiFS and MODIS) since1978 and have been used 74 
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to estimate photosynthetic rates from estimated chlorophyll concentration estimates (Behrenfeld 75 

and Falkowski 1997).  76 

Rapid climate change is actively influencing the Arctic Ocean’s unique ecosystem, resulting in 77 

rapid alterations in Chl_a concentration and spatial distribution (Bouman et al 2020, Lewis et al 78 

2020). The retreat of sea- ice cover and subsequent changes in light availability and nutrient 79 

cycling have complex and sometimes opposing effects on chlorophyll levels (Dvoretsky et al 80 

2023, Castagno et al 2023). Warmer temperatures and melting sea ice have increased light 81 

availability and lengthened phytoplankton growing season, even promoting a second, late season 82 

bloom in some locations (Zhao et al 2022, Ardyna et al 2014, Manizza et al 2023). Changes in 83 

surface temperature, nutrient and light availability, salinity, wind stress, and increased freshwater 84 

input from melting ice and increased river runoff are among the factors that could affect 85 

phytoplankton photosynthesis and thus oceanic NPP (Ko et al 2022, Singh et al 2023). 86 

Satellite measurements of Chl_a provide a valuable and efficient tool for monitoring ocean 87 

chlorophyll content, spatial and temporal distribution patterns, and marine primary productivity. 88 

However, accuracy of ocean color algorithms is also impacted by high concentration of colored 89 

dissolved organic matter and pigment packaging effect in the AO which interferes with 90 

chlorophyll retrievals (Matsuoka et al 2017, Cota et al 2003). Additionally, the frequent presence 91 

of surface chlorophyll in the AO as well as a subsurface chlorophyll maximum (SCM) caused by 92 

sea ice melt can be a source of pixel contamination in the retrieval of satellite chlorophyll 93 

measurements, which potentially increases the uncertainty in primary productivity estimates 94 

(Bélanger et al 2007, Arrigo and Van Dijken 2011, Bouman et al 2020, Lee et al 2015). 95 

Solar induced chlorophyll fluorescence (SIF) represents a promising alternative to quantify AO 96 

productivity without the spectroscopic challenges that hamper chlorophyll retrievals. The SIF 97 

signal represents 1-2% of photosynthetically active radiation re‐emitted in red to near‐infrared 98 

spectral range (Köhler et al 2020a, Parazoo et al 2019, Köhler et al 2018). SIF is closely related 99 

to terrestrial gross primary productivity (Frankenberg et al 2011, Guanter et al 2014, Parazoo et 100 

al 2014). The recent development of red SIF (Köhler et al 2020a) provides an unprecedented 101 

opportunity to quantify primary productivity from aquatic ecosystems. Red SIF is derived from 102 

Bands 5 and 6 of the TROPOspheric Monitoring Instrument (TROPOMI), encompassing 103 

wavelengths of 661–725 nm and 725–775 nm, respectively. Red SIF generally correlates with 104 
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MODIS normalized fluorescence line height (nFLH, Behrenfeld et al 2009); however, notable 105 

differences are reported for specific regions (Köhler et al 2020a). In particular, nFLH retrievals 106 

face challenges in regions characterized by high chlorophyll concentrations (Gupana et al 2021); 107 

red SIF does not have this limitation. 108 

Despite its advantages, the red SIF record only extends back to 2018, limiting its use in studying 109 

long-term change. We overcome this limitation by employing a randomForest (RF) machine 110 

learning model to provide continuous red SIF data spanning the period from 2004 to 2020. We 111 

compare our AO red SIF product to AO chlorophyll and NFLH products and discuss their 112 

similarities and differences. We conclude with observations on the potential for using red SIF to 113 

study marine PP trends in the rapidly evolving Arctic ecosystems. 114 

 115 

2- Methodology 116 

2.1 Datasets 117 

The TROPOMI sensor onboard the Sentinel-5 satellite provides wavelengths to capture SIF 118 

spectra for monitoring terrestrial and aquatic photosynthetic activity. Global retrievals of red 119 

wavelength SIF data have the advantage of  retrieving photosynthetic information in variable 120 

atmospheric conditions with ~5km spatial resolution (Köhler et al 2020b). SIF signal is capable 121 

of penetrating through cloud and aerosol layer and unlike traditional usage of visible spectral 122 

bands, SIF is a photosynthesis by-product and insensitive to ocean color, which provides an 123 

unprecedented opportunity to monitor oceanic photosynthetic activity. Despite advantages of 124 

oceanic red SIF from TROPOMI, the recent availability of data (from Apr-2018) makes 125 

quantifying long-terms trends and anomalies in the aquatic systems challenging. 126 

Recently, machine learning methods have been used to extrapolate and upscale SIF in terrestrial 127 

ecosystems using a combination of MODIS reflectance (e.g. CSIF; (Zhang et al 2018)) or 128 

reflectance and meteorological data (GOSIF; (Li and Xiao 2019). These methods that are very 129 

common in remote sensing and ecosystem process analyses and predictions (Jung et al 2011, 130 

Madani et al 2018, Natali et al 2019), operate by predicting unavailable data using quantified 131 

relationships between observable and explanatory variables. 132 
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Here, we generate spatial and temporally coherent red-SIF products beyond the original retrieved 133 

data that covers Apr 2018 to Apr 2021. In this approach, we first train monthly RF models using 134 

the TROPOMI SIF climatological records over selected predictive variables that are believed to 135 

impact quantic vegetation’s photosynthetic activity (Table 1). Subsequently, we predict SIF over 136 

the 2004-2020 period using temporal information provided by each of the explanatory variables.  137 

Table 1. List of candidate explanatory variables for prediction of TROPOMI red-SIF over 138 

the period of 2004-2020. 139 

Variable Abbreviation Spatial resolution Source 

Chlorophyll-a Concentration  Chl_a Retrieved at 0.05
o
 (NASA 2014) 

Normalized Fluorescence Line 

Height 

nFLH* Retrieved at 0.05o (NASA 2014) 

Sea Surface Temperature SST* Retrieved at 0.05
o
 (NASA 2014) 

Sea Surface Salinity SSS* 0.25
 o
 (Carroll et al 2020) 

Meridional Wind Stress vWind 0.25
 o
 (Carroll et al 2020) 

Zonal Wind Stress uWind* 0.25
 o
 (Carroll et al 2020) 

Surface-ocean U Velocity U 0.25
 o
 (Carroll et al 2020) 

Surface-ocean V Velocity V* 0.25
 o
 (Carroll et al 2020) 

Distance from Coastal Zones Distance* 0.05
o
 (Carroll et al 2020) 

Aquatic Ecoregions Ecoregions* - (Spalding et al 2007) 

* Next to the abbreviated variables indicates that they were used in the final model. 140 

Explanatory variables were selected to represent spatial distribution of phytoplankton 141 

communities as well as representing biotic, abiotic and physical characteristics of marine 142 

ecosystems across the Arctic domain. We obtained MODIS Chl_a and NFLH from Google Earth 143 

Engine (Gorelick et al 2017), where we calculated monthly means based on 0.05 degree spatial 144 

resolution, consistent with TROPOMI SIF data. Marine biophysical data obtained were from 145 

ECCO-Darwin data assimilation model estimates (Carroll et al 2020). Aquatic ecoregions 146 

(Spalding et al 2007) were used as a proxy to represent seasonal nutrient cycle and availability 147 

across the Arctic ecosystems. Additionally, we calculated Euclidian distance from the coastal 148 

zones to represent nutrient transport along the land-ocean continuum. All analysis were 149 

performed in R (Core Team 2017) using open source libraries. 150 
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2.2 Modeling and validation 151 

We developed a RF machine-learning model (Liaw and Wiener 2002) to examine the factors 152 

influencing the seasonal variation in SIF cross our 50-90˚ N study area (Figure 1). Our objective 153 

was to attribute the observed SIF patterns to potential underlying biotic and abiotic factors, as 154 

outlined in Table 1. For each month, we randomly sampled 70% of the data within the study area 155 

and linked it to corresponding information extracted from predictor variables.  156 

 157 

Figure 1. Study domain indicating ocean bathymetry (in meters) and major regions. 158 

Decision Trees offer the advantage of capturing both linear and non-linear relationships between 159 

responses and target variables by categorizing data through a series of if-else nodes. At each 160 

terminal node, the mean value of observations within that region is calculated. We assessed the 161 

predictive power of MODIS Chlor_a and NFLH as the main predictive component of the model 162 

(Figure 2). MODIS NFLH provided higher proportion of the variance in spatio-temporal 163 

correlations with the observed SIF over the study domain compared to Chl_a.  164 
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 165 

Figure 2. Spatial correlation between observed TROPOMI SIF (Solar-Induced Fluorescence) 166 

with MODIS Chlorophyll-a (Chl_a) and Normalized Fluorescence Line Height (NFLH). Color 167 

palette indicates residuals of SIF values when linearly associated with Chl_a and NFLH. 168 

Warmer and cooler colors indicate regions where SIF may be underestimated and overestimated 169 

when using Chl_a and NFLH as linear predictors. A higher proportion of variance (R
2
) in SIF is 170 

explained by NFHL compared to Chl_a. 171 

 172 

A stronger spatial correlation between the observed seasonality SIF relative to MODIS-derived 173 

NFLH and Chl_a is also evident over temperate and polar ecoregions as well as selected regions 174 

(Figure S1, S2; supplementary materials). To prevent overfitting, we constrained the number of 175 

trees to reduce the RMSE of the prediction and maximize the performance of the model. 176 

Variable selection involved using a stepwise technique to identify a minimal set of variables 177 

adequate for robustly predicting the response variable (Genuer et al 2010). 178 

We constructed RF models to evaluate the importance of explanatory variables in elucidating the 179 

heterogeneity in SIF trends throughout the seasons. These models quantify an increase in mean 180 

squared error (IncMSE) upon permuting each variable, indicating the significance of individual 181 

factors in explaining pixel-level heterogeneity relative to monthly SIF observations. Model 182 
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validation and testing were conducted on the remaining 30% of independent pixels. Additional 183 

analyses were performed at regional scales, and the predicted SIF data were compared with in-184 

situ chlorophyll data obtained from the Tara Oceans Polar Circle 2013 cruises (Guidi et al 2017). 185 

3- Results and Discussion 186 

The RF model was used to assess the importance of each selected explanatory variable to predict 187 

SIF over the Arctic domain. Our model demonstrated an accuracy of 86% in elucidating spatial 188 

variability in SIF across independent testing data during the peak of the chlorophyll bloom. 189 

Variables such as NFLH, SST, and SSS emerge as among the most important factors in 190 

explaining SIF spatial variability (Fig S3). Both SST and SSS served as indicators for spatial 191 

variations in optimal environmental conditions for phytoplankton photochemical processes. 192 

When used in conjunction with NFLH as a proxy for fluorescence reflectance, they improved 193 

SIF prediction significantly. 194 
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 195 

Figure 3. Comparison between spatially explicit monthly climatology in Random Forest 196 

predicted SIF relative to the observed SIF over the months of Apr to Sep. 197 

The model results indicate remarkable performance in predicting SIF monthly spatial variability 198 

relative to observed SIF data (Figure 3). When comparing the seasonality of observed and 199 

predicted SIF over temperature and polar regions, results demonstrate strong and close 200 

relationships at regional scales (Figure S4). The performance of the predicted SIF became 201 

evident when compared with MODIS Chl_a and NFLH, in conjunction with in-situ observations 202 

of Chl_a concentrations from the Tara Oceans Polar Circle 2013 cruises. It is important to 203 

highlight that the robust correlations observed between SIF and measured Chl_a are particularly 204 

compelling, given that we utilized predicted SIF data for the year 2013, while relying on 2013 205 

observed MODIS chlorophyll-a and NFLH data (Figure 4). The spatial correlation between 206 
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predicted SIF and in situ observations were 28% stronger than was indicated by MODIS Chl_a 207 

data.  208 

 209 

Figure 4. Comparison between predicted SIF (2013), Chl_a and NFLH with HPLC Chl_a 210 

observations obtained from Tara Oceans Polar Circle 2013 cruises. a location of the retrieved 211 

Chl_a data from Ocean Circle cruises. b Predicted SIF over 2013 compared to observed Chl_a. c 212 

MODIS derived Chl_a over 2013 compared with observed Chl_a. d MODIS NFLH compared to 213 

observed Chl_a. Colored dots represent the month of retrieved Chl_a observations. 214 

We conducted a comparative analysis of trends in MODIS Chl_a, NFLH, and reconstructed SIF 215 

across temperate and polar ecoregions (Figure 5). In temperate zones, MODIS Chlor_a does not 216 

exhibit a significant trend, but there is a noteworthy decline in NFLH. Conversely, SIF indicates 217 

a slight decline, particularly evident after 2015, aligning with the observed NFLH trends. In the 218 

polar regions, Chl_a exhibits a significant increasing trend, while the NFLH trend is not 219 

statistically significant. Notably, SIF shows increasing trends, although they are not as 220 

pronounced as those observed in Chl_a. The alignment becomes more apparent when examining 221 
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regional scales and analyzing anomalies in the average SIF over four distinct periods. In this 222 

context, anomalies were defined as departure from annual means within specified years of data 223 

records in predicted SIF and NFLH. Notably, differences emerged between SIF and NFLH 224 

anomalies, particularly from 2008–2011. During this period, predicted SIF exhibited positive 225 

anomalies over the Kara and Barents seas, in contrast to NFLH (Figure 6). It should be noted that 226 

unlike NFLH, the RF-predicted SIF is trained on a set of predictive variables that influence      227 

ocean processes, which can indirectly impact phytoplankton concentration and photochemical 228 

processes. 229 

 230 

Figure 5. Comparison of observed trends in annual Chl_a, NFLH, and predicted SIF from 2004–231 

2020. Analysis of the observed trends indicates that the overall trajectory of SIF follows NFLH. 232 

This similarity is especially noticeable in temperate zones, although there are some variations in 233 

specific periods. 234 

However, these disparities in trends and anomalies in SIF concerning Chl_a and NFLH 235 

observations underscore the need for cautious utilization of each of these datasets. The observed 236 

trends and annual variability may not accurately depict the intricacies of ocean photosynthesis 237 
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process. The representativeness of SIF in capturing the vertical distribution of phytoplankton 238 

remains uncertain at this stage (Köhler et al 2020a). Nevertheless, the robust correlations 239 

identified between in situ Chl_a observations and predicted SIF are highly encouraging. These 240 

findings establish a promising foundation for subsequent analyses and the practical application of 241 

the long-term SIF data generated by this research. 242 

 243 

 244 

Figure 6. Comparison of annual-mean anomalies in predicted SIF and observed MODIS NFLH 245 

over specific time periods. Anomaly in each period is calculated based on the departure from the 246 

2004-2020 means. The analysis of the anomalous data reveals slight regional variations between 247 

SIF and NFLH. 248 

4- Conclusions 249 

We presented a pioneering spatially explicit, long-term SIF dataset over an Arctic Ocean 250 

domain. Our methodology involved utilizing TROPOMI-observed SIF over the ocean, despite its 251 

inherent limitation of a short temporal coverage. To overcome this constraint, we extrapolated 252 

the data to a more extended timeframe by leveraging the relationships among explanatory 253 
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variables that govern the distribution of phytoplankton. Notably, the TROPOMI SIF data 254 

exhibited a high degree of consistency with MODIS NFLH observations. However, disparities in 255 

long-term trends and anomalies occur, which warrants focused attention in future studies. 256 

Although TROPOMI observations provide the advantage of measuring SIF through optically 257 

thin cloud and aerosol layers, the presence of optically-thick clouds introduces measurement 258 

artifacts (Köhler et al 2020a). Furthermore, our predictive modeling approach entails 259 

uncertainties due to the utilization of some predictive variables that are themselves modeled 260 

(ocean state estimates). Nevertheless, this represents the initial step in aiding our comprehension 261 

of long-term changes in Arctic Ocean ecosystems and the influence of ongoing climate change 262 

on ocean productivity and ecosystem dynamics. 263 
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