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Abstract: 32 
Climate models still need to be improved in their capability of reproducing the present climate 33 
at both global and regional scale. The assessment of their performance depends on the datasets 34 
used as comparators.  Reanalysis and gridded (homogenized or not homogenized) observational 35 
datasets have been frequently used for this purpose. However, none of these can be considered 36 
a reference dataset. Here, for the first time, using in-situ measurements from NOAA U.S. 37 
Climate Reference Network (USCRN), a network of 139 stations with high-quality instruments 38 
deployed across the continental U.S, daily temperature, and precipitation from a suite of 39 
dynamically downscaled regional climate models (RCMs; driven by ERA-Interim) involved in 40 
NA-CORDEX are assessed. The assessment is extended also to the most recent and modern 41 
widely used reanalysis (ERA5, ERA-Interim, MERRA2, NARR) and gridded observational 42 
datasets (Daymet, PRISM, Livneh, CPC). Results show that biases for the different datasets are 43 
mainly seasonal and subregional dependent. On average, reanalysis and in-situ-based datasets 44 
are generally warmer than USCRN year-round, while models are colder (warmer) in winter 45 
(summer). In-situ-based datasets provide the best performance in most of the CONUS regions 46 
compared to reanalysis and models, but still have biases in regions such as the Midwest 47 
mountains and the Northwestern Pacific. Results also highlight that reanalysis does not 48 
outperform RCMs in most of the U.S. subregions. Likewise, for both reanalysis and models, 49 
temperature and precipitation biases are also significantly depending on the orography, with 50 
larger temperature biases for coarser model resolutions and precipitation biases for reanalysis. 51 
 52 

Plain Language Summary: 53 

Climate models are developed for understanding past, present, and future climate variability 54 
and change. The assessment of their performance through their capacity to reproduce present 55 
climate conditions has been typically carried out using reanalysis and/or in-situ gridded 56 
observational datasets affected by several uncertainties as reference comparators. This paper, 57 
for the first time, evaluates the performance of NA-CORDEX regional climate models, 58 
reanalysis (ERA5, ERA-Interim, MERRA2, NARR) and gridded observational datasets 59 
(Daymet, PRISM, Livneh, CPC) in the continental U.S using temperature and precipitation 60 
observations from NOAA U.S. Climate Reference Network (USCRN). Overall, results indicate 61 
gridded observational datasets provide the best performance in most of the CONUS regions 62 
compared to reanalysis and models, but still have biases in the Midwest mountains and the 63 
Northwestern Pacific that need to be considered before their use as a reference for model 64 
evaluation. Conversely, reanalysis datasets do not outperform models in most of subregions. 65 
Likewise, for both reanalysis and models, results highlight that orography misrepresentation 66 
significantly contributes to the simulated temperature and precipitation biases. Finally, this 67 
study highlights the importance of evaluating performance of regional climate models using 68 
reference measurements. 69 

 70 
Keywords: reference measurements, temperature, precipitation, climate models performance, 71 
high-resolution, NA‐CORDEX, USCRN 72 
 73 

 74 
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1- Introduction:  75 

Near surface temperature and precipitation are the most frequently used variables in climate 76 

studies. Their trends in observations and climate models have been a subject of extensive study 77 

over the past decades due to their impact on health, food security, ecosystems, and water supply. 78 

Both are highly variable in space and time and the related time series are often prone to 79 

inhomogeneities due to changes in the instrumentation, calculation algorithms, station re-80 

locations and other factors, which must be adjusted to enable the identification of climate 81 

signals (Essa et al., 2022; Hausfather et al., 2016; Madonna et al., 2022). Moreover, 82 

observations over certain regions are sparse and implies large sampling uncertainties (Sy et al., 83 

2021). Nevertheless, near surface observations are still one of the main data sources for climate 84 

modeling evaluation. 85 

 86 

Climate models are developed for understanding past, present, and future climate variability 87 

and change. However, one the key challenge in their performance assessment is the spatial 88 

mismatch between observations and climate models (e.g., Zhang et al., 2011), the latter with 89 

resolutions ranging from ~10 to 50 km for the Regional Climate Models (RCMs) and from  ~50 90 

to 300 km for the Global Climate Models (GCMs) (Eyring et al., 2016; Taylor et al., 2012). 91 

Consequences of scale mismatch are more evident for models and reanalysis with coarse 92 

resolution. Therefore, different interpolation methods have been proposed in the literature to 93 

aggregate the near surface observations (Comber & Zeng, 2019; Herrera et al., 2019; Militino 94 

et al., 2015). Nevertheless, the use of these methods requires a dense spatial coverage of 95 

observations. An alternative solution for evaluating climate model, widely used in literature, is 96 

to use reanalysis or gridded surface observational datasets (e.g., Gibson et al., 2019; Srivastava 97 

et al., 2020, 2022). An increasing number of studies evaluated regional climate models in the 98 

presence of observational uncertainties by considering different gridded observational datasets 99 

as references to rank their reliability (e.g., Gibson et al., 2019; Herold et al., 2016; Kotlarski et 100 

al., 2019). Consequently, different conclusions are often drawn altering model performance in 101 

nontrivial ways due to the contribution of observational uncertainties (Gibson et al., 2019; 102 

Gómez-Navarro et al., 2012; Kotlarski et al., 2019; Prein & Gobiet, 2017; Srivastava et al., 103 

2022). A debate related to the uncertainties related to the usage of reanalysis and gridded surface 104 

observational datasets in the model evaluation is ongoing since several years, and it is a topic 105 

of several papers in the literature (e.g., Diaconescu et al., 2018; Dieng et al., 2022; Dosio et al., 106 

2022; Flaounas et al., 2012; Gibson et al., 2019; Srivastava et al., 2020, 2022). The uncertainties 107 
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are influenced by several factors, such as: i) the use of interpolation methods/technics on sparse 108 

station networks (e.g. Contractor et al., 2015; Herrera et al., 2019; Hofstra et al., 2010), which 109 

may largely affect the representation of precipitation data  (Avila et al., 2015; Contractor et al., 110 

2015); ii) uncertainties related to the representation of complex terrain at high elevation, for 111 

example, when observations are sparse and do not fully capture the spatial elevation-112 

precipitation dependence; and iii) the way climate variables are adjusted on the orography 113 

(Sandu et al., 2019).  114 

 115 

Under these premises, the quality of observational records is key when assessing climate 116 

models. Reference dataset and homogenization of historical time series is required because non-117 

climatic discontinuities can alter the interpretation of decadal climate variability and change. In 118 

the last two decades, many measurements program around the world, such as the GCOS (Global 119 

Climate Observing System), designed “reference networks” to monitor climate with the 120 

objective to fill an important gap in the global observing system 121 

(https://gcos.wmo.int/en/home). Reference networks can provide long-term, high-quality 122 

climate data records, traceable to SI standards, and quantified uncertainties (Thorne et al., 2017, 123 

2018).  124 

 125 

The US Climate Reference Network (USCRN) is one of the brightest examples of reference 126 

network measuring near-surface air temperature and  precipitation and measuring at the same 127 

time several quantify of influence (Diamond et al., 2013). However, to assess homogenization 128 

effects of the U.S. Historical Climatology Network (USHCN) datasets, Hausfather et al., (2016) 129 

compared the nearby pairs of USHCN and USCRN stations and found that adjustments make 130 

both trends and monthly anomalies from USHCN stations much more similar to those of 131 

neighboring USCRN stations over the period from 2004 to 2015, especially when the network 132 

stations overlap. They also concluded that USCRN datasets were useful for empirically testing 133 

of USHCN station adjustments. Bell et al., (2013) provide technical description of USCRN soil 134 

moisture observations in the context of U.S. soil-climate–measurement efforts and discuss the 135 

advantage of the triple-redundancy approach applied by USCRN. Further, to better understand 136 

the nature of soil moisture measurement variability in USCRN, Palecki & Bell, (2013) pointed 137 

out that deploying triplicate configurations of soil probes were useful to detect faulty sensors. 138 

 139 
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In this work, the ability of regional climate models (RCMs) participating to the North American 140 

Coordinated Regional climate Downscaling Experiment (NA-CORDEX, Mearns et al., 2017) 141 

to simulate the daily mean temperature and precipitation over the Contiguous United States 142 

(CONUS) is evaluated, along with performances of atmospheric reanalysis and gridded surface 143 

observational datasets. To address these issues, differently from previous studies available in 144 

the literature (e.g., Gibson et al., 2019; Srivastava et al., 2020, 2022, among others), 145 

observations from the USCRN network are used as reference for comparison. This paper 146 

focuses on the three main scientific questions: 147 

i) How well do NA-CORDEX climate models, gridded-surface observational and 148 

reanalysis datasets represent CONUS daily temperature and precipitation against local 149 

reference in-situ observations? 150 

ii) Are recent gridded-observational datasets and reanalysis products credible for climate 151 

model evaluation?  152 

iii) How the improved resolution in NA-CORDEX regional climate models bring value to 153 

in-situ reference observations?  154 

 155 

The remainder of the paper is structured as follows. Section 2 describes the USCRN data, 156 

RCMs, gridded surface observational and atmospheric reanalysis data used, while the 157 

statistical metrics and the subregional evaluations are presented in Section 3. Section 4 assesses 158 

the performance of individual and multi-model ensemble mean in simulating the CONUS local 159 

climate characteristics, along with a subregional assessment of model biases and reanalysis as 160 

well as of gridded surface observational datasets uncertainties. Finally, a discussion of the most 161 

relevant results together with the main conclusions and recommendations are provided in 162 

Section 5. 163 

 164 

2- Meteorological Data  165 
a.  U.S. Climate Reference Network (USCRN) 166 

U.S. Climate Reference Network (USCRN, (Diamond et al., 2013) is a systematic and sustained 167 

network of 139 stations deployed across the conterminous U.S. (CONUS), Alaska, and Hawaii. 168 

Stations are managed and maintained by the National Oceanic and Atmospheric 169 

Administration's (NOAA) National Centers for Environmental Information (NCEI). The 170 

primary goal of USCRN is to provide long-term homogeneous observations of temperature, 171 

precipitation, and soil moisture/soil temperature that can be used for current climate 172 
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applications while also being coupled to past long-term observations for the detection and 173 

attribution of climate change (Diamond et al., 2013). USCRN stations use high-quality 174 

instruments to measure temperature, precipitation, wind speed, soil conditions, and other 175 

ancillary variables (https://www.ncdc.noaa.gov/crn/). For both temperature and precipitation, 176 

the concept of triple measurements redundancy (i.e., three collocated thermometers) is adopted 177 

in the data processing to improve the quality of the temperature estimation. The quality of 178 

individual observations and the continuity of the records at each site is monitored on a routine 179 

basis. Specific information regarding USCRN instrumentation can be also found at 180 

www.ncdc.noaa.gov/crn/instrdoc.html. 181 

This is a major reason why USCRN is also considered at the international level a reference 182 

network as also assessed in the frame of the EU H2020 Research Project GAIA-CLIM (Gap 183 

Analysis for Integrated Atmospheric ECV CLImate Monitoring) using a maturity matrix 184 

approach (Thorne et al., 2017). Among USCRN stations, only those with at least 12 valid years 185 

(i.e., without missing data) over the CONUS in the 2006-2020 period (black circles) is used in 186 

this paper (Figure 1a). USCRN stations cover quite uniformly U.S and measure at different 187 

altitude and under different climate regimes (Figure 1a-b). They are placed in as far away from 188 

trees and other vegetation as possible, with rural environments expected to be free of human 189 

activities and land-use/land cover change effects. Observations conform to standards that meet 190 

or exceed those established by the World Meteorological Organization (WMO), as well as U.S. 191 

requirements for the variables being observed (WMO, 2008) 192 

In Figure 2, the USCRN climatological daily mean temperatures and precipitations (2006-2020) 193 

for annual, winter and summer seasons, are shown. For temperature (Figure 2, left column), 194 

annual patterns reveal strong spatial gradients over the CONUS with maximum values 195 

exceeding 25.45°C observed over the south, desert, and southwest pacific areas, while the 196 

smallest values of 2.04°C are observed over the northern parts of the Midwest and central areas. 197 

Similar spatial gradients are also observed in winter and summer, while the coldest temperature 198 

value of −13.36°C is recorded in the north part of the Midwest and Central areas, mainly during 199 

winter cold air incursions from the Arctic. By contrast, the highest temperature values 200 

exceeding 37.90°C are observed over the desert in summertime. Precipitation (Figure 2, right 201 

column) patterns are highly dependent on locations and seasons with highest values over the 202 

southeast and northwestern Pacific. The high precipitation patterns seen over southeastern 203 

CONUS mainly occurs in summer and may likely be generated by tropical systems (Mitchell 204 
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et al., 2019) or other mesoscale atmospheric circulations such as the convective activities of the 205 

North American Monsoon (Barlow et al., 2019). In contrast, the high precipitation over the 206 

northwestern CONUS (with values exceeding 20 mm/day in Quinault and 10 mm/day in 207 

Darrington stations) occurs in wintertime and can be controlled by large synoptic-scale 208 

atmospheric fronts (e.g.,  Castro et al., 2012; Yu et al., 2022). 209 

 210 

Figure 1:  U.S. Climate Reference Network (USCRN) stations distribution along with the 211 
different station locations representing stations with at least 12 valid years (i.e. without missing 212 
data) over the 2006–2020 period (black circles). A) displays the eight large CONUS climatic 213 
subregional subdomains adapted from (Bukovsky, 2011): Desert, PacificSW, PacificNW, 214 
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MidWest, Central, East, South and Great Lakes (Top panel). B) displays the CONUS 215 
topographic maps along with the different station elevation values (unit: m) indicated by the 216 
different colors.  217 
 218 

 219 
Figure 2: Climatological daily mean temperature (left panels) and precipitation (right panels) 220 
over the 2006–2020 period at USCRN stations. 221 

 222 
b. Atmospheric reanalysis datasets 223 

The list of datasets assessed in this study includes four widely used reanalysis and four gridded 224 

observational products. The atmospheric reanalysis products used in this paper include the 225 

global ERA-Interim (hereafter, ERAI) (Dee et al., 2011), ERA5 (Hersbach et al., 2020), 226 

MERRA-2 (Gelaro et al., 2017) and the North American Regional Reanalysis (NARR; 227 

Mesinger et al., 2006). ERA5 is the latest climate reanalysis produced by the European Centre 228 

for Medium-Range Weather Forecasts (ECMWF), providing hourly data on a regular latitude–229 

longitude grid at 0.25° x 0.25° resolution  (Hersbach et al., 2020). It replaces the ERA-Interim 230 

reanalysis (used to force NA-CORDEX simulations, see next section) and is based on the 231 
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Integrated Forecasting System (IFS) Cy41r2 which was operational in 2016. It thus benefits 232 

from a decade of developments in model physics, core dynamics and data assimilation 233 

compared to ERAI. In addition to a significantly enhanced horizontal resolution of 31 km, 234 

compared to 80 km for ERAI, it has hourly output throughout, and an uncertainty estimate from 235 

an ensemble. The general set-up of ERA5, as well as a basic evaluation of characteristics, are 236 

provided by  (Hersbach et al., 2020) and data is publicly available through the Copernicus 237 

Climate Data Store (CDS, https://cds.climate.copernicus.eu).  238 

 239 

Beyond the two ECMWF products, one of the most recent global atmospheric reanalysis 240 

product is MERRA-2 (Gelaro et al., 2017). MERRA-2 is the latest atmospheric global 241 

reanalysis of the modern satellite era produced by NASA’s Global Modeling and Assimilation 242 

Office (GMAO). It also assimilates observation types not available to the earlier generation 243 

MERRA-1 reanalysis (Rienecker et al., 2011) and includes updates to the Goddard Earth 244 

Observing System (GEOS) model and analysis scheme to provide a viable ongoing climate 245 

analysis beyond MERRA-1. Overall, MERRA-2 system has most of the same basic features as 246 

the MERRA-1 system but includes several important updates (Gelaro et al., 2017). The regional 247 

reanalysis product used in this study is the high-resolution North American Regional Reanalysis 248 

(NARR; Mesinger et al., 2006). NARR consists of a long-term, consistent, high-resolution 249 

climate dataset for the North American domain, as a major improvement upon the earlier global 250 

reanalysis datasets in both resolution and accuracy. It notably differs from the other reanalysis 251 

products described above because it does assimilate rain gauge networks into its latent heating 252 

scheme (Bukovsky and Karoly, 2007). The direct assimilation from observed precipitation 253 

datasets makes it more of a ‘hybrid’’ product compared to other products  (Mesinger et al., 254 

2006).  255 

 256 

c. In-situ gridded observational datasets 257 

Along with the reanalysis products used, four recent gridded-observational datasets used in this 258 

paper include the Climate Prediction Center (CPC) Unified CONUS dataset (hereafter, CPC) 259 

(Higgins et al., 2000), Livneh (Livneh et al., 2013, 2015), the Oregon State University 260 

Parameter-Elevation Regressions on Independent Slopes Model (PRISM) (Daly et al., 2008), 261 

and the Daily Surface Weather Data on a 1-km Grid for North America, Version 4 (hereafter 262 

Daymet-V4; Thornton et al., 2021). CPC (Higgins et al., 2000) is from the National Oceanic 263 

and Atmospheric Administration (NOAA). It is provided by the NOAA/OAR/ESRL PSD, 264 
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Boulder, Colorado, USA and is obtained from the website 265 

https://psl.noaa.gov/data/gridded/data.unified.daily.conus.html.  266 

CPC uses station data from the U.S. unified rain gauge dataset, composed of multiple sources 267 

(Higgins et al., 2000). Based on the inverse-distance weighting interpolation algorithms of 268 

(Cressman, 1959), CPC was developed with the aim to create regional analyses over the 269 

CONUS-Mexico and the South America domains (Higgins et al., 2000). The primary goal 270 

consists of developing a US Precipitation Quality Control (QC) system and analysis that 271 

improves the QC of rain gauge data used in precipitation analyses for the United States 272 

improving precipitation products and applications in support of climate monitoring, climate 273 

prediction, and applied research. Livneh (Livneh et al., 2013, 2015) is a station-based 274 

1⁄16°(~6 km) resolution gridded data. It was developed based on the meshing procedure of 275 

(Maurer et al., 2002). With the effort to create regional analyses over Mexico, the United States, 276 

and southern Canada, it accounts for orographic effects using the elevation-scaling procedure 277 

for precipitation climatology from 1961 to 1990.  PRISM dataset (Daly et al., 2008) primarily 278 

uses station data from Cooperative Observer Program (COOP) stations and snowpack telemetry 279 

(SNOTEL), as well as several others smaller networks. The daily product also incorporates 280 

radar observations a 4 km-resolution from the Advanced Hydro-Weather Prediction System 281 

(AHPS) over central and eastern CONUS. To correct the precipitation-elevation dependence, a 282 

linear method, using weights at each grid-point based on elevation and location characteristics, 283 

is used.  Finally, Daymet-4 (Thornton et al., 2021) daily surface weather data on a 1-km grid 284 

for North America is based on COOP and SNOTEL station networks like PRISM. The 285 

precipitation-elevation dependence is also corrected using a weighted local linear regression. 286 

The comparison between gridded-observational datasets also allows to discuss uncertainties 287 

due to the potential impact of interpolating data from sparse surface observations. Dataset’s 288 

main specification and related references for further details are summarized in Table 1.   289 
 290 
Table 1. Characteristics of gridded data sets and reanalysis products used in this study. 291 

Reanalysis/In-situ-
based 

Considered 
period 

Original 
horizontal 
resolution 

 

References Type 

 
ERA−Interim 

 
2006−2018 0.75°x 0.75° (Dee et al., 

2011) 
Reanalysis 
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ERA5 2006−2020 
0.25°x0.25° 

 
 
(Hersbach et 

al., 2020) 
Reanalysis 

MERRA−2 
 
 

2006−2020 0.5°x 0.62° 
 

 
(Gelaro et al., 

2017) 
Reanalysis 

NARR 
 

2006−2020 0.3°x0.3° (Mesinger et 
al., 2006) 

Reanalysis 

CPC 
 

2006−2020 0.5°x0.5° (Higgins et 
al., 2000) 

In-situ-based 

Daymet-V4   2006−2020 0.01°x0.01° (Thornton et 
al., 2021) 

In-situ-based 

PRISM 2006−2020 0.04°x0.04° (Daly et al., 
2008) 

In-situ-based 

Livneh 2006−2013 0.06° x 0.06 (Livneh et al., 
2013, 2015) 

In-situ-based 

 292 
 293 

d. NA-CORDEX model ensemble 294 
 295 

The study utilized the NA-CORDEX model ensemble  (Mearns et al., 2017) composed of seven 296 

Regional Climate Models (RCMs): CRCM5−OUR (Martynov et al., 2013; Šeparović et al., 297 

2013),CRCM5−UQAM (Martynov et al., 2013; Šeparović et al., 2013), RCA4 (Samuelsson et 298 

al., 2011), RegCM4 (Giorgi et al., 2012), WRF , CanRCM4 (Scinocca et al., 2016), and 299 

HIRHAM5 (Christensen et al., 2007). The NA-CORDEX datasets are obtained/retrieved from 300 

https://na−cordex.org/index.html data archive. The NA-CORDEX experiment aims to add 301 

value to the existing body of regional climate models by using multiple simulations with high 302 

spatial-resolutions to facilitate regional climate model intercomparison studies and ultimately 303 

serve the impact and adaptation communities (Giorgi et al., 2009). Note, for further details the 304 

main information about the model datasets, horizontal resolutions and related references are 305 

summarized in Table 2. As the main purpose of this study is the model evaluation, historical 306 

experiment data only, not subject to any form of bias correction (labelled as ‘‘Eval’’ driven by 307 

ERAI reanalysis), are assessed using USCRN in-situ reference measurement. The RCMs are 308 

run at either 0.44° (~50 km) or 0.22° (~25 km), with a single higher-resolution run of the 309 
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CRCM5−OUR model at 0.11° (~12.5km) to allow direct assessment of potential added-value 310 

from increased resolution (https://na−cordex.org/rcm−characteristics.html).  311 

 312 

Table 2:  NA-CORDEX climate models employed in the study, the horizontal resolutions, 313 

and references.  314 

NA-CORDEX 
Models 

Spatial 
resolutions 

 

References 

 
CRCM5−OUR 

0.44°/50km 
0.22°/25km 

(Martynov et al., 
2013; Šeparović et 

al., 2013) 
 

CRCM5−UQAM 0.44°/50km 
0.22°/25km    

0.11°/12.5km 

(Martynov et al., 
2013; Šeparović et 

al., 2013) 
 

CanRCM4 0.44°/50km 
0.22°/25km 

(Scinocca et al., 
2016) 

 
HIRHAM5 0.44°/50km (Christensen et al., 

2007) 

RCA4 0.44°/50km (Samuelsson et al., 
2011) 

 
RegCM4 0.44°/50km 

0.22°/25km 
  

(Giorgi et al., 
2012) 

WRF 0.44°/50km 
0.22°/25km 

(Skamarock and 
Klemp, 2008) 

 
 315 

 316 

3-  Methodology 317 

a. Subregional assessment 318 

The comparison between models, reanalysis and in-situ-based datasets refers to daily mean 319 

temperatures and precipitations and is carried out by selecting the nearest grid-points matching 320 

USCRN stations. In fact, for a fixed value of the horizontal resolution, the representativeness 321 

uncertainty associated with the use of the nearest grid-point is assumed to be smaller or 322 

comparable to that affecting other interpolation methods (Madonna et al., 2022). The datasets 323 
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are aggregated annually and seasonally for summer (June, July, and August; JJA) and winter 324 

(December, January, and February; DJF).  Although the NA-CORDEX simulations covers the 325 

period from 1979 to 2014/2015 (model dependent), part of this study covers the recent period 326 

2006−2014 relative to the time frame of the NA-CORDEX simulations and observation 327 

datasets. Biases for reanalysis and in-situ-based datasets are also assessed over the extended 328 

period 2006−2020. For a consistent inter-comparison, reanalysis and in-situ-based products 329 

were interpolated/remapped to a common resolution grid of 0.44° CONUS land−only grid using 330 

a first-order conservative remapping procedure (Jones, 1999).  331 

 332 

Part of the analysis presented in this study is focused on different CONUS subregions, 333 

according to the climate classification of (Bukovsky, 2011) (Figure 1a). Among the 29 334 

subregions created in the North American Regional Climate Change Assessment Program 335 

(NARCCAP) domain (Mearns et al., 2017), grouping regions (Figure 1a) have been selected 336 

using the climate classification by (Ricketts et al., 1999), dividing the CONUS into eight 337 

climatic subregions: Desert, PacificSW, PacificNW, Midwest, Central, East, South, and Great 338 

Lakes. This division also accounts for the different orography, since while the Eastern US has 339 

a relatively flat topography and low elevation, the Western CONUS, especially the Midwest, 340 

features a highly fractured relief rising gradually from sea level to 3000 m, with magnitude 341 

gradually decreasing towards the West coast (see Figure 1b). 342 

 343 

b. Evaluation metrics 344 

The performance of the RCMs, reanalysis, in-situ-based datasets was evaluated against USCRN 345 

in each selected subregion. Different metrics were chosen to evaluate different aspects of the 346 

datasets. The metrics were computed for both temperature and precipitation and for each 347 

dataset, covering all seasons and subregions. The different datasets were first evaluated in their 348 

ability to reproduce the observed temperature and precipitation climatology over the entire 349 

CONUS and for each subregion. Then, biases in the seasonal cycle of the rainfall and 350 

temperature distributions have been quantified. As a third step, the spatial-temporal variability 351 

throughout the subregions was assessed using Taylor diagrams (Taylor, 2001). Please, note that 352 

the Taylor diagram summarizes the main scores skills: correlation coefficient, standard 353 

deviation, and root mean square deviation and has been already employed in the ranking of 354 

models and reanalysis products in many studies over the CONUS regions (e.g., Gibson et al., 355 

2019; Srivastava et al., 2022). Furthermore, to estimate correlations, a modified Taylor diagram 356 



                                      manuscript submitted to Journal of Geophysical Research, Atmospheres 
 
 

 
 

14 

using robust non-parametric Kendall rank correlation test τ (Croux & Dehon, 2010) is used. 357 

Kendall rank correlation test has demonstrated to be less sensitive to errors and discrepancies 358 

in data compared to Pearson or Spearman tests (e.g., Diouf et al., 2022). Finally, the orography-359 

dependent temperature/precipitation biases are also examined. To estimate the slopes, Theil’s 360 

Sen regression method (Sen, 1968) is used.  Theil’s Sen slope estimator is a resistant and non-361 

parametric regression method based on the median of pairwise slopes and can be significantly 362 

more accurate than simple linear regression for skewed and heteroskedastic data (Sy et al., 363 

2021). 364 

 365 

4- Results 366 

4.1   Climatological biases 367 

In Figure 3, the spatial patterns of the temperature daily mean bias estimated from the ensemble 368 

-mean of models (hereinafter, NAM) at 0.44°, 0.22°, and 0.11° resolutions (for the latter one 369 

model only), reanalysis (hereinafter, Rean) and gridded datasets (hereinafter, in-situ-based) 370 

subsampled at USCRN station locations are shown. On average, Rean and in-situ-based 371 

datasets are generally warmer in both seasons with biases of 0.41°C in winter (and 0.94 °C in 372 

summer) for Rean and biases exceeding 0.31°C in summer for the in-situ-based datasets. In 373 

contrast, NAMs are generally colder (warmer) in wintertime (summertime) with biases ranging 374 

from -0.51 (0.94) °C at NAM-44 to -0.27 (1.44) °C at NAM-11 (Figure 3). Overall, the spatial 375 

variability is well reproduced in both seasons with correlation values up to 0.90 for Rean, 0.92 376 

for in-situ-based datasets and often exceeding 0.88 for NAMs. Regarding the skills (RMSE 377 

values), in-situ-based datasets provides the best performance compared to Rean and NAMs, as 378 

summarized in Table 3. Further, across the subregions, all datasets display cold (warm) biases 379 

in the western part (eastern part) in summer and wintertime with values ranging ±8.00 °C in 380 

some stations over the Midwest mountains, PacificNW and PacificSW, while warm biases up 381 

to 8.00 °C are found in summer for stations in central U.S. Conversely, over the east and south, 382 

a closer agreement with USCRN is found in wintertime. Regarding the sensitivity to the 383 

increased resolution, overall, the effects are quite small and do not show a clear improvement 384 

of biases.   385 

 386 

In Figure 4, biases for precipitation are shown. On average, Rean are drier over the entire 387 

CONUS, with mean bias exceeding -0.69 mm/day in winter (and -0.37 mm/day in summer). 388 

Across subregions, the larger biases are simulated in winter with values exceeding -4.0 mm/day 389 
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at the PacificNW and PacificSW regions (especially in Quinault and Darrington stations). For 390 

the in-situ-based datasets, biases are generally negligible over the entire CONUS in both 391 

seasons, although biases exceeding 2.0 mm/day can be observed in the Darrington and Bodega 392 

stations over the PacificNW and PacificSW regions.  For NAMs, biases are in general larger in 393 

both seasons with a mean bias estimated around 0.01mm/day (0.23mm/day) for NAM-44, 394 

0.20mm/day (0.47 mm/day) for NAM-22 and 0.6mm/day (0.34 mm/day) for NAM-11 in winter 395 

(summer). Considering both seasons, Rean and in-situ-based datasets show quite similar 396 

rainfall biases over the entire CONUS, while for NAMs (except for NAM-11) opposite biases 397 

are simulated over the southeast part during both seasons, i.e., dry in winter and wet in summer. 398 

In other words, NAMs generally overestimate the heaviest precipitation patterns over the 399 

southeastern occurring mainly in summer while underestimating them in winter. This poor 400 

performance can be related to the misrepresentation of the tropical cyclones and/or of the 401 

mesoscale circulation near the surface such as the local convective activities of the monsoon  402 

(Hsu et al., 2019). Considering correlations, values up to r= 0.83 for Rean, r= 0.86 for in-situ-403 

based datasets and r= 0.83 for NAMs are obtained. Regarding the skills, overall, the in-situ-404 

based datasets display the best performance in both seasons (Table 3). 405 
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 406 

Figure 3: Spatial distribution of the daily mean temperature bias (°C), using USCRN as the 407 
reference, estimated for ensemble means of reanalyses products (Rean), models at 0.44°, 0.22°, 408 
and 0.11° resolutions (NAM-44, NAM-22, and NAM-11 respectively) and gridded 409 
observational datasets (In-situ-based) for both winter (DJF, left panel) and summer (JJA, right 410 
panel). The skills scores (the spatial mean bias, Kendall rank-correlations and RMSE values) 411 
are provided at top left of each panel. 412 
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 413 
Figure 4: Same as in Figure 3 but for the spatial patterns of the daily mean precipitation biases 414 
(mm/day)  415 
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Table 3: An overview of the daily temperature and precipitation spatial mean bias, the Kendall 418 
rank-correlation and the root mean square errors provided in Figures 3 and 4. 419 

 Temperature (°C) Precipitation (mm/day) 
DJF 

 Bias  RMSE Corr Bias RMSE Corr 
Rean 0.41 1.46 0.90 −0.69 1.33 0.83 

In-situ-based 0.00 1.17 0.92 0.08 0.46 0.86 
NAM-44 −0.51 1.72 0.88 0.00 0.81 0.75 
NAM-22 −0.83 1.68 0.89 0.20 0.62 0.80 
NAM-11 −0.27 1.54 0.89 0.60 0.84 0.83 

JJA 
Rean 0.94 1.86 0.84 −0.37 0.61 0.80 

In-situ-based 0.31 1.46 0.85 0.09 0.32 0.88 
NAM-44 0.94 2.16 0.77 0.23 0.76 0.73 
NAM-22 0.97 1.84 0.82 0.47 0.94 0.75 
NAM-11 1.44 2.21 0.77 0.34 1.02 0.76 

 420 
 421 

 422 
Figure 5:  Daily mean temperature bias (°C) estimated from the reanalysis (Rean), models at 423 
0.44°, 0.22°, and 0.11° resolutions (NAM-44, NAM-22 and NAM-11 respectively), and 424 
gridded observational datasets (in-situ-based), in each study subregion against USCRN for the 425 
period 2006-2014 and for both winter (DJF, top panel) and summer (JJA, bottom panel). The 426 
median value is indicated with a black line while the lower hinge of each box is Q1 quartile 427 
(25th), and the upper hinge for Q3 quartile (75th). The subregional daily mean distribution of 428 
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each dataset is obtained by spatially averaging all values within the subregion highlighted in 429 
Figure 1. The evaluation results for the individual RCMs at all resolutions, reanalysis and 430 
gridded-observational datasets are shown in Figure S1.  431 

 432 

A comparison of seasonal biases for the daily mean temperature within each subregion is shown 433 

in Figure 5.  NAMs at all resolutions show significant cold biases of -3.0 °C in winter over the 434 

deserts, Midwest mountains and the PacificNW regions and may be attributed to the 435 

misrepresentation of surface albedo in wintertime (Bonan, 1998; Li et al., 2016). Instead, Rean 436 

and in-situ-based datasets show large cold biases (-2.5°C for Rean and -3.0°C for in-situ-based 437 

datasets) over the Pacific Northwest. Nevertheless, over the Midwest mountains, where the 438 

topography is relatively complex, the Rean and in-situ-based datasets show a better agreement 439 

with USCRN compared to NAMs. In summer, warm biases are generally simulated by all 440 

datasets in most of the CONUS subregions, except in the Pacific Northwest and in the Desert, 441 

where the large cold biases of -3.0 °C are still persistent for all datasets.  442 

 443 

 444 

Figure 6:  Same as for Figure 5 but for the daily mean precipitation bias (mm/day). The 445 
evaluation results for the individual RCMs, reanalysis and gridded-observational datasets are 446 
shown in Figure S2. 447 
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In analogy to temperature, the comparison of seasonal daily mean biases for precipitation is 450 

shown in Figure 6. Rean bias in winter is limited to -1.0 mm/day expect over the PacificNW, 451 

where the bias is larger. Instead, in-situ-based datasets and NAMs show positive biases, while 452 

NAMs remain particularly dry over the Greatlakes, southern, eastern parts in summer. 453 

Regarding the resolutions, for both temperature and precipitation, no substantial improvement 454 

in the simulated biases is obtained if the model resolutions increase.  455 

 456 
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 457 
Figure 7: Seasonal monthly mean rainfall distribution (mm/day) over the different subregions 458 
obtained from the ensemble-mean of reanalysis (Rean, black dashed line), models at 0.44° 459 
(NAM-44, dark red dashed line), at 0.22° (NAM-22, dark-green dashed line) and at 0.11° 460 
(NAM-11, solid orange line) resolutions and the in-situ-based datasets (dark-blue dashed line). 461 
The values are obtained by spatially averaging all values within each subregion over the period 462 
2006-2014. Red (light green) shaded area shows the range within ±1 sigma of NAM-44 (NAM-463 
22) grid spacing models, while gray (light-blue) shaded area shows the reanalysis (in-situ-based 464 
datasets) ensemble uncertainty (Hersbach et al., 2020). Results for the individual RCMs (NAM-465 
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44, NAM-22 and NAM-11), reanalysis and gridded-observational datasets are shown in Figure 466 
S3. 467 

 468 

Figure 7 explores the annual cycle of precipitation over all subregions in USCRN stations and 469 

other datasets during the period 2006-2014. The annual cycle is computed from monthly 470 

average of station-based daily precipitation over each subregion. The annual cycle of observed 471 

precipitation (solid black curve) reflects the wet summer season observed over most subregions 472 

(East, Central, GreatLakes, and South). On the other hand, the wet winter season over the 473 

PacificNW and PacificSW regions, driven by fronts coming from the northwest, is also well 474 

characterized by USCRN. As is clear from Figure 7, the in-situ-based datasets capture well both 475 

the phase and amplitude of the observed annual cycle compared to Rean and NAMs. This is 476 

also clear from the RSME values estimated over the different subregions, except over the 477 

Pacific NW and the Midwest mountains where in-situ-based datasets are generally drier 478 

throughout the entire year (Figure 7e and 7g). This effect is likely due to the orographic bias. 479 

Rean (black dashed line) can capture the different phase of the annual cycle but underestimate 480 

the magnitude in most subregions with a large ensemble uncertainty, especially in wintertime. 481 

By contrast, as already observed, NAMs (e.g., NAM-22 and NAM-44) are generally wetter 482 

than USCRN, although they can properly reproduce the seasonal cycle. NAM-11 (solid yellow 483 

line) is not able to properly reproduce the phase and amplitude of the observed annual cycle 484 

(with large RSME values) in most subregions and this may be due to usage of one model only 485 

(NAM-11).  Regarding temperature, both the phase and amplitude of the observed annual cycle 486 

are well captured by the datasets (Figure S4 and S5).  487 

 488 

In summary, the observed annual cycle for in-situ-based datasets is close to USCRN than both 489 

the Rean and NAMs, while Rean datasets do not perform better than NAMs in most of 490 

subregions. In fact, the large variability in the simulated annual are particularly evident in the 491 

MidWest mountain region (Figure 7e) and can be due to the difference in topographic elevation 492 

in Rean, NAMs and USCRN stations (see section 4.3 above), the latter typically located in the 493 

valleys. Consequently, Rean and NAMs can differ from USCRN where stations are closer to 494 

orographic barriers, e.g., on the side of the arrival of the air masses (upwind, more rain) or 495 

behind reliefs (rain shadowed, less rain). 496 

 497 



                                      manuscript submitted to Journal of Geophysical Research, Atmospheres 
 
 

 
 

23 

 498 

Figure 8: DJF (top panels) and JJA (bottom panels) Taylor diagram for temperature (left panels, 499 
over the Desert) and precipitation (right panels, over the PacificSW) of the models, reanalysis, 500 
and in-situ-based datasets versus USCRN. The reference point (USCRN) is marked as a solid 501 
black circle. Symbols indicate the position of each dataset: red circles for models, red dots and 502 
squares for reanalysis and in-situ-based datasets over 2006-2014 (Rean1/Insitu1). Green dots 503 
and squares symbols are also for reanalysis and in-situ-based datasets (Rean2/Insitu2), 504 
respectively, but for the extended period 2006-2020. The dashed black lines on the outermost 505 
semicircle indicate Kendall rank correlations between USCRN and each dataset. The blue 506 
dashed curves indicate the normalized standard deviations. The grey dashed curves show the 507 
centered normalized root mean squared error (NRMSE). 508 

 509 

To rank the reliability of Rean, in-situ-based datasets, and NAMs in reproducing patterns of 510 

temperature and precipitation against USCRN, Taylor diagrams are also used. Figure 8 shows 511 
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evaluation results for one subregion per variable (for temperature, Desert, left panels and for 512 

precipitation, PacificSW, right panels). Results for other subregions are shown in Figure S6 and 513 

Figure S7. Regarding temperature across the various subregions, Rean and the in-situ-based 514 

datasets provide quite similar skills, with the best skill scores obtained in the Central U.S (with 515 

correlation values up to r=0.9), while the worst skill scores are obtained in the coastal regions 516 

(i.e., PacificNW and PacificSW regions). NAMs have the best performance in the PacificSW 517 

in wintertime with correlation values up to 0.7, while the poorest performance (with a 518 

correlation of r= 0.50 for NAM-44 and NAM-22 and r=0.30 for NAM-11) over the Desert 519 

(Figure 8, left panels). Nevertheless, the performance is relatively better in wintertime 520 

compared to summertime (Figure S6 vs. S7). Regarding precipitations across the various 521 

subregions, the score skills are low in all datasets (Figure 8 right panels for the PacificSW 522 

region, and Figure S8 and Figure S9 for the other subregions). The worst skill scores (with 523 

correlation values of r = 0.20 associated with large variability) are given over the PacificSW in 524 

summertime, with a slight improvement especially for the in-situ-based datasets in wintertime. 525 

On the other hand, even though the datasets better agree with USCRN values of daily mean 526 

precipitation (Figure 6), biases remain persistent in reproducing the local climate variability. 527 

Regarding the sensitivity of the simulated skill scores for both Rean and In-situ-based datasets 528 

in the extended period, no relevant skill difference is found for both temperature and 529 

precipitation (Figure 8).  530 

 531 

4.2   Relationship to orography  532 

Figure 9 shows the spatial patterns of the elevation mean bias estimated from Rean and NAMs. 533 

It can be pointed out that models and reanalysis still suffer from uncertainties in the 534 

representation of a complex orography. From USCRN stations, both Rean and NAMs show 535 

quite similar orography biases over the entire CONUS with values varying ±600 m at stations 536 

in the western part of US, especially in the MidWest, where topography is relatively complex. 537 

Moreover, comparing the simulated biases between Rean and NAMs, it can be also noticed that 538 

Rean performs no better than NAMs in the representation of orography. For models, the biases 539 

remain even for high-resolution models (NAM-44 vs. NAM-22/NAM-11), suggesting that the 540 

resolutions are still too coarse to capture important fine-scale features of the complex 541 

orography.  For all datasets, the largest biases (with values exceeding 1000 m) are found at the 542 

Darrington station. As consequence, temperatures in both reanalysis and models are usually 543 

colder than temperatures recorded at USCRN stations (see Figure 3) likely because of the 544 
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difference between simulated mean grid-point and station elevations, with the latter lower than 545 

the former. 546 

 547 

Temperature and precipitation biases for reanalysis and models are significantly linked to 548 

orography biases (Figure 10a-d). A sensitivity of temperature biases to orography higher is 549 

found at coarser resolutions (50km, -7.9 °C/km, r=-0.67, p<0.05; Figure 10b) than finer 550 

resolutions (12.5km, -5.1°C/km, r=-0.61, p<0.05; Figure 10d). Across reanalysis and models at 551 

all resolutions, the sensitivity of precipitation biases to orography is between 0.2 and 1 552 

mm/day/km (Figure 10a-d), though reanalysis is more affected by precipitation biases than 553 

models (slopes with red dots: 1 mm/day/km for reanalysis vs. 0.2-0.4 mm/day/km for models; 554 

Figure 10a vs. 10b-d). The elevation-dependent biases follow approximately the value of the 555 

adiabatic lapse rate of -6.5°C/km, which is consistent with hydrostatic equilibrium and 556 

thermodynamic principles (Dutra et al., 2020).  557 

 558 

Precipitation-dependent temperature biases are also investigated in Figure S10. The negative 559 

relationship between temperature and precipitation biases is critical for understanding the 560 

impacts of changing climate on snowpack, drought, and heat stress. In summer, drier models 561 

are in general hotter (Figure 5) which can cause more heat waves due to less moisture available 562 

(summer dry soils heat up faster than wet soils; (Miralles et al., 2019)), affecting the land 563 

surface energy balance, with implications for local and downwind precipitation (Schumacher 564 

et al., 2022). By contrast, in winter, wet models are usually too cold because of the snow's 565 

presence (Li et al., 2016). On the other hand, in winter, models have typical problems in 566 

reproducing snow-related processes in regions of complex orography (Bordoy & Burlando, 567 

2013), mainly because of the poor representation of the orography which can further increase 568 

the cold waves and their duration (Dutra et al., 2012). 569 

 570 
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 571 
Figure 9: Spatial patterns of the elevation mean biases (m. above sea level) estimated from 572 
ensemble mean of reanalyses (Rean) and models at 0.44°, 0.22°, and 0.11° resolutions (NAM-573 
44, NAM-22, and NAM-11) in comparison to USCRN values. The skills scores (the spatial 574 
mean bias and RMSE values) are provided at top left of each panel. 575 
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 576 
Figure 10: Contributions of orography to the simulated temperature (°C, in blue) and 577 
precipitation (mm/day, in red) mean biases. The relations between orography biases (x-axis) 578 
versus temperature and precipitation biases (y-axis) are drawn for Midwest region. Note that 579 
the Midwest region is considered due to its complex topography. Correlations are calculated 580 
using the Kendall non-linear rank (τ) test between the simulated elevation bias and 581 
temperature/precipitation mean biases for all Rean (a), NAM-44 (b), NAM-22 (c), and NAM-582 
11 (d). Two-star symbols (**) are added when the correlation is significant at 99% confidence 583 
intervals (i.e., p < 0.01; 99% C.I), while one-star symbol (*) is added when the correlation is 584 
significant at 95% (i.e., p < 0.05; 99% C.I). The slopes indicated at the top right of each panel 585 
are estimated using median of pairwise non-parametric linear regression method (Sy et al., 586 
2021).  587 
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5- Discussion and Conclusion 590 

This paper, for the first time, assess the performance of NA-CORDEX regional climate models, 591 

reanalysis (ERA5, ERA-Interim, MERRA2, NARR) and gridded observational datasets 592 

(Daymet, PRISM, Livneh, CPC) in the CONUS using reference temperature and precipitation 593 

observations from USCRN. Assessment  of climate model’s performance through their capacity 594 

to reproduce present climate conditions has been typically carried out using reanalysis and/or 595 

gridded surface observational datasets as comparators (Gibson et al., 2019; Gómez-Navarro et 596 

al., 2012; Kotlarski et al., 2019; Srivastava et al., 2020, 2022). However, these datasets are 597 

affected by several uncertainties, mainly due to: i) interpolation methods implemented in 598 

gridded products based on sparse station networks; ii) the choice of interpolation scheme, and 599 

its application; ii) the representation of complex terrain at high elevation, as well as the 600 

elevation-precipitation/temperature spatial dependence at different altitude ranges; and iii) the 601 

approaches used to correct climate variables due to orographic misrepresentation (Napoli et al., 602 

2019; Velasquez et al., 2019). Furthermore, it is worth pointing out that several existing papers 603 

(e.g., Gibson et al., 2019; Srivastava et al., 2020, 2022) used daily precipitation and/or 604 

temperature-based indices to rank model skills. However, the indices-based analyses do not 605 

fully capture the model performance (Alexander et al., 2020) and can hence compromise their 606 

assessment.  607 

Being a reference comparator (Thorne et al, 2017), the use of USCRN measurements for the 608 

assessment of the datasets listed above allows to conclude that: 609 

- The simulated mean biases among the datasets are primarily seasonal and subregional 610 

dependent.  611 

- For temperature, reanalysis and in-situ-based datasets are generally warmer in both 612 

seasons, while models are generally colder in wintertime and warmer in summertime.  613 

- Across the subregions, spatial patterns of the temperature mean biases are quite similar 614 

between datasets with cold (warm) biases in the western (eastern) U.S. with large values 615 

exceeding ±8.00°C in stations over Midwest mountains, Northwestern and 616 

Southwestern Pacific likely due to complex orography.  617 

- Overall, results for precipitation show that in-situ-based datasets can capture the daily 618 

mean patterns and have the best skills in reproducing the phase and amplitude of the 619 

observed rainfall annual cycle compared to reanalysis and models.  620 
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- The worst skills for precipitation for all datasets are particularly obtained in the 621 

PacificNW, where the largest rainfall is typically recorded at stations and on Midwest 622 

mountains likely due to orographic enhancement  (Napoli et al., 2019; Velasquez et al., 623 

2019; Xie et al., 2007). 624 

- Reanalysis are generally drier in both seasons and show large biases exceeding -625 

4.00mm/day in the Northwestern Pacific. However, they are typically able to capture 626 

the phase of the precipitation patterns annual cycle although they underestimate the 627 

magnitude in most of the subregions with large uncertainty bounds (Figure 7-e and 7-628 

g). Such findings are consistent with previous studies available in the literature (e.g., 629 

Alexander et al., 2020; Bador et al., 2020; Gibson et al., 2019; Srivastava et al., 2022).   630 

- Models are generally wetter than USCRN over the CONUS but show opposite winter-631 

summer patterns in the southeast U.S. – i.e., dry in winter and wet in summer. They 632 

typically capture the different phases of the seasonal cycle but overestimate the 633 

amplitudes in most regions.  634 

- The poorest model performance is found over the desert, Midwest mountains and the 635 

Northwestern Pacific regions, with more pronounced biases in wintertime likely 636 

because of the surface albedo and the complex orography (Li et al., 2016).   637 

The present study also reveals that models and reanalysis still suffer from uncertainties due to 638 

the inaccurate altitude representation in the most complex orographic areas (Figure 9) such as 639 

Midwest and Northwestern Pacific in the U.S. These uncertainties are mainly due to: i) the 640 

model grid-scale and the sub-grid scale orography representation; ii) the parameterization 641 

scheme and representation of surface processes  (Diallo et al., 2019; Sy et al., 2017) iii) the 642 

orographic source datasets as well as the methodologies applied for deriving orography fields 643 

(Elvidge et al., 2019).  644 

Our results also show that temperature and precipitation biases are significantly linked to 645 

orography biases, both in reanalysis and models, and temperature biases are higher at coarser 646 

resolutions (50 km, -7.9 °C/km, r=-0.67, p<0.05; Figure 10b) than at finer resolutions (12.5 km, 647 

-5.1°C/km, r=-0.61, p<0.05; Figure 10d). For precipitations, reanalysis are more affected than 648 

models. The positive elevation-dependent precipitation biases found for all the investigated 649 

datasets over the CONUS are a novel finding. In fact, very few publications in literature 650 

discusses the change of elevational precipitation gradients using near surface observations  651 

(Kuhn and Olefs, 2020). These biases show a more variable sensitivity than the corresponding 652 
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for temperature because it depends on latitude, seasons, the shape of the mountain and the 653 

relative station position respect to the arrival direction of the air masses (upwind, more rain) 654 

and the orography (rain shadowed, less rain). It also depends on several other mechanisms such 655 

as snow presence, vegetation cover, clouds, water vapor, aerosols, and soil moisture which vary 656 

with orographic characteristics (e.g.,  Pepin et al., 2015; Pepin et al., 2022; Rangwala and 657 

Miller, 2012). 658 

 659 

Summarizing, this study highlights the importance of evaluating performance of regional 660 

climate models for historical data using reference measurements. Overall, our results indicate 661 

that in-situ-based datasets provide the best performance in most of the CONUS regions 662 

compared to reanalysis and models, but still have biases in Midwest mountains and the 663 

Northwestern Pacific that need to be considered before their use as a reference for model 664 

evaluation. Conversely, reanalysis datasets do not outperform models in most of subregions. 665 

Hence, we recommend caution when using them depending on their intended application, 666 

especially when assessing model performance in mountainous and coastal regions.  667 

Finally, our study suggests that the mountainous regions will remain sensitive to the projected 668 

warming during the 21st century. To improve our understanding of how different climate 669 

drivers influence changes in high mountain regions, it requires a densification of climate 670 

reference network in the regions with most complex orography and the measurement of broader 671 

set of climate parameters related to energy fluxes. This will enhance the assessment of regional 672 

climate models and, consequently, climate mitigation and adaptation strategies. 673 
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