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Abstract13

A current along a sloping bottom gives rise to upwelling, or downwelling Ekman transport within14

the stratified bottom boundary layer (BBL), also known as the bottom Ekman layer. In 1D mod-15

els of slope currents, geostrophic vertical shear resulting from horizontal buoyancy gradients within16

the BBL is predicted to eventually bring the bottom stress to zero, leading to a shutdown, or ‘ar-17

rest ’, of the BBL. Using 3D ROMS simulations, we explore how the dynamics of buoyancy ad-18

justment in a current-ridge encounter problem differs from 1D and 2D temporal spin up prob-19

lems. We show that in a downwelling BBL, the destruction of the ageostrophic BBL shear, and20

hence the bottom stress, is accomplished primarily by nonlinear straining effects during the ini-21

tial topographic encounter. As the current advects along the ridge slopes, the BBL deepens and22

evolves toward thermal wind balance. The onset of negative potential vorticity (NPV) modes of23

instability and their subsequent dissipation partially offsets the reduction of the BBL dissipation24

during the ridge-current interaction. On the upwelling side, although the bottom stress weakens25

substantially during the encounter, the BBL experiences a horizontal inflectional point instabil-26

ity and separates from the slopes before sustained along-slope stress reduction can occur. In all27

our solutions, both the upwelling and downwelling BBLs are in a partially arrested state when28

the current separates from the ridge slope, characterized by a reduced, but non-zero bottom stress29

on the slopes.30

Plain Language Summary31

Surface winds pump mechanical energy into the large-scale circulation of the ocean at an32

average rate of between 0.8 TW and 1 TW. This wind-input occurs at large, so-called synoptic33

scales spanning thousands of kilometers. Absent dissipative pathways, this steady energy input34

would cause uncontrolled spinup of the ocean gyres. For decades it has been assumed that fric-35

tion at the seabed has an important role in the eventual turbulent dissipation of the ocean kinetic36

energy. In the 1990s, theoretical models suggested that turbulence could be wholly suppressed37

on sloping bottom bathymetry due to the rearrangement of density surfaces within the bottom38

boundary layer — a mechanism called buoyancy adjustment. Here we revisit this problem us-39

ing modern 3D simulations of currents encountering a ridge. We find that although the bottom40

stress can be markedly reduced on topographic slopes, the mechanism through which it occurs41

is quite different than that in simplified 1D and 2D models. Flow ‘deformation ’, or straining ef-42

fects during the topographic encounter play a more important role in weakening the bottom stress43

than buoyancy adjustment. Furthermore, geometric effects like curvature, and flow instabilities44
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can partially offset the reduction in dissipation caused by suppression of bottom boundary layer45

turbulence.46

1 Introduction47

When a bottom boundary layer (BBL) develops over sloping bathymetry, buoyancy advec-48

tion in the cross-slope direction produces horizontal buoyancy gradients within the BBL, and hence49

a geostrophic vertical shear through the thermal wind balance. This process, known as buoyancy50

adjustment (or Ekman adjustment), acts to oppose the ageostrophic boundary layer shear, thereby51

weakening the bottom stress on the slopes. In simplified models of slope currents (MacCready52

& Rhines, 1991; Garrett et al., 1993), a steady state is eventually reached in which the bottom53

stress collapses, bringing the cross slope Ekman transport to zero — a state referred to in the lit-54

erature as ‘Ekman arrest’. These predictions have been validated in 1D numerical models (Brink55

& Lentz, 2010a), but questions remain about their relevance to the real ocean.56

Ekman pumping/suction resulting from the horizontal divergence of the Ekman transport57

is thought to be the primary mechanism behind the spin-down of interior flows in the ocean (Garrett58

et al., 1993). The drag exerted at the seafloor is also estimated to be an important source of en-59

ergy dissipation (Wunsch & Ferrari, 2004; Sen et al., 2008). Reduced bottom stress and weak-60

ening turbulence in sloping BBLs could therefore have profound implications for our understand-61

ing of the global oceanic circulation and energy budget (Ruan, Wenegrat, & Gula, 2021). Umlauf62

et al. (2015) developed a theoretical framework to understand the energetic pathways during the63

process of Ekman arrest in a 1D BBL, which they then validated using simulations with a sec-64

ond order turbulence closure model. An interesting finding was that buoyancy adjustment in a65

BBL is very effective at converting the kinetic energy of the along-slope flow to available poten-66

tial energy. In particular, for a downwelling (upwelling) BBL, the amount of energy stored as avail-67

able potential energy after Ekman arrest (defined by the authors as bottom stress reducing be-68

low a threshold value) is as large as 40% (70%) of the energy lost to dissipation during the ac-69

tive adjustment process. Crucially, this means that during relaxation from an arrested state, this70

available potential energy stored in the BBL can be converted to turbulent kinetic energy and even-71

tually dissipated. The implication is that the observation of a partially arrested BBL in some re-72

gion along the seafloor does not preclude the same region from being a hotspot of dissipation in73

a different time window.74
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(b)

(a)

Figure 1. (Adapted from Figs. 1, 4 of Jagannathan et al., 2021, © American Meterological Society. Used

with permission.) Encounter of a barotropic inflow with an elongated racetrack shaped ridge. Green lines

are bathymetric contours at z = 0.14hm, z = 0.37hm and z = 0.9hm. The inflow is from south to north. (a)

Normalized, time-averaged boundary stress |τbτbτb|/(C
∗
dρ0V 2

0 ), with a value C∗d = 0.0022 (Sen et al., 2008; Arbic

et al., 2009), along with selected barotropic streamlines (in black). Dark colors indicate stress reduction. Note

that the colormap is saturated at 10−1. (b) Instantaneous snapshots of normalized depth integrated vorticity

ω (Eq. (5)). Small scale NPV instabilities are visible as banded patterns of vorticity on the anticyclonic side.

Values of the parameter ĥ are indicated inside each panel. Observe that the instability is trigerred further and

further upstream for increasing ĥ (Note: The vortices appear distorted as the figure is not to scale)
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Some of the best available observational evidence for reduced bottom stress, or ‘partial ar-75

rest ’ over topography is described in Lentz and Trowbridge (2001). These authors analyzed moored76

current observations in the Northern California mid-shelf during the fall/winter period in 5 dif-77

ferent years between 1981 and 1991. Among their findings is that isopycnals slope downward78

near the bottom and that the flow is close to a state of thermal wind balance throughout the wa-79

ter column. The near-bottom along-shelf currents, and hence bottom stress are thus found to be80

substantially weakened.81

Complete Ekman arrest nevertheless remains elusive in oceanic observations of the BBL82

(Armi & Millard Jr, 1976; Armi, 1978; Armi & D’Asaro, 1980). Some recent studies provide83

clues on why this may be the case. Using LES simulations with doubly periodic boundary con-84

ditions in the cross- and along-slope directions, Ruan et al. (2019) showed that the BBL always85

relaminarizes before Ekman arrest can be achieved. The relaminarization, or turbulence collapse,86

in their solutions is clearly evident in Hovmöller diagrams that show negligible TKE within the87

BBL at later times (Fig. 12 in Ruan et al. (2019) and Fig. 6 in Ruan, Thompson, and Taylor (2021)).88

Once the BBL relaminarizes, subsequent evolution toward an arrested state can only proceed via89

non-turbulent molecular mixing, which is a relatively slow process. Wenegrat and Thomas (2020)90

further demonstrate how the arrest process can be delayed due to the onset of negative potential91

vorticity (NPV) instabilities.92

To date, most numerical studies on Ekman arrest have focussed on the temporal adjustment93

problem in 1D (e.g. Brink & Lentz, 2010a, 2010b) and more recently, periodic 2D domains (e.g.94

Ruan et al., 2019; Wenegrat & Thomas, 2020). However, in the real ocean, buoyancy adjustment,95

be it on continental shelf slopes or isolated islands, follows a spatio-temporal evolution in the along-96

slope direction. Moreover it does not happen in isolation and is often intertwined with other pro-97

cesses like topographic vorticity generation, waves, and instabilities. Vorticity generation dur-98

ing flow past topography can occur purely through vortex tilting and stretching effects in the ab-99

sence of either bottom drag or background rotation (Smolarkiewicz & Rotunno, 1989; Jagannathan100

et al., 2019). However Jagannathan et al. (2021) noted that drag-mediated vorticity generation101

is substantially more robust, generating larger and more energetic vortices. A flurry of recent com-102

putational studies have uncovered a rich panoply of vortical structures and associated energy ex-103

changes that emerge in three dimensional, rotating, stratified topographic wakes, both with (Puthan104

et al., 2022b, 2022a), and without (Perfect et al., 2018, 2020a, 2020b; Srinivasan et al., 2019, 2021),105

tidal forcing. A notable finding in Perfect et al. (2018) is that in the limit of weak rotation, the106

vortex shedding frequency on the seamount slopes varies with depth, which leads to the emer-107
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gence of vertically decoupled vortical wakes —- a phenomenon also noticed by Srinivasan et al.108

(2021) in their simulations of equatorial wakes. Recent observational studies on topographically109

generated wakes in the Palau island chain (MacKinnon et al., 2019; St. Laurent et al., 2019; Zei-110

den et al., 2022) also reinforce the emerging understanding that eddying wakes are an important111

conduit in the oceanic turbulence cascade from the mesoscale to the dissipative microscales.112

In the present work we analyze a set of idealized numerical simulations to examine how113

buoyancy adjustment evolves in a 3D slope-current encounter. This is a follow-up study to an ear-114

lier paper (Jagannathan et al., 2021) in which the primary focus was on elucidating the mecha-115

nism of vertical vorticity generation during the interaction of a boundary current with a topographic116

ridge. A key finding there was that much of the irreversible vertical vorticity is generated dur-117

ing the early encounter of the flow with the ridge, through the so-called bottom stress divergence118

torque (BSDT). The simulations analyzed here are those described in Jagannathan et al. (2021)119

along with an additional set of simulations in which we vary the ridge curvature in the along-slope120

direction.121

In the following sections we describe the numerical model setup, analyze the buoyancy ad-122

justment and BBL evolution in our solutions, along with its energetics, and discuss these results123

in the context of 1D and 2D theories of Ekman arrest on a slope.124

2 Numerical setup125

2.1 Basic model configuration126

The simulations are performed using the Regional Ocean Modelling System (ROMS) (Shchepetkin127

& McWilliams, 2003), a terrain following model that solves the Boussinesq primitive equations128

under the hydrostatic approximation. The flow configuration is identical to that described in Jagannathan129

et al. (2021). For the sake of brevity, we confine our description here to the most essential aspects130

of the setup and refer the reader to Jagannathan et al. (2021) for further details.131

A uniform barotropic inflow in the y direction, with speed132

V0(x,y = 0,z) = 0.105ms−1 (1)

and approximately uniform stratification N is incident on a ridge of height hm and half-width a.133

The ridge is elongated in the y direction, with bathymetry contours resembling a racetrack (Fig.134

–6–



manuscript submitted to JGR: Oceans

1). The ridge height from the bottom is given by,135

h = hme−x2/a2




1+ tanh

(
y−y1

σy

)

2








1+ tanh

(
y2−y

σy

)

2



 . (2)

In all our simulations the ridge height hm = 400 m and its half-width a = 3.5 km. The length136

of the ridge is fixed at y2−y1 = 144 km and the extent of the initial adjustment region over which137

the ridge elevation increases to hm is given by σy = 12 km. The critical dimensionless param-138

eter (Srinivasan et al., 2019; Jagannathan et al., 2021) is the non-dimensional height139

ĥ =
Nhm

f a
, (3)

where f is the Coriolis frequency. In the Ekman arrest literature where the slope tanθ is typi-140

cally chosen to be constant, the slope Burger number is defined as141

Bu = N tanθ/ f ≈ Nθ/ f , (4)

for θ ≪ 1 (Brink & Lentz, 2010a; Wenegrat & Thomas, 2020). The parameter ĥ in our simu-142

lations may thus be regarded as analogous to a slope Burger number, with θ = hm/a being an143

average measure of the varying topographic slope.144

Fig. 1 depicts the basic flow and ridge configuration along with maps of the time-averaged,145

normalized bottom stress τττb (Fig. 1a) and instantaneous snapshots of the depth integrated rel-146

ative vertical vorticity (Fig. 1b), defined as147

ω =

∫ −H+D

−H
ζ dz, (5)

for three different values of ĥ. In Eq. (5), ζ = (∂v/∂x−∂u/∂y) is the relative vertical vortic-148

ity while D is the local water column height. In all the simulations, the water depth H = 1000149

m. The elongated ridge is well-suited to explore buoyancy adjustment amidst the full complex-150

ity of 3D motions including ageostrophic NPV instabilities (Wang et al., 2014), vorticity gen-151

eration, flow separation and secondary circulations.152

To investigate the effect of ridge curvature on the dynamics, we additionally consider an153

elliptical shaped ridge, with varying aspect ratio β = b/a, where b is the half-length,154

h = hme
−

(

x2

a2 +
y2

b2

)

. (6)

The ridge is centered in a computational domain that is 240 km long and 90 km wide. A155

zero-gradient condition is imposed on the barotropic (vertically-averaged) component of veloc-156

ity and potential temperature at the lateral and outflow boundaries, while the Orlanski radiation157

condition (Orlanski, 1976) is specified for the baroclinic component.158
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2.2 Buoyancy adjustment on finite ridges with varying topographic slope159

Compared to earlier 1D and 2D solutions of buoyancy adjustment on slope, our setup has160

two significant novelties. One is the non-constant slope and the other is the three dimensional-161

ity which introduces the possibility of flow separation, topographic waves and secondary hor-162

izontal circulations. To more precisely isolate the 3D effects, one may be tempted to separately163

consider the non-constant slope problem in 2D before attacking the 3D problem. However in prac-164

tice we found that it is challenging to maintain a steady barotropic forcing in ROMS for the 2D165

slope current configuration. To see why this is the case, recall that the flow is initialized with a166

constant sea-surface gradient that geostrophically balances a barotropic inflow (Jagannathan et167

al., 2021). In 3D, specifying the sea surface height at the inflow boundary and the lateral bound-168

aries is found to be sufficient to maintain a steady barotropic velocity everywhere downstream.169

However in the 2D configuration, once the flow is initialized, the only way to hold the barotropic170

inflow fixed as the flow evolves is by nudging either the sea surface height or the barotropic ve-171

locity itself. Both of these represent strong external forcing of the flow and introduce artefacts172

to the solution. For this reason, we directly consider the more realistic 3D problem without im-173

posing any artificial constraints on the evolution of the along-slope flow.174

The long straight section of the elongated ridge helps to isolate the buoyancy adjustment175

process and facilitates comparison with 1D and 2D model predictions. We examine in this study,176

solutions with ĥ= 1.6,3.2,6.4 and 12.8. Previous studies on buoyancy adjustment have focused177

predominantly on the parameter space 0< ĥ< 2, a range that is typical of many continental slopes.178

However there are many locations in the ocean where larger slope Burger numbers are common.179

An example of an isolated island where ĥ≫ 1 is Green island off Taiwan for which, substitut-180

ing the values hm = 500 m, a= 3.5 km (Fig. 1c of Chang et al., 2013), f = 5.5×10−5 s−1 and181

a representative value for the buoyancy frequency squared N2≈ 10−4 s−2 (Fig. 5 of Hsu et al.,182

2019) gives ĥ≈ 26. Another site is the Florida straits in the stretch prior to when the Gulf Stream183

separates (Gula et al., 2015). Here the slope angle is as high as 3◦. Using a mid-latitude value184

of f = 7×10−5 s−1 and typical thermocline stratification N≈ 10−2 s−1 then gives ĥ≈ 7.5. Re-185

cently, Nagai et al. (2021) note that in the Tokara strait, the Kuroshio flows past several steep seamounts186

where ĥ≈ 3. Moreover turbulence microstructure measurements above the sloping sides of these187

seamounts revealed 100-1000 fold enhancement of turbulent dissipation rates relative to typical188

open ocean values of O(10−10)Wkg−1, which raises questions about the relative importance of189

buoyancy adjustment and eddying dynamics in sloping BBLs. Similar levels of enhancement in190
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Figure 2. Three-month averages of local slope Burger number and bottom stress from a 1.5 km horizontal

resolution solution of the Southwestern Pacific, over the winter months April-June. Bathymetry is contoured

every 500 m and is indicated by dark gray lines. (a) Local slope Burger numbers N|∇∇∇h|/ f where |∇∇∇h| is the

absolute value of the bathymetric gradient. The inset highlights the absolute value of the barotropic flow field

|UUU |. (b) Bottom stress divided by the reference density |τbτbτb|/ρ0)(m
2s−2). (c) Instantaneous snapshot of the

depth integrated relative vertical vorticity, normalized by f 〈D〉, where 〈D〉 is the area-averaged water column

height in the region, excluding the land regions.
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the turbulent dissipation rate have been reported over the extremely steep slope angles (up to 35◦)191

in the northern end of the Palau island chain (MacKinnon et al., 2019).192

Our study in particular, is motivated by recent ROMS solutions of the Gulf of Papua and193

Solomon sea regions in the southwestern Pacific (Srinivasan et al., 2017). A spatial map of the194

three month averaged slope Burger number N|∇∇∇h|/ f over the winter months of April-June (Fig.195

2a) reveals extensive sections both along the continental slope and the island chains of Solomon196

and Vanuatu where the local slope Burger number ranges from O(1)−O(10). Note that |∇∇∇h|197

here denotes the absolute value of the local bathymetric slope and N is the three month averaged198

background stratification outside the BBL. The inset to Fig. 2a shows the three month averaged199

barotropic flow speed of the North Queensland current (which then turns easteward in the Gulf200

of Papua) as it flows along the continental shelf slope between 20◦S and 10◦S. Fig. 2b shows the201

bottom stress weakening between 20◦S and 15◦ as the Gulf of Papua current navigates the slop-202

ing bathymetric region. The slope-current interaction also leads to the generation of anticyclonic203

vorticity on the slopes. Indeed a rich submesoscale eddy field comprising both cyclones and an-204

ticyclones is seen in instantaneous snapshots (Fig. 2c) of the depth integrated vorticity ω . Lastly,205

it is worthwhile to note that the bottom Ekman layer along the North Queensland current is down-206

welling favorable, which makes the BBL here a strong candidate for NPV instabilities. Thus the207

submesoscale flow in this region is endowed with many intriguing dynamical possibilities that208

idealized process studies can yield more insight about.209

As described in Jagannathan et al. (2021), ĥ in our simulations is varied by changing the210

stratification N while keeping the other parameters unchanged. The Coriolis frequency f is fixed211

at a value of 7× 10−5 s−1 and N ranges from 1× 10−3 s−1 in the ĥ = 1.6 run to 8× 10−3 s−1
212

in the ĥ= 12.8 run. For the elliptical ridge, ĥ is fixed at 3.2 and the semi-major length b is var-213

ied between 3.5 km and 56 km, so that the ellipse aspect ratio β spans values ranging from 1 to214

16.215

2.3 Bottom stress parameterization and grid resolution216

The bottom stress in ROMS is parameterized using the quadratic drag law217

τττb = ρ0Cduuub||uuub||. (7)

where ρ0 is the constant reference density, uuub is the velocity in the bottommost σ layer and Cd218

is the drag constant219

Cd = [κ/log(∆zb/zob)]
2. (8)
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κ = 0.4 in Eq. (8) is the Von-Karman constant, ∆zb is the thickness of the bottommost σ -layer220

and zob is the roughness length which we set to 1 cm. Substituting these parameters in Eq. (8),221

along with the observed range of values of ∆zb in our runs of 0.9-1.1 m, we find that Cd ranges222

from 0.0076 over the flat bottom to 0.0083 over the ridge crest.223

Previous experience with ROMS suggests that NPV phenomena such as forced symmet-224

ric instability (Wenegrat et al., 2018) are captured to some degree even in moderately coarse hy-225

drostatic simulations (500 m in Wenegrat et al. (2018)). In all our simulations we employ a grid226

spacing of 300 m in the horizontal and 110 σ− levels, to resolve submesoscale and BBL pro-227

cesses. With vertical grid stretching the near bottom vertical resolution is as fine as 0.9 m over228

the ridge crest and 1.1 m over the flat bottom. Vertical mixing in the BBL is parameterized us-229

ing KPP (Large et al., 1994; McWilliams et al., 2009). The model also implicitly contains hor-230

izontal hyperviscosity and hyperdiffusivity via the third-order upwind-biased scheme (Shchepetkin231

& McWilliams, 2003, 2005). All the simulations are run for a total of 4 months and time-averages,232

where shown, are obtained by averaging the relevant quantities over 50 inertial periods. We re-233

mark that these time averages are insensitive to the time window during which the averaging is234

performed provided we exclude the first couple of ridge excursion periods σy/V0, which for the235

values of σy and V0 chosen in this study, is approximately 16 inertial periods. The displayed av-236

erages here are computed over the last 50 intertial periods of the 4 month simulations.237

3 Review of 1D and 2D model predictions238

In the northern hemisphere, the Ekman transport in a bottom Ekman layer is to the left of239

the interior geostrophic current. On a slope where the current is prograde, i.e. in the direction of240

a coastal Kelvin wave, the cross-slope transport results in downwelling of lighter water under-241

neath heavier water, leading to a statically unstable state. Convective mixing then produces a mixed242

layer which continues to expand in thickness with time (Trowbridge & Lentz, 1991; MacCready243

& Rhines, 1991). As the BBL thickens, the opposing velocity near the bottom becomes stronger244

due to thermal wind shear, and the bottom stress weakens. In classical 1D models of slope cur-245

rents, the BBL continues to deepen until complete Ekman arrest occurs (Garrett et al., 1993). In246

an upwelling Ekman layer, thermal wind shear similarly acts to reduce the bottom stress. The main247

difference with respect to the downwelling side is that the upslope advection of buoyancy makes248

the BBL increasingly stable, and as a result, thinner than on a flat bottom. All the theoretical pre-249

dictions reviewed in this section assume a constant value of the slope so that ĥ below connotes250

a slope Burger number.251
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Assuming that in the steady state, the BBL is perfectly well-mixed, Trowbridge and Lentz252

(1991) derive an estimate for its thickness253

HDW
a =

V0

Nĥ
, (9)

where the superscript denotes ‘downwelling ’. However the same authors note that the BBL formed254

through convective mixing of a downwelling Ekman flow typically tends to be weakly stratified255

rather than perfectly well-mixed. Brink and Lentz (2010a) derive an arrest time scale for such256

a weakly stratified BBL assuming a constant gradient Richardson number,257

T DW
a =

V0
2(1+ ĥ2)Π(ĥ)

2u∗0
2Nĥ3

, (10)

where u∗0
2 is the flat-bottom stress in the absence of buoyancy arrest,258

Π(ĥ) =
1+

√

1+ 4Ricĥ2

2
, (11)

and Ric is the critical gradient Richardson number, averaged over an inertial period.259

2D simulations (Wenegrat & Thomas, 2020) show that the destruction of the BBL strat-260

ification through convective mixing is accompanied by a negative flux of potential vorticity (PV)261

through the bottom which drives the PV below 0 in the BBL. Here the PV is defined as262

q =ΩΩΩa ·∇∇∇b (12)

where b=−gρ/ρ0 is the buoyancy and ΩΩΩa = f ẑzz+∇∇∇×uuu is the three-dimensional absolute vor-263

ticity, ẑzz being the unit vector in the z direction.264

The q< 0 state is susceptible to NPV instability modes, which then return the flow to marginal265

stability. Wenegrat and Thomas (2020) further demonstrate that the onset of instability delays,266

but does not stop the progression to an arrested state. Their modified arrest time scale is given267

by268

T NPV
a =

V0
2(1+ ĥ2)

2

2u∗0
2Nĥ3

. (13)

The extra factor (1+ ĥ2) in Eq. (13) comes from substituting Ric = 1+ ĥ2 in Eq. (11), which269

is the condition of marginal stability with q= 0 (Allen & Newberger, 1996) . The correspond-270

ing expression for the arrest height is271

HNPV
a =

V0(1+ ĥ2)

Nĥ
. (14)

Thus both the arrest time and arrest height are amplified by a factor of (1 + ĥ2) relative to 1D272

models in which NPV instabilities are absent. Note that the modification in the arrest height pre-273

diction follows directly from the requirement that q = 0 in the BBL.274
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In the upwelling regime, the upslope advection of dense water tends to stabilize the BBL,275

making it shallower relative to the downwelling. The numerical experiments of Brink and Lentz276

(2010a) show two different end states, depending on the value of ĥ. For ĥ > 1, their solutions277

produce a uniformly stratified BBL connecting smoothly to the stratified interior. The BBL height278

corresponding to arrest is279

HUW
a =

V0

Nĥ
γ(ĥ), (15)

where the superscript denotes ‘upwelling ’ and γ(ĥ) is given by the functional form280

γ(ĥ) =
−1+

√

1+ 4RiUW ĥ2

2
. (16)

Brink and Lentz (2010a) further find that RiUW = 0.4 produces a satisfactory fit to their numer-281

ical experiments, using either a Mellor-Yamada 2.0 closure or k−ε model. The corresponding282

arrest time scale for the upwelling favorable regime is then obtained as283

TUW
a =

V 2
0 (1+ ĥ2)γ(ĥ)

2u∗0
2Nĥ3

. (17)

On the other hand, when ĥ < 1, the vertical structure is characterized by a weakly strat-284

ified BBL, capped by a strongly stratified pycnocline (Brink & Lentz, 2010a). Buoyancy adjust-285

ment times are much longer than for ĥ> 1. In the limit ĥ≪ 1, the BBL characteristics approach286

those of a flat bottom Ekman layer. Interestingly, in their recent LES study, Ruan, Thompson,287

and Taylor (2021) note that capped BBLs are not observed. The authors attribute this to relam-288

inarization of the BBL, which does not occur in simpler turbulence closures. For more details289

on the capped BBL we refer the reader to Brink and Lentz (2010a).290

In one and two dimensional models of slope currents, buoyancy adjustment is a defining291

aspect of the solutions in both the ĥ> 1 and ĥ< 1 regimes. The only difference is the consid-292

erably longer adjustment time when ĥ < 1. This can be seen by inspecting Eqs. (10) and (13)293

where in the limit ĥ≪ 1, T NPV
a varies as ĥ3 and TUW

a as 1/ĥ. By contrast, in the case of an iso-294

lated 3D ridge, the ĥ≪ 1 regime is quasi-geostrophic (QG) (Schär & Davies, 1988), with strong295

cross-isobath flow and vortex stretching/squeezing dominating the dynamics (Hogg, 1973). This296

regime is more or less fully described by the QG potential vorticity conservation equation (Schär297

& Davies, 1988). We note that the parameter space ĥ< 1 was also revisited recently by Srinivasan298

et al. (2019) using high resolution, BBL-resolving ROMS solutions of flow past a circular seamount.299

A notable finding of this study was that, even with bottom drag and a resolved BBL, a non-eddying300

steady QG state is always reached for ĥ< 0.6. These results are consistent with the earlier the-301

oretical predictions of Hogg (1973) and Schär and Davies (1988) for QG flow over 3D topog-302
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raphy. The characteristic feature of the QG solution is the emergence of an isolated anticyclone,303

also known as a Taylor cone (Hogg, 1973) atop the seamount (see also. Fig. 1 of Srinivasan et304

al., 2019). For the elongated ridge we similarly find that QG dynamics prevails for values of ĥ305

as high as 0.8. For this reason, we do not dwell on the ĥ< 1 regime in this paper. Instead, con-306

centrating on the ĥ> 1 regime, we will see that the evolution toward Ekman arrest in a 3D to-307

pographic encounter problem has important differences from the lower dimensional temporal spin308

up problems. In particular, nonlinear straining plays an important role, both in weakening the ageostrophic309

BBL shear during the initial encounter with the ridge, as well as the subsequent evolution of the310

BBL towards thermal wind balance.311

4 Results312

4.1 Bottom Stress Evolution on the Slopes313

We define the anticyclonic (cyclonic) side of the ridge as the side where uphill is to the right314

(left) of the incident flow. Note that, in our flow configuration (Fig. 1) with the Coriolis frequency315

f > 0, the bottom Ekman layer is downwelling-favorable on the anticyclonic side and upwelling-316

favorable on the cyclonic side. In the discussion that follows, the BBL height on the cyclonic side317

refers to the region of active turbulence where shear driven entrainment and mixing are occur-318

ing. This is also the quantity explicitly computed in ROMS using the KPP formulation (McWilliams319

et al., 2009).320

On the anticyclonic side, a dynamically consistent definition of the BBL height needs to321

account for convective mixing produced by the downwelling Ekman layer as well as secondary322

NPV instabilities. Allen and Newberger (1996) show that, in a downwelling Ekman layer, sym-323

metric instability partially restratifies the BBL so that its stratification at marginal stability (q=324

0) is given by N2ĥ2/(1+ ĥ2). Thus for values of ĥ greater than 1, the BBL can retain substan-325

tial stratification. This is well supported by recent observations in the Orkney passage (Garabato326

et al., 2019) where the measured ĥ is about 1.8 and the BBL stratification is around two-thirds327

of the interior value. The solutions analyzed here have ĥ values ranging from 1.6 to 12.8 and as328

we shall see below, are unstable to NPV instabilities on the anticyclonic side.329

One choice of definition for the BBL height therefore is as the depth over which the ver-330

tical buoyancy gradient is less than N2ĥ2/(1+ ĥ2). However our 3D solutions depart from the331

2D assumptions implicit in Allen and Newberger (1996) in some important respects: first, the332

stratification is not constant in the BBL and so the BBL is never uniformly in a state of marginal333
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stability; second, as we will see later, the instabilities that develop are not pure symmetric modes334

but rather hybrid modes that draw energy from both the mean vertical shear and horizontal shear.335

Thus we simply define the BBL height as the height from the bottom where the stratification first336

exceeds αN2ĥ2/(1+ ĥ2), where α is some constant slightly larger than 1, here taken to be 1.1.337

A 10% variation in α (say α = 1.2 rather than 1.1) does not lead to a material difference in the338

computed BBL heights.339

The incident flow on the flat bottom has a well-mixed, turbulent BBL, capped by a strongly340

stratified pycnocline. The characterstics of the flat bottom Ekman layer have been previously de-341

scribed by other authors (e.g. Taylor & Sarkar, 2008). Fig. 1a shows the evolution of the bottom342

stress as this flat bottom Ekman layer encounters the topography. The stress values have been nor-343

malized by ρ0C∗dV 2
0 , the expected stress on a flat bottom with far-field velocity V0. The value of344

the drag coefficient C∗d when this formula is used, is typically in the range 0.002-0.003 (Sen et345

al., 2008; Arbic et al., 2009). Note that C∗d is different from Cd used to parameterize the bottom346

stress in ROMS because the latter is multiplied by V 2
b (Vb is the velocity in the bottom-most σ -347

layer) and not V 2
0 to get the bottom stress (see Eq. 8). Here we find that C∗d = 0.0022 yields a348

non-dimensional stress around 1 away from the topography and use this value henceforth in our349

scalings for stress, energy production and dissipation.350

The sustained weakening of the stress on the slopes is apparent in Fig. 1a. To better visu-351

alize its downstream evolution in a slope-averaged sense, we compute the average stress across352

the set of barotropic streamlines depicted in this figure, separately on each side of the ridge, and353

plot this as a function of along-streamline distance (Figs. 3a,b). The bottom stress starts to de-354

crease within a short distance of the well-mixed BBL encountering the ridge. The reduction is355

stronger for larger ĥ, approaching more than an order of magnitude for ĥ= 3.2 and higher (Fig.356

3).357

On the anticyclonic (downwelling) side, the mean streamlines in Fig. 1a show that the cur-358

rent remains largely attached to the slopes throughout the encounter. As a result, along-stream359

fluctuations are muted. By contrast, there are large oscillations on the cyclonic side associated360

with the separation and reattachment of eddies during the early encounter (visible in Fig. 1b).361

After the early rapid reduction, the boundary stress exhibits a relatively slow increasing ten-362

dency downstream. This can be understood as follows. In response to the diminishing bottom363
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CyclonicAnticyclonic

(a) (b)

CyclonicAnticyclonic

(d)(c)

Figure 3. (Top panel) Streamline-averaged evolution of the time-averaged bottom stress shown in Fig. 1

for different values of ĥ. (a) Anticyclonic and (b) Cyclonic. (Bottom panel) Evolution of the bottom stress

as a function of time. Here Tadv = (s − s0)/V0, where s is the distance travelled along the mean streamline

starting from the inflow location y = 0, and s0 is the value of s where the streamline intersects the ridge con-

tour h(x,y) = hm exp(−2). Thus Tadv is an advective time representative of the transit time of the flow along

the ridge slopes. (c) Anticyclonic and (d) Cyclonic. T NPV
a is the time scale for arrest in the presence of NPV

instabilities, as derived in Wenegrat and Thomas (2020) (Eq. (13) above) and TUW
a is the Brink and Lentz

(2010a) time scale for arrest in the upwelling-favorable regime (Eq. (17) above).
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(a) (b)

Figure 4. Downstream evolution of the Ekman transport (defined in Eq. (18)) at different downstream

locations given by the non-dimensional distance y/a, on and immediately adjacent to the ridge slopes. The

values have been normalized by the average Ekman transport over the flat bottom far from the ridge. The ĥ

values are indicated inside each panel.

stress, the cross-slope BBL Ekman transport364

UE =

∫ −H+hbbl

−H
u dz (18)

at the upper slopes |x/a|< 0.5, approaches zero within a short distance downstream on both sides365

of the ridge (Fig. 4). The resulting zonal divergence in Ekman transport drives a secondary cir-366

culation in the vertical plane (Fig. 5). This circulation, which has a upwelling/downwelling ten-367

dency on the cyclonic/anticyclonic side respectively will tend to accelerate the along-slope flow.368

Feedback of the secondary circulation into the interior along-slope flow was also reported by Benthuysen369

et al. (2015) in their 2D simulations of flow past a shelf break. Note that in their case, the feed-370

back was purely temporal (as the simulations were 2D); here however, the secondary circulation371

will tend to induce a more complicated spatio-temporal feedback into the interior flow. On the372

cyclonic side, the upwelling BBL causes the isopycnals to squeeze together during the downstream373

adjustment (as seen, for e.g. in Fig. 2 of Jagannathan et al., 2021), which also has an accelerat-374

ing effect on the along-slope flow.375

We plot the quasi-temporal evolution of the stress along the barotropic streamlines by defin-376

ing an advective time377

Tadv =
s− s0

V0

. (19)

Here s is the along-streamline distance measured from the inflow location y= 0, averaged across378

the barotropic streamlines shown in Fig. 1. Note that the averaging is performed separately on379
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(a) (b) (c)

Figure 5. Time mean streamlines in the vertical plane of the flow-field obtained by averaging u and w over

the straight section of the ridge 15 ≤ y/a ≤ 45. Also displayed are contours of the normalized along-slope

velocity v/V0. ĥ values are indicated inside each panel. Note that, as the real flow-field is three-dimensional,

these streamlines are not true pathlines of the flow, rather they represent a 2D projection that gives a qualita-

tive view of the secondary circulation above the ridge slopes.

each side of the ridge. s0 is the value of s where the streamline intersects the ridge contour h(x,y)=380

hm exp(−2). That is, the clock starts ticking where the mean streamline encounters the ridge and381

Tadv represents the transit time of the flow on the slopes. We use T NPV
a and TUW

a respectively to382

scale the advective time Tadv on the anticyclonic and cyclonic sides. Note that for all the values383

of ĥ considered here, T NPV
a is significantly longer than TUW

a . Figs. 3c,d show that the bottom stress384

slumps by an order of magnitude over O(1) arrest time scale (T NPV
a ) on the anticyclonic side and385

between O(1)−O(10) arrest time scales on the cyclonic side. Plugging in V0 = 0.105ms−1,386

u∗0
2 =C∗dV 2

0 , with C∗d = 0.0022 (Sen et al., 2008; Arbic et al., 2009), and N and ĥ for each so-387

lution in Eqs. (13) and (17), we find that this corresponds to O(1) inertial periods on each side.388

As we shall show in section 4.2 in our analysis of the vertical shear equation Eq. (21), this ini-389

tial rapid stress reduction is not due to buoyancy adjustment, but rather a consequence of 3D, non-390

linear straining effects when the flow first encounters the ridge.391

The flow on the anticyclonic side develops a spatial instability mode which grows to finite392

amplitude downstream. This is manifested by the emergence of a banded pattern of small scale393

vortices in Fig. 1b. The instability begins further and further upstream for increasing values of394

ĥ. Below we will identify these as belonging to a general class of NPV instabilities. In the 2D395

simulations of Wenegrat and Thomas (2020), the flow continues to evolve toward an arrested state396

even after the onset of NPV instabilities. From Eq. (13), we would expect that this 2D arrest time397

scale T NPV
a is approximately 7.8 inertial periods for the case ĥ= 1.6 and 4.3 inertial periods for398

ĥ= 12.8. The encounter time in our solutions is around 16 inertial periods on the anticyclonic399

side (Fig. 3c,d). Thus the 2D expectation of buoyancy adjustment ( e.g. Fig. 16 of Wenegrat and400
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(a)

(b)

Figure 6. Downstream evolution of the time-averaged y component of the vertical shear overlain with the

flow isopycnals (a) geostrophic vertical shear
∂ vg

∂ z
/N and (b) the ageostrophic shear

∂ vag

∂ z
/N for the ĥ = 3.2

solution. The ridge centerline is at y/a = 30.9.

Thomas (2020)) is a monotonic decay of the bottom stress toward zero before the flow separates401

from the ridge. Yet in Fig. 3, the bottom stress exhibits a much slower decay than expected for402

ĥ = 1.6. For the two intermediate values of ĥ, there is a slight increase after the initial slump,403

followed by a plateauing of the stress. Likewise, the bottom stress on the cyclonic side plunges404

sharply during the initial encounter but starts to rebound to higher values over O(10) arrest time405

scales. The observations above are indicative of the fact that other 3D effects besides buoyancy406

adjustment exert a strong influence on bottom stress evolution, and hence turbulent bottom dis-407

sipation over topographic ridges. We will examinine these in detail below.408

4.2 Vertical Shear Balance and the Role of Strain409

The theoretical state of Ekman arrest is characterized by collapse of the BBL on the slopes410

and the establishment of a deep boundary layer in a state of thermal wind balance. To assess the411

degree of arrest in our solutions, we decompose the time-averaged vertical shear uuuz into its geostrophic412
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and ageostrophic components,413

∂uuug

∂ z
=

1

ρ0

ẑzz×∇∇∇Hb, (20a)

414

∂uuuag

∂ z
=

∂uuuH

∂ z
−

∂uuug

∂ z
, (20b)

where it is recalled b=−gρ/ρ0 is the buoyancy, ∇∇∇Hb is its horizontal gradient and uuuH is the hor-415

izontal velocity vector. Note that the ageostrophic component here encompasses not only shear416

due to vertical mixing in the BBL but also that due to nonlinear advective effects such as strain417

(see Eq. (21) below).418

In all our solutions, the along-slope component of the vertical shear ∂v/∂ z is much larger419

than its cross-slope counterpart ∂u/∂ z. As such the along-slope component of vertical shear is420

also the quantity of interest in the downstream buoyancy adjustment problem. Fig. 6 is a repre-421

sentative plot of the time-averaged, vertical shear decomposition for the case ĥ= 3.2. Over the422

flat bottom (|x/a|> 3) the shear in the BBL is purely ageostrophic and is positive except near423

the pycnocline (see also Taylor & Sarkar, 2008). Shortly after the current-ridge encounter, at y/a=424

10, both the geostrophic and ageostrophic components are significant. Furthermore, on the an-425

ticyclonic side, the two components are clearly seen to be opposite-signed, with the ageostrophic426

shear being negative. At y/a= 17 the geostrophic component is clearly dominant while the ageostrophic427

component has weakened drastically (Fig. 6). It continues to further weaken downstream, sig-428

nalling approach toward a partially arrested state. Interestingly, the rightmost panel of this fig-429

ure shows that the geostrophic shear itself has relatively weakened by y/a= 43. As we shall see430

in section 4.3 this reflects partial restratification of the BBL following the onset and growth of431

NPV instabilities.432

Writing the squared vertical shear as ||uuuz||
2 = u2

z +v2
z , its Lagrangian evolution equation433

can be written as (Srinivasan et al., 2021)434

1

2

D||uuuz||
2

Dt
=−




(u

2
z ux + v2

z vy)+ uzvz(uy + vx)
︸ ︷︷ ︸

−Λh

+ ||uuuz||
2wz

︸ ︷︷ ︸

−Λv






︸ ︷︷ ︸

Λnl

−(bxuz + byvz)
︸ ︷︷ ︸

Λb

+D(uuuz)
︸ ︷︷ ︸

Λmix

, (21)

where Λnl = Λh +Λv represents nonlinear horizontal and vertical straining effects, Λmix is the435

shear generation/destruction due to the combined effect of parameterized vertical momentum mix-436

ing and implicit horizontal hyperdiffusion, and Λb is the geostrophic production term. We plot437

the time-average of each of the tendency terms on the RHS of Eq. (21) for the three solutions ĥ=438

1.6, 3.2 and 6.4 in Fig. 7. The terms are averaged across-slope and over the local BBL depth on439

the anticyclonic side. We do not show an equivalent plot for the cyclonic side as the flow there440
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(a)

(b)

(c)

Figure 7. (Anticyclonic) Tendency terms of the time-averaged squared vertical shear equation Eq. (21)

for (a) ĥ = 1.6, (b) ĥ = 3.2 and (c) ĥ = 6.4. Λnl represents nonlinear straining effects, Λmix is the shear

generation/destruction due to the combined effect of parameterized vertical momentum mixing and implicit

horizontal hyperdiffusion in ROMS, and Λb is the geostrophic production term. Each term is normalized

by NV 2
0 h−2

m and averaged over the local BBL depth and in the across-slope direction. ĥ values are indicated

inside each panel. The zero line is shown dashed for clarity.
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separates early, and consequently there is no obvious trend to be discerned from examining Eq.441

(21).442

Eq. (21) by construction, obscures information regarding the sign of the vertical shear; its443

virtue is that it is in the form of a Lagrangian evolution equation of a positive definite quantity444

||uuuz||
2 whose tendency terms are conveniently partitioned into those associated with mixing, buoy-445

ancy or nonlinear straining processes (note that the Coriolis term drops out). Useful insight can446

thus be gained by tracking the downstream evolution of these terms alongside a visual inspec-447

tion of the vertical shear decomposition itself. Compared to the depth integrated vertical shear448

which can have significant cancellations when both positive and negative shear regions are present449

(e.g. Fig. 6), the sign definiteness of ||uuuz||
2 makes its depth integrated evolution relatively straight-450

forward to interpret. Before the flow encounters the ridge, turbulent vertical mixing is the pri-451

mary source of vertical shear generation in the BBL. This ageostrophic shear is neutralized by452

nonlinear straining processes during the early flow adjustment over the topography. Examining453

Fig. 6 alongside Fig. 7b one can infer that the negative ageostrophic shear over the anticyclonic454

slopes at y/a= 10 comes largely from nonlinear straining effects Λnl . Buoyancy adjustment and455

strain then combine to bring the flow downstream progressively closer to a state of geostrophic456

balance. Downstream of y/a≈ 12, note that the total tendency remains slightly negative. This457

is consistent with the observed reduction in the intensity of the geostrophic vertical shear at y/a=458

43 (rightmost panel of Fig. 6).459

Note that the peaks and troughs of all the tendency terms shift upstream with increasing460

ĥ, reflecting faster adjustment times for higher ĥ (Eqs. (10), (13)). A comment on Fig. 7c which461

shows the tendency terms for ĥ = 6.4: interestingly, the combined effect of Λnl and Λmix pro-462

duces two prominent troughs in the total squared vertical shear tendency. The exact reason for463

this pattern is not clear; however the relatively large negative value of the total tendency down-464

stream of y/a= 15 is consistent with the expected strong restratifying effects in the BBL for high465

ĥ (Allen & Newberger, 1996) which will tend to substantially weaken the geostrophic vertical466

shear.467

Strong nonlinear, 3D straining motions during the initial flow adjustment over the ridge thus468

strongly influence the dynamics of buoyancy adjustment on the slopes. In particular, the strain469

term neutralizes the ageostrophic BBL shear of the incident flow, and then acts in concert with470

the geostrophic production term Λb to produce a more rapid initial stress reduction (Fig. 3c,d)471

than predicted by 1D or 2D models where strain effects are absent. Note that this is a rather dif-472
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ferent phenomenological sequence compared to 1D models where buoyancy adjustment alone473

acts to convert ageostrophic shear to geostrophic shear.474

4.3 BBL instabilities, energetics and dissipation475

The conversion from ageostrophic to geostrophic vertical shear in the BBL is associated476

with an expanding region of negative PV. Figs. 8a,b show the evolution of the stratification and477

PV over the anticyclonic slope for the ĥ= 3.2 solution. A well-mixed BBL with potential vor-478

ticity q≈ 0 encounters the topography. The BBL is capped by a thin, strongly stratified pycn-479

ocline (c.f. Taylor & Sarkar, 2008) where both the stratification and PV are posiive. The lower480

part of the BBL initially develops NPV due to convective overturning (Fig. 8b). The region of481

weak stratification deepens and the pycnocline is also eventually destroyed further downstream482

(Fig. 8a). As the geostrophic vertical shear is established, the NPV layer becomes increasingly483

deeper.484

The q< 0 state is susceptible to instability, which can be categorized in different ways de-485

pending on the the dominant energy conversion terms (Wang et al., 2014; Thomas et al., 2013).486

Fig. 8c shows that the horizontal component qh≈−vzbx partially contributes to the negative PV487

in the mixed layer, hinting at the possibility of symmetric instability (Thomas et al., 2013). To488

gain further insight into the nature of the instability here (visible as bands of instability on the489

anticyclonic side in the bottom row of Fig. 1), we compute the production terms of the eddy ki-490

netic energy (EKE) equation. Energy is transferred from the mean flow to the eddies through the491

vertical and horizontal Reynolds stress work, defined respectively as492

VRS =−(u′w′uz + v′w′vz), (22)

and493

HRS =−(u′u′ux + u′v′uy + v′v′vy + u′v′vx), (23)

where the overbar (·) denotes a time average and primed quantities (·)′ are preturbations about494

the average. Reversible exchange of available potential energy (APE) between the mean and eddy495

fields also occurs through the vertical buoyancy flux496

VBF = w′b′. (24)

All the production terms are normalized by C∗dV 3
0 , a commonly used scaling (Sen et al., 2008;497

Arbic et al., 2009; Ruan, Wenegrat, & Gula, 2021) for energy dissipation within a flat bottom tur-498

bulent BBL with bottom stress ρ0C∗dV 2
0 , where C∗d is again taken to be 0.0022. Fig. 9 shows that499
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(a)

(c)

(b)

Figure 8. Downstream evolution of the time-averaged vertical buoyancy gradient and PV on the anticy-

clonic side for the ĥ = 3.2 solution. Over the ridge, each of the quantities is averaged across the slope and

plotted as a function of height from the ridge bottom, normalized by HNPV
a , the predicted value of NPV

instability-modulated arrest height in Wenegrat and Thomas (2020) (Eq. (14)). On the flat bottom before

the encounter, the color contours displayed are for the centerline x/a = 0 values. (a) ∂b/∂ z normalized by

the background squared Brunt Vaisala frequency N2. (b) Normalized potential vorticity q/ f N2 and (c) the

horizontal component of potential vorticity qh/ f N2.
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(a)

(b)

Figure 9. Time-averaged, vertically integrated EKE production terms (Eqs. (22), (23) and (24) for (a)

ĥ = 1.6 and (b) ĥ = 3.2. A Gaussian filter has been applied to VBF to remove grid scale noise downstream of

the ridge. All quantities are non-dimensionalized by C∗dV 3
0 , with C∗d = 0.0022, and the colomap is saturated at

6×10−1 .
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conversion of energy from the mean flow to the eddies on the anticyclonic side is accomplished500

primarily by VRS and VBF at ĥ= 1.6, and through a combination of VRS, HRS and VBF at ĥ=501

3.2. In the dynamical framework of Thomas et al. (2013) and Wenegrat and Thomas (2020), the502

former may be classified as a hybrid symmetric/gravitational instability and the latter a hybrid503

symmetric/centrifugal/gravitational instability. The instability tends to restratify the BBL, bring-504

ing the flow back toward a state of marginal stability q≈ 0 (Fig. 8b,c). VBF is primarily respon-505

sible for the restratification, converting available potential energy to EKE in the process. Note506

that the large VBF contribution well downstream of the ridge centerline may also indicate the507

presence of a hybrid baroclinic mode on the anticyclonic side. The restratification in the BBL508

and the corresponding reduction in the geostrophic vertical shear can be seen in the rightmost509

panel of Fig. 6a (y/a= 43). For the larger ĥ cases, partial restratification of the BBL following510

the onset NPV instabilities manifests as a net sink in the Lagrangian vertical shear equation (black511

line in Fig. 7c).512

On the cyclonic side, EKE production is overwhelmingly from HRS, and is substantially513

more intense compared to the anticyclonic side. This is strongly indicative of a horizontal, in-514

flectional point instability of the mean flow, similar to that seen, for example, in submesoscale515

and BBL resolving simulations of topographic wakes in the Southwestern Pacific (Srinivasan et516

al., 2017). VBF, which acts as minor sink of EKE, represents conversion from EKE to available517

potential energy resulting from the upslope advection of buoyancy. Fig. 9 also shows that HRS518

conversion commences further upstream for the ĥ = 3.2 case compared to ĥ = 1.6. The onset519

of horizontal barotropic instability on the topographic slopes could partly explain why the strip520

of cyclonic vorticity generated through the Bottom Stress Divergence Torque (Jagannathan et al.,521

2021) detaches from the slopes further upstream compared to the anticyclonic side. As seen in522

Fig. 3b,d, for all ĥ considered, the early separation reverses the decaying trend of bottom stress523

on the cyclonic side, past s/a≈ 20 (where s is the along-streamline distance).524

Note that in Fig. 9, VBF is qualitatively higher for ĥ = 3.2 when compared to ĥ = 1.6.525

However, Perfect et al. (2020a) found a decrease in the VBF term with increasing Burger num-526

ber (equivalently ĥ here) for their axisymmetric Gaussian ridge solutions. We hypothesize that527

this discrepancy is atleast partially attributable to the geometry of the ridge considered here. The528

sloping BBL on the elongated ridge is likely more prone to buoyancy adjustment dynamics com-529

pared to the seamount solutions of Perfect et al. (2020a). This affects the VBF term in the fol-530

lowing ways - VBF is active during both the initial convective instability in the downwelling BBL531

on the anticyclonic side as well as the later restratification of the BBL, creating EKE at the ex-532
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Cyclonic

(b)(a)

Anticyclonic

Figure 10. (a) Evolution of the cross-slope averaged BBL depth hbbl as a function of the advective time

Tadv. Recall that Tadv = (s− s0)/V0 is the along-streamline distance expressed as a time scale. (a) On the anti-

cyclonic side, normalized by the Wenegrat and Thomas (2020) prediction for the arrest height (Eq. (14)) when

NPV instabilities are active. (b) On the cyclonic side, normalized by the Brink and Lentz (2010a) prediction

(Eq. (15)) for an upwelling Ekman layer

pense of APE. Likewise upslope buoyancy advection on the cyclonic side converts EKE to APE533

(and thus is a sink of APE). The magnitude of both these EKE←→APE conversions increases534

with N and thus with ĥ (which is varied in our simulations by changing N). We refer the reader535

to Umlauf et al. (2015) for further discusson of the energetics of BBL buoyancy adjustment.536

As in the case of observations by Garabato et al. (2019) and solutions of Wenegrat and Thomas537

(2020), the BBL on the downwelling (anticyclonic) side remains substantially stratified in our538

solutions (Fig. 8a). Recall the definition of the BBL on the downwelling side as the height from539

the bottom where the stratification first exceeds 1.1N2ĥ2/(1+ ĥ2) (see section 4.1). In Fig. 10a540

we show the downstream evolution of the across-slope averaged BBL thickness hbbl on the an-541

ticyclonic side. The values are non-dimensionalized using the predicted value of NPV instability-542

modulated arrest height in Wenegrat and Thomas (2020) (Eq. (14)). The BBL deepens down-543

stream as the flow evolves along the slopes, but in all cases, its depth is less than the predicted544

value when the current separates off the slopes. On the cyclonic side, the stabilizing effect of up-545

slope buoyancy advection is expected to shrink the boundary layer thickness, relative to the up-546

stream flat-bottom value (Brink & Lentz, 2010a). Fig. 10b shows that hbbl decreases sharply dur-547

ing the initial encounter, even beyond the value predicted in Brink and Lentz (2010a). Further548

downstream, hbbl slowly approaches HUW
a . However, as noted earlier, the separation of the cur-549
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rent from the slopes and the slow increase observed in the bottom stress (Fig. 3b,d) are indica-550

tive of the BBL not being fully arrested.551

The loss of energy due to dissipation can be partitioned into that from the mean kinetic en-552

ergy (MKE) of the parameterized BBL turbulence, ε̄ , and that due to the forward cascade initi-553

ated by the ageostrophic instabilities, ε ′. Recall that eddy dissipation in ROMS occurs through554

both the parameterized vertical Reynolds stress τττ z as well as a horizontal hyperdiffusion term that555

is implicit in the third order upwind biased scheme for computing horizontal advection. To quan-556

tify the influence of the topography on dissipation, ε̄ and ε ′ are defined here as area averages over557

the sloping sides of the ridge. For example on the anticyclonic side,558

ε̄ =

∫∫

A

∫ −H+hbbl
−H ūuu ·

(
τττ z +DHuuu

)
dzdydx

∫∫

A dydx
(25a)

559

ε ′ =

∫ 0
−∞

∫ ∞
−∞

∫ η
−H u′u′u′ ·

(
τττ ′z +DHu′u′u′

)
dzdydx

∫∫

A dydx
, (25b)

where η is the sea surface elevation, DH denotes the horizontal hyperdiffusion term on the RHS560

of the horizontal momentum equations. A is the region bounded by the y-axis and some low-level561

bathymetric contour, here taken to be the contour on which the ridge height decays to exp(−2)562

of its maximum value hm,563

A = {x,y |x≤ 0; h(x,y)> hm exp(−2)}, (26)

The dissipation fractions ε̄ and ε ′ and slope region A are defined analogously for the cyclonic side.564

Eq. (25a) represents the area-averaged MKE dissipation from the BBL over the sloping565

sides of the ridge. The ‘slope effect ’on BBL dissipation is visible when we plot ε̄ normalized566

by C∗dV 3
0 (Fig. 11a) for each ĥ solution. For ĥ= 1.6, the dissipation rate of MKE on the anticy-567

clonic side is around 75% of that expected from the flat-bottom scaling C∗dV 3
0 , reflective of mod-568

erate bottom stress reduction. As ĥ increases, the normalized ε̄ decreases, falling to as low as 0.1569

for ĥ = 12.8. The diminished ε̄ is indicative of partial arrest of the BBL.570

The numerator of Eq. (25b) is the volume integral of the EKE dissipation over the total fluid571

volume on the anticyclonic side and not just within the BBL as is the case in Eq. (25a). This choice572

reflects the fact that the instabilities spawned on the slopes give rise to eddies which generally573

dissipate over a broad wake region rather than locally (c.f. Srinivasan et al., 2021). Dividing the574

total eddy-induced dissipation by
∫∫

A dydx thus specifically captures the effect of the slope-current575

encounter on energy dissipation. That is, it tells us how much EKE dissipation occurs as a result576

of slope-current interactions over a unit area on the anticyclonic side of the ridge. Wenegrat and577
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CyclonicAnticyclonic

(b)

CyclonicAnticyclonic

(a)

Figure 11. Barplot showing separate contributions of ε̄ and ε ′, defined in Eqs. (25a) and (25b), to the en-

ergy dissipation on each side of the ridge. The integrals have been normalized by C∗dV 3
0 with C∗d = 0.0022,

the usual scaling for the depth integrated dissipation rate in a turbulent BBL with far-field velocity V0 (Sen et

al., 2008; Arbic et al., 2009). (a) Elongated ridge with varying ĥ and (b) Elliptical ridge at fixed ĥ = 3.2 and

varying lateral aspect ratio β = b/a.

Thomas (2020) predicted using theoretical scalings that in a 2D downwelling BBL undergoing578

arrest, NPV instabilities offset exactly half of the reduction in the energy dissipation caused by579

Ekman arrest. Here we find that ε ′ on the anticyclonic side increases from around 0.05 at ĥ =580

1.6 to around 0.2 at ĥ= 12.8. Thus while dissipation due to SI/CI amounts to between 5% and581

20% of the expected flat-bottom BBL dissipation, it is nevertheless considerably smaller in our582

solutions compared to the Wenegrat and Thomas (2020) scaling.583

On the cyclonic side, ε̄ is below 0.1 for all ĥ while ε ′ is around 0.3 at the largest ĥ. Thus584

dissipation resulting from the horizontal inflectional point instability outstrips that due to the bot-585

tom drag for all but the lowest ĥ considered. In conclusion, on both sides of the ridge, EKE dis-586
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sipation compensates a fraction of the reduction in dissipation resulting from partial arrest of the587

turbulent BBL on the slopes — between 5% and 20% on the anticyclonic side and up to 30% on588

the cyclonic side, depending on the value of ĥ. Note that Fig. 11b shows the same fractional con-589

tributions to total dissipation, but for an elliptical ridge with varying lateral aspect ratio β = b/a,590

where a and b are respectively the half-length and half-width in the along- and cross-stream di-591

rections. These solutions will be discussed in detail in section 5.592

An interesting question concerns the connection between form drag and wake dissipation,593

an issue recently explored by Puthan et al. (2022a) for tidally modulated topographic wakes. The594

form drag is a natural quantity in an integrated momentum balance and is defined as the decel-595

erating force experienced by the barotropic flow due to the presence of topography h(x,y). For596

the barotropic inflow u=V0ŷyy (ŷyy being the unit vector in the y direction) in our ridge configura-597

tion, it is given by the expression598

FD =

∫ +∞

−∞

∫ +∞

−∞
pb

∂h

∂y
dydx =

∫ +∞

−∞

∫ +∞

−∞
h

∂ pb

∂y
dydx, (27)

where pb denotes the pressure at the bottom. Note that form drag as such cannot do any work599

on the fluid flow in a volume integral sense because of the no-normal-flow condition on solid bound-600

aries which renders the puuu · n̂ term in the volume-integrated energy equation, uniformly zero. How-601

ever, as demonstrated in MacCready et al. (2003), form drag can, and does effect energy exchanges602

between the free stream and local flow near topography, which manifests as lee waves, eddies603

and dissipation. Table 1 shows the rate of work done by the time-averaged form drag FDV0 and604

the volume-integrated dissipation rate associated with the eddying flow along the slopes and in605

the wake region. Both these quantities are given in dimensional form for each of the ĥ values con-606

sidered. Dissipation comprises a small fraction of energy conversion by form drag. Since lee waves607

are negligible in these high ĥ flows, our interpretation of this result is that the bulk of the work608

done by form drag is mainly expended on transferring energy from the incident flow V0 to both609

the time mean and fluctuating components of the circulation around the ridge. The latter com-610

prises eddies arising from NPV instabilities as well as flow separation, which advect downstream,611

manifesting as coherent wake vortices. The dissipation rate increases with ĥ, consistent with the612

findings in Srinivasan et al. (2021). We remark that in the presence of tides, there is an impor-613

tant subtlety in the interpretation of form-drag-work. Considering a background flow Vb =Vc+614

Vt sinΩtt, where Vc is the current speed, Vt the tidal flow amplitude and ωt its frequency, Puthan615

et al. (2022a) note that the work expended by the time-averaged form drag FDVc is distinct from616

the quantity FDVb which includes energy conversion from the tides.617
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Table 1. Rate of work done by form drag on topography, FDV0 along with corresponding volume integrated

dissipation rate of TKE in the wake
∫∫∫

V ρ0ε ′ dV , where ε ′ = u′u′u′ ·
(
τττ ′z +DHu′u′u′

)
is the component of energy dis-

sipation associated with the eddying flow in the wake, DH being the implicit horizontal hypervisous operator

in ROMS.

ĥ FDV0(MW )
∫∫∫

V ε ′ dV (MW )

1.6 7.8 0.63

3.2 7.41 1.09

6.4 6.87 1.26

12.8 6.05 1.46

A caveat to the above observations regarding NPV and dissipation concerns the horizon-618

tal resolution used (300 m). Note that locally, we can estimate the horizontal scale of symmet-619

ric instability modes from Taylor and Ferrari (2009) as620

L = hbbl/θiso, (28)

where θiso is the isopycnal slope within the BBL. In Fig. 12, we display the absolute values of621

the isopycnal slope on the anticyclonic side for the case ĥ= 3.2. Note that at y/a= 27, which622

is around where the NPV instabilities become prominent in snapshots of integrated vorticity (Fig.623

1), |θiso| in the BBL is largely in the range of 0.1 or less, except very near the bottom where it624

approaches unity. The isopycnal slopes are very similar for the other ĥ and hence not shown.625

Substituting the values of V0, ĥ and N for our runs in Eq. 14 gives theoretical arrest heights626

ranging from ≈ 220 m for ĥ = 1.6, to ≈ 160 m for the ĥ = 12.8. From inspection of Fig. 10,627

this gives values of hbbl before separation from the ridge, of around 165 m for ĥ= 1.6, 65 m for628

ĥ= 12.8 and around 90 m for each of the cases ĥ= 3.2 and 6.4. From Eq. (28), this implies a629

horizontal scale of the symmetric instability mode L≈ 1650 m for ĥ = 1.6, 900 m for ĥ = 3.2630

and 6.4 and 650 m for the largest ĥ of 12.8 considered here. Thus with a horizontal resolution631

of 300 m, our simulations capture the onset of symmetric instability, but do not resolve their evo-632

lution to finite amplitude and subsequent equilibriation via secondary Kelvin-Helmholtz insta-633

bility (Taylor & Ferrari, 2009). Consequently it is likely that the dissipation rates obtained here634

underestimate the true rate of energy dissipation in hybrid NPV, particularly for large ĥ.635
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Figure 12. Downstream evolution of the time-averaged isopycnal slope |θiso| on the anticyclonic (down-

welling) side where symmetric instability modes are present, for the ĥ = 3.2 solution.. Also overlain are the

mean flow isopycnals. Note that, except very close to the boundary, |θiso| is largely O(0.1) or smaller adja-

cent to the ridge slope.

5 The effect of ridge curvature636

The elongated ridge (Fig. 1) was specifically chosen for this study as it represents a par-637

ticularly favorable configuration for observing 1D-like buoyancy adjustment in a 3D setting. With638

curvature and/or shorter ridge length, the evolution to Ekman arrest is expected to be vitiated by639

vortical dynamics and agesotrophic instabilities. To demonstrate how this may happen, we have640

performed additional simulations for elliptical ridges with varying lateral aspect ratio β = b/a,641

where a and b are respectively, the cross-flow and along-flow dimensions of the ridge. ĥ is set642

to 3.2 in all these runs. This value of ĥ is comparable to the observed value of ĥ (≈ 3) over the643

seamounts of the Tokara strait lying in the path of the Kuroshio current (Nagai et al., 2021). Fig.644

13 shows the time-averaged bottom stress and instantaneous snapshots of integrated vorticity for645

three cases corresponding to β = 1, 4 and 16. Compared to the elongated ridge (Fig. 1), the bot-646

tom stress here exhibits less of a systematic downstream pattern; rather stress reduction is patchy647

and spatially intermittent. As also seen in the former, bottom stress divergence torque (Jagannathan648

et al., 2021) acting on the slopes, generates vorticity, which upon flow separation leads to the emer-649

gence of highly coherent vortical wakes.650

As we shall see below, for small-to-moderate aspect ratios β , the NPV instability on the651

anticyclonic side is dominated by centrifugal rather than symmetric modes, i.e. the NPV comes652

mainly from the vertical component of PV, qv =(ζ + f )bz, where ζ is the relative vertical vor-653
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(b)

(a)

Figure 13. Same as Fig. 1 but for elliptical shaped ridges with varying aspect ratio β , at a fixed ĥ = 3.2.

Note that the small scale eddying structures on the anticyclonic side for β = 16 case mirror similar structures

seen in the case of the elongated ridge (Fig. 1)
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Cyclonic

(b)(a)

Anticyclonic

Figure 14. Same as Fig. 10 but for the elliptical ridge solutions. (a) Anticyclonic side and (b) Cyclonic

side.

ticity. For this reason, the symmetric instability criterion of Allen and Newberger (1996) is not654

the most appropriate choice for defining the BBL height for the elliptical ridge solutions. To en-655

able consistent comparison between the different β cases, we instead define the BBL height here656

as the depth over which the stratification is smaller than N2. The downstream evolution of the657

BBL height is shown in Fig. 14. For a circular ridge (β = 1), the encounter time along the slopes658

is insufficient for sustained buoyancy adjustment to occur. For β = 4 and higher, the BBL on659

the anticyclonic side deepens downstream following a sharp contraction during the initial encounter660

with the ridge. The deepening BBL is evidence of convective mixing, similar to what occurs over661

the elongated ridge (Fig. 10); this is particularly evident for the β = 16 case. On the cyclonic662

side, the evolution of the BBL is similar in most respects to that observed over the elongated ridge663

(Fig. 3). The BBL height shrinks on the slopes due to the stabilizing effect of upslope Ekman664

transport as predicted in Brink and Lentz (2010a) and seen in Fig. 10 above. In all cases the BBL665

subsequently rebounds toward its pre-encounter height.666

A notable aspect of these solutions concerns the EKE production and dissipation on the667

anticyclonic side. Fig. 15 reveals that the energy conversion terms are an order of magnitude larger668

in the case of β = 1 compared to β = 16. Focussing on the anticyclonic side, EKE production669

for β = 1 is predominantly due to HRS and occurs downstream of the ridge. Combined with the670

fact that the anticyclonic eddies are associated with NPV anomalies, this is indicative of centrifu-671

gal instability. By contrast, for β = 16, energy transfer from the mean flow to the eddies occurs672

through a combination of HRS, VRS and VBF. Furthermore, VRS production in this case begins673
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on the slopes (Fig. 15), indicating that the instability emerges even as the BBL is evolving on the674

slopes. We identify this as a hybrid centrigual/symmetric/gravitational mode of instability, sim-675

ilar to that seen in the ĥ= 3.2 elongated ridge solution (Figs. 1,9). This hybrid mode is charac-676

terized by a smaller horizontal scale than the β = 1 solution, as is visually evident (e.g. in Fig.677

13).678

A direct consequence of the shifting EKE production patterns on the anticylonic side is on679

the zonally, and depth integrated dissipation rate of EKE
∫ 0
−∞

∫ η
−H u′u′u′ ·

(
τττ ′z +Du′u′u′

)
dzdx. As a func-680

tion of aspect ratio, Fig. 16b shows that energy dissipation is highest for β = 1, decreases as β681

increases through to 8, and again increases for β = 16. For comparison, we note that the EKE682

dissipation rate in the elongated ridge solutions (Fig. 16a) exhibits a monotonic increasing trend683

with ĥ. We may interpret the trend in EKE dissipation observed in Fig. 16b using the EKE pro-684

duction terms shown in Fig. 15. Increasing the aspect ratio of the ridge from β = 1 to 8, there685

is a transition from a highly dissipative centrifugal instability to a more modestly disspative one.686

As the curvature decreases further (or the encounter length increases), there is more time for buoy-687

ancy adjustment to occur on the slopes. The resulting increase in the geostrophic vertical shear688

renders the flow unstable to a hybrid centrifugal/symmetric/gravitational mode which enhances689

turbulent dissipation. A related recent finding of interest (Chor et al., 2022) is that centrifugally690

dominated NPVs tend to have higher mixing efficiency, both instantaneous as well as cumula-691

tive, compared to symetrically dominated NPVs.692

Notably, Fig. 16b shows that for all values of β considered, elevated levels of turbulent dis-693

sipation persist downstream over O(10) ridge width (a) scales. We note that this is consistent with694

recent turbulence microstructure measurements of Nagai et al. (2021) that reveal long pesisting695

(≈ 100 km wide) subsurface turbulence in the seamount wakes of the Tokara strait, whose ori-696

gins the authors largely trace to NPV instabilities triggered by the flow of the Kuroshio past the697

steep seamount slopes.698

The overall contribution of ε ′ to the total energy dissipation is highest for the circular ridge699

(Fig. 11b). The normalized total dissipation rate in this case is over 3.5 in an area-averaged sense,700

with bottom drag dissipation ε̄ around 1.3 and 0.4 respectively on the anticyclonic and cyclonic701

sides — an indication that buoyancy adjustment effects are small. The bottom drag dissipation702

on the anticyclonic side is around 0.5 for β = 4 and higher and the total dissipation rate itself703

also remains below 1. This is roughly in line with the recent findings of Ruan, Wenegrat, and Gula704

(2021) who find that geostrophic shear in the BBL reduces energy dissipation by at least 56%705
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(a)

(b)

Figure 15. Same as Fig. 9 but for the ellliptical ridge solutions. (a) β = 1 and β = 16. The EKE production

is much higher for β = 1; accordingly the colomap is saturated at 5×10−2 in (a) and 5×10−3 in (b).
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Elliptical ridge

(b)

Elongated ridge

(a)

Figure 16. Downstream evolution of the zonally, and depth integrated dissipation rate

∫ 0
−∞

∫ η
−H u′u′u′ ·

(
τττ ′z +DHu′u′u′

)
dzdx of EKE corresponding to the eddying flow component on the anticyclonic

side. (a) elongated ridge solutions at different values of ĥ and (b) elliptical ridge solutions with varying β , at a

fixed value of ĥ = 3.2. The values have been normalized by C∗dV 3
0 a with C∗d = 0.0022, the expected dissipation

rate within a turbulent BBL over a horizontal width a.

in a high-resolution model of the Atlantic. On the cyclonic side, the total dissipation rate ranges706

between 0.28 and 0.35 as β goes from 4 to 16 (Fig. 11b), energy loss due to bottom drag is dimin-707

shed by as much as 90% relative to the flat bottom scaling and ε ′ comprises a much larger frac-708

tion of the total dissipation compared to the anticyclonic side.709

6 Discussion710

6.1 Temporal Vs spatial evolution of buoyancy adjustment711

We have examined the process of bottom stress reduction and buoyancy adjustment within712

the BBL in a 3D setting of barotropic inflow encountering an elongated ridge. While the details713

of the ridge geometry and setup here may not be exactly representative of known oceanic flows,714

the rationale for choosing an elongated ridge is that it allows longer downstream/along-slope evo-715

lution of the BBL (before flow separation). So this is a natural configuration in which to inves-716

tigate the question, ‘how does the spatio-temporal BBL evolution and in particular, the buoyancy717

adjustment process in 3D, depart from the 1D expectation?’. Furthermore, the setup is general718

enough that our solutions and analysis can provide insight into the evolution of the BBL wher-719

ever boundary currents flow past continental shelf slopes, such as in the southwestern Pacific ex-720

ample discussed in section 2.2.).721

–37–



manuscript submitted to JGR: Oceans

In section 4.1, we analyzed the quasi-temporal evolution of the bottom stress along the slopes722

by defining an advective time scale Tadv and scaling this with T NPV
a and TUW

a . The implicit as-723

sumption behind this scaling was an approximate equivalence between the downstream evolu-724

tion of the BBL along the ridge slopes, and temporal evolution in 1D and 2D (as in Brink & Lentz,725

2010a; Wenegrat & Thomas, 2020). Using an idealized theoretical model with a linear bottom726

drag, Chapman and Lentz (1997) found that although this assumption does not strictly hold in727

the case of initially narrow currents, the evolution of a wide current over a sloping bottom is es-728

sentially 1D downstream, with along-isobath distance playing the role of time. Here we find that729

non-linear straining effects during the current-topographic encounter results in a rapid initial ad-730

justment of the BBL and significant stress reduction over advective times Tadv < T NPV
a (Fig. 3c731

and Fig. 7). Further, the quadratic bottom drag in our simulations, instabilities, secondary cir-732

culations, and early flow separation (on the cyclonic side) mean that the evolution of the BBL733

in the downstream direction departs considerably from the expectation of quasi-temporal 1D evo-734

lution of Chapman and Lentz (1997).735

6.2 Sensitivity to choice of BBL parameterization736

Much of the previous work exploring buoyancy adjustment over slopes have utilized ei-737

ther a k−ε closure (Brink & Lentz, 2010a), 2.0 or 2.5 level Mellor-Yamada closure (Brink &738

Lentz, 2010a; Benthuysen et al., 2015) for parameterizing BBL turbulence. Recently, LES have739

also been employed for this purpose (Ruan et al., 2019; Ruan, Thompson, & Taylor, 2021; Wene-740

grat & Thomas, 2020). Wijesekera et al. (2003) carried out a systematic comparison of k− ε ,741

Mellor-Yamada 2.5 and KPP mixing in modelling the structure of vertical mixing over a conti-742

nental shelf forced by either upwelling- or downwelling-favorable winds. Although they note some743

quantitative differences in the vertical profiles of eddy viscosity and diffusivity, the shape and744

structure of these mixing coefficients was similar across all three schemes, with local maxima745

in the surface and bottom boundary layers and a smooth connection to the interior. In particu-746

lar, they find that all three models produce a similar BBL thickness and vertical profiles of ve-747

locity and density. In another study, Bachman et al. (2017) found that when the shear instabil-748

ity component of KPP is included, the total turbulence production compares favorably with LES749

solutions even though individual components may sometimes be overestimated. All the simu-750

lations here are performed with the shear instability component of KPP included and the criti-751

cal Richardson number set to 0.45. Thus taking a statistical steady state view that turbulence pro-752
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duction must equal dissipation in a volume integral sense, KPP is unlikely to be a major source753

of error in our dissipation calculations.754

6.3 Distinguishing Ekman arrest and turbulence collapse755

In their LES solutions with periodic boundary conditions in the cross- and along- slope di-

rections, Ruan et al. (2019); Ruan, Thompson, and Taylor (2021) observe that, both in the downs-

lope and upslope regime, the BBL always relaminarizes before an arrested state is reached. This

is a consequence of suppression of turbulence by the cross-slope buoyancy flux, a phenomenon

which the authors characterize using a so-called slope-Obukhov length scale, defined as

Ls =
−u∗0

3

κUEN2θ
. (29)

In Eq. (29), θ is the slope angle and UEN2θ is the cross-slope Ekman buoyancy flux. Given a756

molecular viscosity ν , Ruan et al. (2019); Ruan, Thompson, and Taylor (2021) find that turbu-757

lence collapse occurs when Lsu
∗/ν falls below a threshold, around 100. However in the 2D so-758

lutions of Wenegrat and Thomas (2020), where both submesoscale instabilities and the near-wall759

layer are adequately resolved, the onset of NPV instabilities appears to prevent a relaminarized760

state from being attained.761

As shown in Flores and Riley (2011), turbulence collapse occurs when there is insufficient762

scale-separation between the O(L) and O(ν/u∗) scales of turbulent motions in the dynamic sub-763

layer, where L is the Obukhov length and ν is the molecular viscosity. Here we do not expicitly764

resolve the dynamic sublayer, but rather rely on a turbulent bottom drag parameterization. Thus765

turbulence collapse in our solutions, if it occurs, would imply u∗0→ 0. However since buoyancy766

adjustment itself leads to substantial reduction of the bottom stress, we note that it is difficult to767

distinguish Ekman arrest from turbulence collapse. Fully 3D LES or DNS solutions are needed768

to understand if and how BBL relaminarization manifests over 3D bottom topography. We note769

however that, because EKE production is enhanced on both sides of the ridge following the on-770

set of NPV instabilities (anticyclonic) and barotropic (cyclonic) instability modes (Fig. 10 above771

and Fig. 16 of Jagannathan et al. (2021)), EKE suppresion as a proxy for identifying BBL relam-772

inarization (as in Ruan et al. (2019), may not be as useful in 3D.773

7 Summary and conclusion774

We have examined the process of buoyancy adjustment on 3D topography by analyzing775

a set of idealized ROMS simulations of an initially uniform upstream flow past an elongated ridge776
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and elliptical ridges with varying lateral aspect ratio. Key metrics such as the extent of reduc-777

tion of the bottom stress, the BBL height and the observed adjustment time scales are discussed778

in the context of the 1D and 2D Ekman arrest literature. BBL turbulence in our solutions is pa-779

rameterized using the K-profile parameterization (KPP) and the 300 m horizontal resolution em-780

ployed resolves submesoscale motions, including the onset of NPV instabilities on the anticy-781

clonic side. Analyzing the EKE budget, we further diagnose the nature of the instabilities that782

develop over the course of the downstream BBL evolution on each side of the ridge, and the dis-783

sipation resulting thereof.784

The evolution of the bottom stress in our solutions (Figs. 1 and 3) is to be contrasted with785

the 1D model runs of Brink and Lentz (2010a) and the more recent 2D simulations of Wenegrat786

and Thomas (2020) covering a range of slope Burger numbers. In their (constant-slope) solutions,787

buoyancy adjustment effects inexorably push the bottom stress towards zero. This occurs over788

a time scale corresponding to the time of mixed layer growth, either through upright or slantwise789

convection. For the ĥ values considered, the predicted arrest time scale T NPV
a in Eq. (13) for a790

constant slope, ranges from 4 to 8 inertial periods for ĥ= 12.8 and 1.6 respectively, with the small-791

est theoretical arrest time scale corresponding to the largest ĥ and vice-versa. Although there is792

a significant reduction of the stress on the slopes over these time scales (Fig. 3), analysis of the793

vertical shear equation shows that, contrary to 1D and 2D solutions where the stress reduction794

is purely due to the thermal wind shear induced by cross-slope buoyancy advection, here 3D non-795

linear straining effects during the early encounter have an important role in the adjustment pro-796

cess.797

The state of the BBL before separation, in the elongated ridge solutions, is characterized798

by suppression of the bottom stress by between 60% (ĥ = 1.6) to 95% (ĥ = 12.8) on the anti-799

cyclonic side with respect to the upstream flat-bottom value (Fig. 3a,c), and up to 80% reduc-800

tion on the cyclonic side (Fig. 3b,d) for all ĥ. On the anticyclonic side, the stress has either plateaued801

or is decaying only slowly when the current separates (Fig. 3a,c). This is possibly due to the in-802

fluence of secondary circulations that feedback into the interior along-slope flow, as was noted803

in Benthuysen et al. (2015). The depth of the BBL on the anticyclonic side also remains well be-804

low the 2D prediction of Wenegrat and Thomas (2020). On the cyclonic side, early separation805

reverses the decaying trend of bottom stress within a short distance downstream of the encounter806

(Fig. 3b,d). Thus on either side of the ridge, we may characterize the BBL as being in a state of807

‘partial arrest’.808
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Our solutions demonstrate an inverse relationship between the drag-mediated energy dis-809

sipation rate and non-dimensional ridge height ĥ as well as lateral aspect ratio β (Fig. 11) — a810

consequence of increasing geostrophic BBL shear and reduced near-bottom velocities. This re-811

duction in the bottom drag dissipation is somewhat compensated by dissipation arising from ageostrophic812

instabilities on either side, but to a lesser extent than predicted by Wenegrat and Thomas (2020).813

The exception is the circular ridge (β = 1) solution (Figs. 11b,16b) where the dissipation on both814

sides is significantly enhanced relative to the flat bottom BBL.815

The fact that the bottom stress, energy dissipation and Ekman transport weaken substan-816

tially on the slopes of the ridge (Figs. 1 and 4) would suggest that partial Ekman arrest may be817

a fairly common occurence in boundary currents adjacent to the continental shelf. Yet oceanic818

observations of Ekman arrest remain scarce, a notable exception being the Northern California819

Shelf observations of Lentz and Trowbridge (2001). One possible explantion for this is that, on820

realistic bathymetry, curvature and irregular, small scale features such as headlands and bumps821

could trigger localized flow separation and reattachment events. This can be seen in the Califor-822

nia Undercurrent (CUC). For example, Fig. 5 of Molemaker et al. (2015) shows eddies roll up823

and separate all along the coast, but especially around Point Sur. If such events sporadically punc-824

tuate the flow evolution on the slopes, they could potentially undermine the buoyancy adjustment825

process. Another plausible explanation for the paucity of observational data showing Ekman ar-826

rest, is the intrinsic temporal variability in the real ocean due to tides, wind-variability, coastally827

trapped waves and eddies impinging from offshore. In a 1D model with realistic broadband forc-828

ing, Brink and Lentz (2010b) find that the steady component of the flow undergoes Ekman ar-829

rest over time scales consistent with Eqs. (10) and (17), and further that the bottom stress is also830

reduced across nearly all frequencies. Further studies with a well-resolved BBL are needed to831

understand how 3D effects like curvature, alongshore advection and realistic forcing influence832

the dynamics of Ekman adjustment in oceanic boundary currents.833
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