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Abstract 14 

Reservoirs are the key hydraulic infrastructure that regulates natural streamflow 15 

variability to fulfill various operation targets, including flood control, water supply, 16 

hydroelectricity generation and sustaining environmental flow.  As an important anthropogenic 17 

interference on the hydrologic cycle, reservoir operation behavior remains challenging to be 18 

properly represented in hydrologic models, thus limiting the capability of predicting streamflow 19 

under the interactions between hydrologic variability and operational preferences.  Data-driven 20 

models that utilize machine learning techniques provide a promising approach to represent 21 

reservoir operation rules by capturing relationships embedded in historical records.  Similar to 22 

hydrologic processes vary across temporal scales, reservoir operation behaviors manifest 23 

themselves at different timescales, prioritizing different operation targets to mitigate streamflow 24 

variability at a given time scale.  To capture the interaction of reservoir operation across time 25 

scales, we proposed a hierarchical temporal scale framework to investigate the behaviors of over 26 

300 major reservoirs across the Contiguous United States with a wide range of streamflow 27 

conditions.  Machine learning models were constructed to simulate reservoir operation at 28 

monthly, weekly, and daily scales, where decisions at short-term scales interact with long-term 29 

decisions.  We found that the hierarchical temporal scale configuration better captures reservoir 30 

releases than models constructed at a single time scale, especially for reservoirs with multiple 31 

operation targets.  Model-based sensitivity analysis shows that for more than one third of the 32 

studied reservoirs, the release schemes, as a function of decision variables, vary at different time 33 

scales, suggesting that operators are commonly faced with complicated trade-offs to serve 34 

multiple designed purposes.  The proposed hierarchical temporal scale approach is flexible to 35 

incorporate various data-driven models and decision variables to derive reservoir operation rule, 36 

providing a robust framework to understand the feedbacks between natural streamflow 37 

variability and human interferences across time scales. 38 

1 Introduction 39 

Anthropogenic activities, such as reservoir operation (Haddeland et al., 2006; Döll et al., 40 

2009; Biemans et al., 2011; Zhao et al., 2021; Singh and Basu, 2022; Zeng and Ren, 2022), 41 

urbanization (Oudin et al., 2018; Li et al., 2020) and large-scale irrigation (Siebert et al., 2010; 42 

Ferguson et al., 2011; Condon et al., 2019; Wei et al., 2022), have become increasingly 43 

important or even dominant driving forces of hydrologic processes in many watersheds over the 44 

world.  In these watersheds, the streamflow observed at gauging stations represents the 45 

interaction between hydrologic and anthropogenic driving forces, rather than the “natural” or 46 

“unregulated” flows simulated in hydrologic models (Clark et al., 2015; Blair and Buytaert, 47 

2016).  Reservoirs are one of the key water infrastructures that directly regulate the streamflow 48 

timing and variability to fulfill various purposes including flood control, water supply, 49 

hydroelectricity generation, navigation and fluvial ecosystem services (Simonovic et al., 1992; 50 

Lehner et al., 2011; Ehsani et al., 2017; Moran et al., 2018; Boulange et al., 2021; Forsberg et al., 51 

2017; Ortiz-Partida, Lane, and Sandoval-Solis, 2016; Patterson and Doyle, 2018).  In the US, the 52 

National Inventory of Dams reports that there are more than 90,000 reservoirs (defined as equal 53 

or exceed 25 feet in height and exceed 15 acre-feet in storage, or exceed 6 feet in height and 54 

equal or exceed 50 acre-feet storage) regulating the streamflow (DeNeale et al., 2019).  These 55 

reservoirs altogether store freshwater resources equivalent to one year’s average natural runoff 56 

(Graf, 1999), generates about 6.3% of total electricity and 31.3% of renewable energy production 57 

(EIA, 2022), and protect hundreds of millions of populations from flooding.  Meanwhile, the 58 
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current reservoir operation policies are challenged by shifting flow conditions under climate 59 

change (Boulange et al., 2021), elevated risks due to aging infrastructure (Lane, 2007), 60 

increasing demand for water supply reliability, and needs for aquatic habitat restoration (Tonkin 61 

et al., 2018; Palmer et al., 2019).  Understanding how reservoirs are operated and their 62 

interaction with hydrologic cycle is vitally important for assessing reliability and risks of 63 

reservoir functioning (Brekke et al., 2009), designing adaption strategies for future climate (Ho 64 

et al., 2017), and mitigating the tradeoffs among conflicting operation targets (Suen et al., 2006; 65 

Chen et al., 2017; Giuliani et al., 2021) to achieve sustainable water resources management. 66 

Reservoirs are decision hubs that integrate the complex feedbacks between hydrologic 67 

variability and operational targets under various constraints, such as reservoir inflow, water 68 

storage capacity, hydroelectricity generation requirement and competitions among different 69 

operation purposes.  Challenges remain for modelling the reservoir release decisions, which 70 

often involve on complex and undocumented decision processes.  Often, reservoir operation 71 

guidelines are based on predefined rule curves (Klipsch et al., 2007; Yates et al., 2005), which 72 

determine release decision based on water availability, which in turn, depends on inflow and 73 

storage (Chen et al., 2022).  However, many reservoirs are actively managed, where the flow 74 

releases are determined by reservoir managers to account for the complex tradeoffs among 75 

different operation targets.  This complicated decision-making process often cannot be described 76 

with simple operation rules.  In addition, observations on reservoir operation (e.g., reservoir 77 

water level and release) are very limited due the complex ownership and regulations. 78 

As a result, reservoirs, as coupled natural-human systems (Liu et al., 2007), are not 79 

adequately represented in current hydrologic or hydraulic models.  Compared to natural 80 

hydrologic processes that can be expressed by physical relationships, it remains unclear how 81 

reservoirs are operated to regulate streamflow, as observations on reservoir operation (e.g., 82 

reservoir water level and release) are very limited due the complex ownership and regulations.  83 

For example, the National Water Model is able to predict streamflow for over two million 84 

reaches in US, while a limited number of reservoirs are simulated by a simple level pool routing 85 

scheme (Gochis et al., 2018; Khazaei et al., 2021) where reservoir releases are passively 86 

determined by reservoir water level and spillway characteristics based on hydraulic laws (e.g., 87 

weir flow equations).  However, for the actively managed reservoirs, which are a key 88 

infrastructure that involves various stakeholders and has significant impact on downstream flow, 89 

the releases are regulated by gates and determined by reservoir managers depending on various 90 

real-world constraints and tradeoffs. 91 

Traditionally, studies have used optimization to derive reservoir operation rules.  92 

Specifically, optimal releases are determined to achieve predefined operation objective(s) (e.g., 93 

minimize flood risk, maximize water supply reliability, increase hydroelectricity generation) 94 

under various constraints (e.g., reservoir storage capacity and allowable downstream release).  95 

However, actual reservoir release usually deviates from the optimized prescription due to several 96 

limitations.  First, the theoretical optimal reservoir releases are obtained under a small set of 97 

predefined objectives and constraints, which often do not capture the full spectrum of real-world 98 

operation conditions (Giuliani et al., 2021).  Second, reservoir characteristics (storage capacity vs 99 

water level relationship) or streamflow regime may be different from the conditions when 100 

optimal operation rule was derived.  Third, optimization models assume that perfect streamflow 101 

predictions or a known streamflow prediction uncertainty, but it is not necessarily the case that 102 

streamflow prediction is available for operational purposes and whether reservoir managers 103 
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utilize the streamflow prediction during the decision-making processes (Zhao et al., 2011).  104 

Therefore, with these deviations from assumptions, optimization model-derived reservoir 105 

operation rules may provide valuable normative solutions for the large-scale hydrologic and 106 

water resource model, but often fail to yield satisfactory results for predicting streamflow 107 

downstream of reservoirs. 108 

Data-driven models (DDMs) offer a promising alternative to derive reservoir operation 109 

rules from historical records of hydrologic and reservoir data (Lin et al., 2006; Wei and Hsu, 110 

2008; Hipni et al., 2013; Aboutalebi et al, 2015; Yang et al., 2017; Zhang et al. 2018; Zhao and 111 

Cai, 2020; Turner et al., 2020a, b; Chen et al. 2022).  The rationale is straightforward: if a 112 

manager determines the reservoir releases based on some principles (either empirical or optimal) 113 

depending on hydroclimatic variation, data-driven techniques can recover the patterns of 114 

operation from the reservoir records and other hydroclimatic variables.  In addition, compared to 115 

optimization models DDMs are computationally efficient and readily coupled with hydrologic 116 

and hydraulic models.  Recent studies (Mateo et al. 2014; Coerver, Rutten, and Van De Giesen, 117 

2018; Yassin et al. 2019) have demonstrated the capability of various machine learning 118 

techniques in capturing reservoirs release decision. 119 

In this study, we hypothesize that reservoirs operation patterns vary across time scales, 120 

thus requiring a hierarchical temporal scale configuration of DDMs.  First, reservoirs usually 121 

have multiple operation purposes that require decisions made at different time scales.  For 122 

example, daily or hourly release decisions are made for hydroelectricity generation based on the 123 

demand from power grids, while the reservoir storage for agricultural water supply exhibits 124 

slow-varying seasonal pattern.  Even for reservoirs with one primary operation purpose, 125 

hydroclimatic variabilities at different time scales may lead to different operation decisions.  A 126 

reservoir designed for flood control may be actively operated only during wet seasons to mitigate 127 

floods, and the storage may remain relatively stable during dry seasons.  Second, release 128 

decisions for different operational purposes are made based on different information that changes 129 

with time scales.  For example, flood control decisions may depend on current reservoir water 130 

level and streamflow forecast with leading time up to several days, while water supply reservoirs 131 

may ignore the short-term streamflow variability and focus on hydrologic seasonal dynamics 132 

such as snowpack.  Third, operation decisions made at different scales interact with each other.  133 

The flood control hourly operations during a high flow event may be constrained water level set 134 

by seasonal water supply targets; flood control operations, in return, determine initial water level 135 

for water supply release for next decision period.  Based on these observations, capturing the 136 

reservoir operation decisions across time scales is essential to accurately represent the 137 

anthropogenic regulation on streamflow variability. 138 

However, current reservoir operations derived from DDMs are typically based on a single 139 

time scale.  Zhang et al., (2018) assessed the performances of various DDMs with different time 140 

resolution (e.g., hourly, daily, and monthly) for Gezhouba Dam, while neglecting the interactions 141 

of decision-making processes across time scales.  Yang et al. (2021) provided a comprehensive 142 

comparison of different DDMs to simulate the daily reservoir outflow over the Upper Colorado 143 

Region using the daily inflow, storage, and calendar time as model inputs, which do not include 144 

decision variables at monthly scales.  Turner et al., (2020b) built a daily scale DDM for 145 

reservoirs in the Columbia River basins with seasonally varying relations that specify water 146 

release as a function of prevailing storage levels and forecasted future inflow.  However, this 147 

approach is based on pre-assumed linear piecewise relations to represent the seasonality, which 148 
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still needs to be specified based on modeler’s assumption.  A more flexible generic framework is 149 

needed to capture the tradeoffs among multiple reservoir operation targets and interactions 150 

between hydroclimatic conditions and anthropogenic decisions using information across time 151 

scales. 152 

To fill this gap, this study develops a hierarchical temporal scale framework to model 153 

reservoir operation decisions across various time scales.  The framework has the flexibility to (1) 154 

use time scale-specific inputs for DDMs to learn reservoir operation behaviors pertinent to each 155 

time scale, and (2) enable decisions at different time scales to interact with each other.  We 156 

demonstrate the framework with a two-layer configuration, at monthly/weekly and daily scales, 157 

respectively.  The framework is validated using the daily operational records of 327 major 158 

reservoirs in the United States regulated by the United States Army Corps of Engineers 159 

(USACE) and the United States Bureau of Reclamation (USBR).  These reservoirs cover a wide 160 

spectrum of hydroclimatic conditions, reservoir characteristics and operation purposes, therefore 161 

can examine the robustness of the proposed hierarchical temporal scale framework.  The 162 

monthly- or weekly-scale data-driven model learns reservoir decisions not affected by short-term 163 

variability and provides constraints for the daily scale model which captures the event-scale 164 

operation rule that deviates from the monthly/weekly average.  This framework is flexible to 165 

incorporate additional temporal layers (such as at hourly or seasonal scales).  We further evaluate 166 

which variables are dominant for reservoir operations across various time scales and investigate 167 

the tradeoff between training variables and modeling temporal resolution in representing 168 

reservoir decisions. 169 

2 Methods 170 

2.1 Hierarchical temporal scale configuration of DDMs 171 

The hierarchical temporal scale framework (shown in Figure 1) consists of multiple 172 

layers, where each layer has a DDM to learn the reservoir operation rules at the corresponding 173 

time scale (e.g., monthly, weekly, and daily).  The configuration starts from the upper layer 174 

corresponding to a coarse time scale (i.e., monthly/weekly in this study) to capture the reservoir 175 

operation behaviors under slow-varying targets (e.g., storing water for growing season irrigation 176 

supply).  Historical hydroclimate and reservoir records are aggregated to monthly/weekly time 177 

series to train a DDM.  The lower layer refines the model to a fine time scale (i.e., daily scale in 178 

this study), and a second DDM is trained to simulate the “residual”, defined as the difference 179 

between the fine scale release and release simulated by the coarse time scale DDM.  The residual 180 

characterizes short-term deviations from release determined under long-term operation targets 181 

and may be caused by gaps between planned and actual situations and complicated tradeoffs 182 

between various purposes served in different periods. 183 

The hierarchical configuration of the framework is flexible to add layers as needed to 184 

represent operation decisions at coarser (e.g., seasonal) or finer time scales (e.g., flood control 185 

release or hydroelectricity generation under power grid demand) if reservoir operation record is 186 

available.  In addition, the hierarchical framework allows models at each time scale to take 187 

different training variables since difference operations decisions may depend on different 188 

information.  For example, the operation for irrigation water supply may mainly depend on the 189 

crop water demand during the growing season, while operation for flood control may depend on 190 

current reservoir water level and upstream flow predictions for the next a few days.  By learning 191 
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the residuals between water release at fine time scale and the coarse time scale average, the 192 

DDM can capture the interactions of operation rule at different time scale and represent the 193 

tradeoffs between various operation targets.  For example, the release for flood control may be 194 

depended on current reservoir water level, which is affected by storage target for water supply 195 

determined one month ago.  The reservoir water level after flood control release may further 196 

affect water supply decision in future time steps.  Therefore, the residual between two layers 197 

(i.e., two time scales) represents the tradeoffs between various operation targets.  198 

 199 

 200 
Figure 1. The hierarchical temporal scale framework with two layers shown for illustration.  The 201 

top layer uses a monthly DDM to simulate monthly averaged release (R(୑)), and the subsequent 202 

bottom layer uses a daily DDM to simulate residual R෡(ୈ), or the difference between daily 203 

R(ୈ) and monthly averaged R(୑) releases. 204 

2.2 Hydroclimatic and Reservoir Data 205 

We apply the proposed framework to 248 reservoirs operated by the United States Army 206 

Corps of Engineers (USACE) and 79 reservoirs operated by the United States Bureau of 207 

Reclamation (USBR) across the Contiguous United States (CONUS).  These reservoirs are 208 

generally actively managed reservoirs with multiple designed purposes.  The standardized 209 

database for historical daily reservoir levels and operations of USACE reservoirs is developed by 210 

(Patterson and Doyle, 2018), while that of USBR reservoirs is accessed via Reclamation 211 

Information Sharing Environment (RISE).  These observed records include daily reservoir water 212 

elevation (feet, ft), storage volume (acre-feet, af), inflow (cubic feet per second, cfs) and release 213 

(cubic feet per second, cfs) for each reservoir, with different record lengths and intermittent gaps 214 

in the middle of the record due to data collection issues.  All reservoirs with continuous records 215 

are included in this study.  For some reservoirs with missing data during only a short period of 216 

time (less than five days), the nearest neighbor interpolation method is applied to fill in these 217 

gaps to obtain a continuous record.  Overall, the continuous records have the average length of 218 

30 years. 219 
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The reservoir release data is used as target (response variable) to train and test the DDMs, 220 

and water storage volume, reservoir inflow records are used as inputs of the DDMs, along with 221 

hydroclimatic data.  Specifically, the daily-scale meteorological forcing, including total 222 

precipitation rate (P, mm/day) and potential evapotranspiration (PET, mm/day) are obtained 223 

from the North American Land Data Assimilation System (NLDAS-2) forcing (Xia et al. 2012).  224 

The hydroclimatic data are aggregated over the catchment area upstream of the reservoir to 225 

encapsulate the local weather information relevant for reservoir operation.  Specifically, the PET 226 

represents atmospheric demand for reservoir evaporative loss, which is substantial for reservoirs 227 

in the arid and semi-arid regions (Friedrich et al., 2018).  The P may reflect the local runoff 228 

contribution to reservoir, while the reservoir inflow represents the runoff from the larger 229 

upstream contributing area.  The difference between P and PET captures the crop irrigation 230 

water demand (Le Page et al., 2020), which may provide important information for reservoirs 231 

with irrigation water supply purpose.  Depending on the specifics of a given reservoir, other 232 

information (e.g., hydroelectricity generation) can also be fed into DDMs as inputs. 233 

2.3 Experimental Setup 234 

Three groups of experiments are carried out to assess the performances of data-driven 235 

reservoir operation models with (1) under different time scale configurations and (2) different 236 

combinations of input variables (Table 1).  The experimental setup is summarized in Table 1.  237 

The first group of experiments simulate reservoir release solely on a single daily scale (i.e., daily 238 

inputs are employed to model the daily release).  This strategy is commonly implemented in 239 

existing machine-learning based reservoir models.  The other two groups of experiments adopt a 240 

two-level hierarchical time scale framework.  The second group of experiments receives weekly-241 

average input variables in the first layer to generate weekly average release, and then use daily 242 

inputs to model the residual (difference between daily release and weekly average) in the second 243 

layer, herein referred to as “Weekly-Daily (WD)”.  Similarly, the third group of experiments 244 

simulate monthly scale reservoir release in the first layer and refines reservoir release on daily 245 

scale in the second layer, referred to as “Monthly-Daily (MD)”.  On the daily scale, we use the 7 246 

days in the past and 7 days in the future of input variables to determine release on a given day.  247 

For the WD and MD models, the coarse-resolution input variables of the past 8 steps (weeks or 248 

months) and the future 4 steps are used to derive the release at the current time step, and the daily 249 

scale residuals are simulated with daily input variables of the past 7 days and the future 7 days.  250 

It has been proven that inflow forecasts could strongly influence the seasonal reservoir 251 

operations particularly for the high-elevation reservoirs fed by snowmelt in the western United 252 

States (Turner et al., 2020a).  In this study, similar to Turner et al., (2020a), the observed records 253 

in the future time steps (i.e., perfect foresight) are used as a proxy for forecasted information are 254 

deployed to explore whether operators consider the streamflow forecasts during the decision-255 

making processes, since it is difficult to acquire the actual forecasts available to operators at 256 

CONUS scale. 257 

To explore the importance of each input variable for predicting reservoir operation at 258 

various time scales, the three experiment groups is further developed into six experiments with 259 

various combinations of input variables (Table 1).  In Experiment 1, daily observed reservoir 260 

inflow (I), water storage (S), P and PET are all utilized to derive the release scheme.  While other 261 

gain and loss terms in reservoir water budget (e.g., water diversion, seepage and evaporative 262 

loss) are unavailable for most reservoirs, the training variables may contain information related 263 
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to these factors.  For example, reservoir evaporative loss is related to PET and reservoir storage, 264 

which in turn correlates with water surface area.  In Experiment 2, left out from the inputs to 265 

examine the importance of storage for estimating release.  Similarly, in Experiment 3, reservoir 266 

inflow is not utilized.  Meteorological information is hidden in Experiment 4, based on the 267 

assumption that the meteorological forcing may have no great impact on the reservoir release 268 

given storage and inflow.  Experiment 5 derives the release scheme only from the observed 269 

inflow records.  Experiment 6 explores whether the actual storage alone is able to capture 270 

reservoir release decisions.  It is noted that based on the specified subset of inputs, DDMs will 271 

further infer the importance of these variables on predicting reservoir releases via the training 272 

process.  Results of these experiments will be used to guide further sensitivity analysis based on 273 

models. 274 

 275 

Table 1. Experiments using DDMs with different time scale configurations and subsets of input 276 

variables, including inflow (I), storage (S), precipitation (P) and potential evaporation (PET). 277 

 278 

Time Scale Experiment Training variables 
Daily (D) D-1 I, S, P, PET 

 D-2 I, P, PET 
 D-3 S, P, PET 
 D-4 I, S 
 D-5 I 
 D-6 S 

Weekly-Daily 
(WD) 

WD-1 I, S, P, PET 

 WD-2 I, P, PET 
 WD-3 S, P, PET 
 WD-4 I, S 
 WD-5 I 
 WD-6 S 

Monthly-Daily 
(MD) 

MD-1 I, S, P, PET 

 MD-2 I, P, PET 
 MD-3 S, P, PET 
 MD-4 I, S 
 MD-5 I 
 MD-6 S 

 279 

In all the experiments, we use the Long Short-Term Memory (LSTM, Hochreiter and 280 

Schmidhuber, 1997), as the DDM in each layer.  LSTM networks can learn  temporal 281 

dependencies in both long and short terms and has a wide range of applications in hydrology and 282 

water resource management (Kratzert et al. 2018, 2019; Shen, 2018; Zhang et al. 2018; Feng et 283 

al., 2020; Sit et al., 2020; Xu and Liang, 2021; Yang et al. 2021).  The configuration of the 284 

LSTM model in this study is summarized in Supplementary Material Text S1.  For the single-285 

layer models (D1, …, D6), the LSTM model is trained by minimizing the mean square error of 286 

daily release. For hierarchical time scale models (WD, MD), the two LSTMs are trained together 287 

by  minimizing the mean square errors of reservoir release at both time scales, 288 
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min
𝜽

∑൫𝑹 − 𝑹෡൯
ଶ

+ ∑(𝒓 − 𝒓ො)ଶ 289 

where 𝑅 and 𝑅෠ are the observed and simulated release at the monthly/weekly scales, 𝑟 and  𝑟̂ are 290 

the observed and simulated release residuals at the daily scale, 𝜃 represents the neural network 291 

weiths.  The Adam optimizer (Kingma et al., 2020) is applied for training.  The Nash-Sutcliffe 292 

Efficiency (NSE) (Nash and Sutcliffe, 1970) of daily reservoir release is used for assessing 293 
model performance in all experiments.  To reduce random effects arising during training, we 294 

initialize and train the models for 5 times, each time using a different random seed, and calculate 295 

the average performance metrics across 5 trials.  The number of training epochs, the optimal 296 

number of layers and number of hidden units are found through trial-and-error. 60% of time 297 

series data are used during the training process, 10% of them for validation, and the rest for 298 

testing.  It is noted that the multi-layer configuration is flexible to use other machine learning 299 

algorithms. 300 

3 Results 301 

3.1 Performance of DDMs with various time scale configurations and input variable 302 

combinations 303 

Results from the three groups of experiments revealed noticeable differences in reservoir 304 

release simulation accuracy when the models use various time scale configuration and 305 

combinations of input variables (Figure 2). For experiments using the same training variables, 306 

the two-layer hierarchical model (WD and MD) consistently yields higher accuracy than the 307 

daily model (D), as shown by the probability of exceedance of NSE for all reservoirs (Figure 2).  308 

For example, in Experiment 1 with most comprehensive input dataset, the mean NSE for all 309 

reservoirs is 0.949, 0.880 and 0.743 for WD, MD and daily configuration, respectively. The WD 310 

configuration achieves NSE higher than 0.9 in more than 92% reservoirs, compared to 54% and 311 

18% for the MD and D configurations, respectively.  In most experiments, the WD configuration 312 

yields slightly better performance than the MD configuration.  For the same length of records, 313 

the weekly scale data is four times more than the monthly scale data, thus providing more 314 

training samples to the DDMs.  In addition, the finer resolution of weekly scale may better 315 

capture the release decision than the coarse monthly scale. 316 

For all time scale configurations, reservoir inflow and storage are two dominant variables 317 

for modelling release behavior in most reservoirs, as shown by the small performance gap 318 

between Experiments 1 and 4.  With only reservoir inflow as input data in Experiment 5 (Figure 319 

2e), the average NSE reaches 0.452, 0.561 and 0.535 for daily, WD and MD temporal 320 

configuration, respectively.  The inflow provides most predictive power in reservoirs with 321 

relatively small storage and/or navigation purpose.  Although the inflow-only models in 322 

Experiment 5 does not explicitly consider reservoir states, the LSTM architecture is able to use 323 

the cell “memory” to store accumulated inflow as a proxy for reservoir storage trend and use this 324 

information to simulate reservoir releases.  However, due to other reservoir water budget terms 325 

such as water diversion, seepage and evaporative loss, the accumulated inflow cannot fully 326 

replace reservoir storage.  Therefore, it is not ideal for a DDM to simulate the state of reservoir 327 

system without storage as an important constraint, especially for reservoirs in the west 328 

mountainous regions usually designed for water supply and hydropower generation.  Because 329 

reservoir storage is closely related to the operational purposes, and its seasonal variations 330 
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typically reflect the consequences of the human interventions on the natural system, storage 331 

volume (or water level) is strongly recommended as an independent variable input into the 332 

reservoir operation model. 333 

 334 

 335 
Figure 2. Probability of exceedance of NSE for all reservoirs resulting from single and 336 

hierarchical time scale models with different decision variables (Table 1) 337 

 338 

The DDMs with storage alone as input in Experiment 6 have slightly lower predictive 339 
power compared to inflow-only models in Experiment 5 (Figure 2f) and produce average NSE of 340 

0.373, 0.475 and 0.435 for Daily, WD and MD configuration, respectively.  Using storage as the 341 

input captures operation of reservoirs with relatively large storage capacity and/or reservoir with 342 

water supply purpose where the release largely depends on the reservoir water level.  In addition, 343 

reservoir storage serves as a proxy for reservoir water level and water surface area (both can be 344 

retrieved from the reservoir characteristic curve).  The reservoir storage together with PET may 345 

implicitly contain information regarding reservoir evaporative loss, which is important in arid 346 

and semi-arid regions.  Although storage-release rule curves are commonly used by reservoir 347 

operators (Yang et al. 2016), the seasonal patterns of reservoir operation and the interannual 348 

variability of inflow are missing in such curves.  At monthly or seasonal scale, water control 349 

plans designed for specific purposes or hydroclimatic conditions that influence the upstream flow 350 

rate may exhibit low year to year variation within decades.  At daily or sub-daily scale, however, 351 

reservoir inflow can vary a lot due to emergency events or weather fluctuations, especially for 352 

those reservoirs with complicated operational conflicts between multiple objectives or climate-353 

sensitive reservoirs (such as reservoirs in the New England regions faced with potentially 354 

increasing flooding risks under the context of global warming).  Although actual rule curves 355 

implemented by reservoir operators could provide substantial information to understand the 356 

decision-making process of water resource management, it does not adequately to represent the 357 
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operation tradeoffs under various inflow conditions.  Reservoir inflow should be considered as a 358 

paramount input while building data-driven operation models.  Combining the inflow and 359 

storage in Experiment 4, the average NSE improves to 0.723, 0.854 and 0.873 for daily, WD and 360 

MD temporal configuration, respectively. 361 

The performance improvement from including hydroclimatic variables (e.g., P and PET) 362 

is investigated by comparing accuracies of DDMs in Experiment 1 vs. 4, Experiment 2 vs. 5, and 363 

Experiment 3 vs. 6.  For DDMs with only inflow (Experiment 2 vs. 5) or storage (Experiment 3 364 

vs. 6), the improvement from additional hydroclimatic forcing is negligible (mean NSEs increase 365 

less than 0.04).  For daily scale DDMs in Experiments 2 and 3, the overall performance even 366 

slightly downgrades when adding P and PET.  When both inflow and storage are used 367 

(Experiment 1 vs. 4), adding P and PET enhances mean NSE from 0.723 to 0.743, from 0.873 to 368 

0.880 and from 0.854 to 0.949 for daily, MD and WD configurations, respectively.  It is noted 369 

that the NSE improvement is larger in the fine time scale WD configuration than the coarse time 370 

scale MD configuration, as the former can better represent the short-term variability in P and 371 

PET. 372 

3.2 Effect of DDMs hierarchical temporal configuration on capturing reservoir operation 373 

behavior 374 

After feeding the DDMs with dominant explanatory variables (e.g., inflow and storage), a 375 

better organization (i.e.., hierarchical temporal configuration) of the explanatory variables further 376 

enhances the performance.  For example, in Experiment 4, re-arranging the training data in 377 

hierarchical configuration (WD and MD) improves the NSE by more than 20% compared to the 378 

single daily scale configuration, although the DDMs in this experiment contain the same amount 379 

of information.  This highlights the benefits of incorporating the multi-temporal scale of 380 

reservoir behaviors into the configuration of DDM to capture the reservoir operation under 381 

various targets. 382 

 383 

 384 
Figure 3. Improvement of NSE by hierarchical time scale framework (NSE୦୧ୣ୰ୟ୰ୡ୦୧ୡୟ୪ - 385 

NSEୱ୧୬୥୪ୣ). NSE୦୧ୣ୰ୟ୰ୡ୦୧ୡୟ୪ represents the performances of hierarchical time scale models (WD, 386 

MD), while the NSEୱ୧୬୥୪ୣ is the performance of a single time scale model (D). The difference 387 
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between Experiments 1 and 4 is, hydroclimatic forcing is employed in the former but is not in the 388 

latter. 389 

 390 

Figure 3 further illustrates the improvement of the hierarchical framework for reservoir 391 

operation modeling and the nuances of such improvement with/without hydroclimatic 392 

information at different time scales.  Most hierarchical temporal scale models under the same 393 

experiment settings perform better than the models constructed on the single time scale.  394 

Specifically, in Experiment 1 (Figure 3a) with the reservoir inflow, storage, P and PET as model 395 

inputs, performances of about 80% of reservoirs have been improved by hierarchical framework 396 

(MD), and it is more prominent for WD where the first layer simulates the reservoir release on 397 

the week scale.  For 50% of reservoirs, MD with hydroclimatic forcing improves the NSEs by 398 

more than 0.1, and WD does by increasing more than 0.2 in model performances. In Experiment 399 

4 (Figure 3b) without containing hydroclimatic forcing as model inputs, over 90% of the 400 

reservoir operation model gains a higher accuracy from the hierarchical architecture compared to 401 

the single daily scale model.  In addition, there is negligible performance gain differences 402 

between hierarchical temporal configurations (e.g., WD and MD) if hydroclimatic forcing is not 403 

included (Figure 3b).  While in Figure 3a with additional hydroclimatic forcing, the WD 404 

consistently improve NSEs by 0.1 for most reservoirs than the MD configuration.  It indicates 405 

that hydroclimatic forcing (which shows significant short-term variability) contribute to the 406 

prediction for models with relatively fine temporal resolution (such as weekly). 407 

3.3 Spatial pattern of DDM reservoir operation under various temporal configurations 408 

Figure 4a, b and c show the spatial distribution of NSE for Daily, WD and MD 409 

configuration, respectively.  The Daily scale model performance well (NSE higher than 0.95) for 410 

reservoirs along the Arkansas River (with navigation as primary purpose) and Columbia River 411 

(with hydroelectricity as primary purpose).  These reservoirs are operated with single target 412 

based in the inflow (Figure 4a), which can be captured by a single daily scale model.  Additional 413 

coarser weekly or monthly scale layer does not improvement the DDM performance (Figure 4d 414 

and e).  The operation behavior in reservoirs in the Rocky Mountains cannot be captured by the 415 

Daily scale DDM, since these reservoirs are primarily operated for water supply and have slow-416 

varying water storage.  For other reservoirs, the Daily scale DDM produces NSE less than 0.7. 417 

The MD scale DDM improves NSE over Daily scale in most reservoirs as shown in 418 

Figure 4e.  The improvement is achieved as monthly scale release decision depends on different 419 

variables than the daily scale decision (Figure 4d).  Reservoirs in the Rocky Mountains and 420 

California have the largest improvement, highlighting the signature of seasonal cycle of water 421 

supply operation in these reservoirs.  Reservoirs on the High Plains (e.g., Texas, Oklahoma, 422 

Kansas) and in the Northeast do not have significant improvement with additional monthly layer.  423 

These reservoirs generally have both water supply and flood control purpose at the same time, 424 

suggesting that the monthly scale is too coarse to capture the tradeoff between flood control and 425 

water supply.  For navigation reservoirs well represented by Daily scale DDM along the 426 

Arkansas River, adding a monthly scale (i.e., the MD model) even deteriorates the performance, 427 

as indicated by the negative NSE gain.  This highlights the importance of identifying the 428 

appropriate modeling resolution to match the time scale at which reservoir release decisions are 429 

made. 430 
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 431 
Figure 4. Spatial distribution of NSE of DDMs in Experiment 1 for a) Daily b) WD and c) MD 432 

configurations, and NSE improvement from Daily scale to d) WD and e) MD configuration. 433 

 434 

In addition to similar improvement gained by MD scale DDM, the finer resolution WD 435 

scale configuration further improve the NSE for reservoirs on the High Plains (e.g., Texas, 436 

Oklahoma, Kansas) and in the Northeast (Figure 4d).  The residual between daily release and 437 

weekly average release in the WD configuration is able to capture the coincided tradeoffs 438 

between water supply and flood control preferences. 439 
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3.4 Dominant variables of reservoir release across time scales 440 

Although DDMs frequently achieve remarkable results in model performance, further 441 

sensitivity analysis would help to diagnose and interpret the empirical relations captured by the 442 

“black-box” DDMs.  Different data-driven models have individual strengths and weaknesses in 443 

simulating the reservoir release, and few single models could consistently outperform others 444 

(Yang et al. 2021).  Performances of different data-driven models can vary widely by the 445 

modeling schemes, by the ways of training data structure, as well as by the statistical 446 

measurement used.  Model interpretability benefits further improvement in performance and 447 

providing insights on anthropogenic behaviors under hydroclimatic variabilities.  The 448 

hierarchical configurations of DDMs allow us to explore whether reservoir operation depends on 449 

different variables and how the dominant variables change across time scales, thus revealing how 450 

tradeoffs among various reservoir operation targets are effectively captured by the DDMs. 451 

We conducted sensitivity analysis based on the well-trained data-driven models to 452 

explore the impact of decision variables on reservoir release schemes across different time 453 

scales.  For a certain variable, a small one-day perturbation (i.e., 5% increase) is imposed on the 454 

original dataset each time, and simulations are accordingly updated by the well-trained model 455 

with given the new inputs. Absolute fractional change in simulated release is averaged over time, 456 

then the variable that leads to the largest change is referred to as the most sensitive ones. 457 

 458 

 459 
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Figure 5. Dominant variable for reservoir operation at different time scales. The bar plot on the 460 

lower right corner shows the number of reservoirs with major reliance of reservoir release on the 461 

inflow, storage, P and PET across monthly, weekly and daily scales. 462 

 463 

Figure 5 displays the most important variable for each reservoir across CONUS on the 464 

different time scales (daily, weekly and monthly).  For most reservoirs (221 out of 327), the 465 

same variable has critical influences on the release on all time scales, likely implying the 466 

consistency of their operating strategies and trade-offs on various time scales, and there may be a 467 

primary purpose that dominates the operation process throughout the year.  For 129 of these 468 

reservoirs, inflow play a decisive role in reservoir release at all time scales, while storage volume 469 

is the most instructive variable for 89 of these.  It is worth mentioning that for two reservoirs 470 

located in Utah, the Huntington North Reservoir and the Steinaker Reservoir, PET has a major 471 

effect on reservoir release at the daily, weekly, and monthly scales, which could involve 472 

considerable reservoir evaporation and water use for agricultural irrigation in the arid, semi-arid 473 

western mountains.  Only three reservoirs have P as the most predictive variable.  These 474 

reservoirs are in headwater watershed with small contributing area.  Therefore, the P is a good 475 

proxy for reservoir inflow.  These results of model-based sensitivity analysis further validate the 476 

findings given by the comparison of Experiments 1 and 4.  That is, reservoir inflow or storage 477 

volume has a paramount influence on the release decision rather than hydroclimatic forcing.  478 

Only for very few reservoirs, hydroclimatic forcing directly dominates the reservoir release. 479 

It is interesting to notice that more than one third of (106 out of 327) reservoirs vary in 480 

their dependency on decision variables at different time scales, suggesting that reservoir 481 

operators consider different information at different time scales to fulfill multiple designed 482 

purposes.  At the monthly scale, operations of 208 reservoirs primarily depend on the reservoir 483 

inflow, and 98 reservoirs rely more on storage volume.  At the daily scale, the number of 484 

reservoirs with major dependency on inflow decreases to 143 and that of reservoirs relying more 485 

on storage volume increases to 172.  From the coarse scale to the fine scale, more than 20% 486 

reservoirs (73 out of 327) shift their primary dependence from inflow to storage volume. 487 

Figure 6 shows the spatial distribution of dominant factors across daily, weekly and 488 

monthly scale.  Daily models with good performance (e.g., along the Arkansas River and 489 

Columbia River) generally identify inflow as the primary variable, as inflow exhibits high short-490 

term variability and can effectively inform the daily release decision.  The MD configuration 491 

captures the dependence of reservoirs (mostly located in the Rocky Mountains) monthly release 492 

decision on PET (Figure 4c), as reservoir are mainly operated for agricultural water supply. 493 

The daily models identify storage as the primary variable in most reservoirs over the 494 

High Plains (Figure 4a) and capture the release’s dependence on water level based on weir 495 

discharge equation.  However, these reservoirs are also actively managed for flood control 496 

purpose, which is dependent on inflow condition.  The failure to capture the flood control 497 

operation in the Daily model is corrected in the hierarchical temporal scale WD and MD, where 498 

some reservoirs’ decision dependence changes from storage to inflow (Figure 4b, c). 499 
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 500 
Figure 6. Spatial distribution of dominant factors across a) daily, b) weekly and c) monthly 501 

scale. The left half circle in b) and c) displays the major factor at the daily scale while the right 502 

half shows that at weekly or monthly scale, different from the daily dominated decision variable.  503 

4 Discussion 504 

4.1 Reservoir release behaviors across time scales 505 

Compare to attempts to capture reservoir operation at a fixed time scale, the hierarchical 506 

temporal configuration in this study achieves better performance with the same input 507 

information.  In addition, the sensitivity analysis suggests that operation in many reservoirs 508 

depends on different information at different time scales.  In the following paragraphs, we picked 509 

the multi-purpose Belton Lake reservoir to elaborate how various operation targets manifest their 510 

signatures at different time scales, thus requiring hierarchical temporal configuration to fully 511 
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capture the tradeoffs among multiple operation targets.  The results of other reservoirs can be 512 

found at uploaded data. 513 

The Belton Lake (TX00002) is located on Leon River in Texas with 536.8 million cubic 514 

meter (or 435,500 acre-feet) conservation capacity (Texas Water Development Board, 2015) and 515 

the maximum storage volume of around 1440 million cubic meters.  The 192-feet high dam 516 

maintains the water level at elevation between the conservation pool elevation of 594 feet and 517 

the crest elevation of 631 feet, with flood control, water supply and irrigation as listed operation 518 

targets under the management of U.S. Army Corps of Engineers.  The annual mean inflow 519 

volume is 641.5 million cubic meters.  The Belton Lake provides an example with large storage 520 

capacity in humid subtropical climate.  The DDM in Experiment 1 (with the most comprehensive 521 

training dataset) has NSE of 0.843, 0.971, 0.945 for Daily, WD and MD configuration, 522 

respectively.  The DDM identifies reservoir storage as dominant variable on release at Daily, 523 

WD, and MD scales, respectively. 524 

Figure 7 shows the scatter plots of release vs. inflow and storage vs. inflow at various 525 

time scales.  At the annual time scale (Figure 7d), the outflow is highly correlated with inflow, 526 

suggesting the reservoir has seasonal flow regulating capacity.  The slightly lower annual release 527 

than the inflow (Figure 7d) indicates water balance is roughly hold on annual time average.  The 528 

randomness between monthly inflow and release (Figure 7c) shows a wide range during different 529 

seasons indicating the seasonal buffering capacity of the reservoir storage.  The storage vs. 530 

release scatter plot shows reconcilable patterns starting from monthly scale.  It is interesting to 531 

find several lines in the storage vs. release scatter plot at daily scale (Figure 7e), showing 532 

different number spillway gates are open during release events. 533 

 534 

  535 
Figure 7. Relationship between inflow and release at a) daily, b) weekly, c) monthly, d) annual 536 

scale and; relationship between reservoir storage and release at e) daily, f) weekly, g) monthly, h) 537 

annual scale of Belton Lake (TX00002). 538 

 539 

Figure 8a shows the flow duration curves of Belton Lake inflow and releases simulated 540 

by different DDM configurations.  The Daily, WD and MD achieve similar predictability to 541 

capture the regulation during medium to high flow conditions (i.e., flow larger than 20% 542 

exceedance probability).  The Daily scale DDM overestimates the low to medium flow range 543 
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(i.e., flow less than 40% exceedance probability), and the MD scale DDM slightly overestimates 544 

the medium flow (i.e., flow between 25% and 45% exceedance) and underestimates the low flow 545 

range (i.e., flow less than 60% exceedance probability).  The WD scale DDM reproduces the 546 

flow duration curve for almost all flow conditions although not perfectly. 547 

 548 

 549 
Figure 8. Inflow, observed release, release simulated by Daily (D), Weekly-Daily (WD) and 550 

Monthly-Daily (WD) models of Belton Lake (TX00002) shown in a) Flow Duration Curve 551 

(FDC) and b) hydrograph during the calendar year 2002. 552 

 553 

The hydrograph of Year 2002 in Figure 8b shows the seasonal pattern and short-term 554 

variation produced by different DDM configurations.  The MD DDM trends to have lower 555 

discharge and maintain the release longer after each flood event, as the monthly resolution in the 556 

upper layer is too large to capture the fast response under flood control purpose.  The Daily scale 557 

DDM, on the other hand, trends to have faster decay of release after flood events, since the daily 558 

scale model is sensitive to the daily input and lacks the long-term information.  The WD scale 559 

configuration works best to capture both seasonal water supply and flood control release at the 560 

Belton Lake. 561 

These observations highlight the importance of appropriately organizing training data at 562 

various time scales in order to let machine learning techniques capture the underlaying 563 

relationships embedded at each time scale. We also used other machine learning techniques (e.g., 564 

random forest, support vector machine) to configure the hierarchical DDM and achieved 565 

satisfying results, suggesting the predictability is not limited by the choice of specific machine 566 

learning model.  From the perspective of effectively training the machine learning models, 567 

hierarchical temporal configuration not only yields better predictability, but also provides more 568 

meaningful interpretation of the DDM. 569 

4.2. Hierarchical nature of anthropogenic decisions 570 

DDMs are generally not constrained by the complexity of training dataset and can 571 

achieve better prediction with more training variables.  However, the experiments of hierarchical 572 

configuration comparison in Session 3.1 suggests that there exists a tradeoff between the number 573 

of training variables and time scales.  Figure 3b shows that finer time scale (i.e., WD) 574 

configuration does not necessarily performance better than coarser configuration (i.e., MD), 575 

when only reservoir inflow and storage are used to train the DDM.  After additional 576 

hydroclimatic variables are included in the training dataset, finer time scale configuration (WD) 577 
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provides better predictability than the coarser configuration (i.e., MD) (Figure 3a).  One possible 578 

reason is that the hydroclimatic variables contain short-term temporal variability that is necessary 579 

to improve the fine scale configuration.  Furthermore, it indicates that reservoir operation 580 

decisions under different operation targets are associated with different time scales and require 581 

different information.  Therefore, simply including more variables into the training datasets or 582 

increasing the hierarchical layers does not guarantee better predictability.  This observation 583 

highlights the importance of providing appropriate information that matches the temporal 584 

resolution to capture reservoir release behavior under various targets. 585 

Although the scaling issue in hydrologic processes has been well recognized by 586 

hydrologic community, there are few studies to investigate the scaling of decision making in 587 

water resources management.  In representing anthropogenic components (by either simulation 588 

or optimization approach) in hydrologic models, the decision makings are generally based on one 589 

single time scale.  For example, farmers’ irrigation decision depends on soil moisture condition.  590 

The reservoir operation policy is optimized to balance the tradeoff between water supply benefits 591 

and flood risk based on daily streamflow.  The hierarchical temporal scale configuration of DDM 592 

in this study explicitly shows that the single temporal scale model cannot fully capture the 593 

reservoir release under various operation targets.  Different operation targets are associated with 594 

different temporal scale and require corresponding hydroclimatic information.  For example, the 595 

reservoirs in the Colorado River Basin uses the seasonal snowpack condition to forecast the 596 

water supply (Xiao et al., 2018; Bureau of Reclamation, 2022), while the hydroelectric 597 

generation is based on hourly demands from power grids. 598 

Beside the dependence on cross-scale information, anthropogenic decisions also interact 599 

at different scales.  Short-term decisions (e.g., operation of water resources infrastructure) are 600 

constrained by long-term decisions (e.g., planning of water resources infrastructure), and the 601 

objectives of decisions at different scale may require tradeoff.  For example, given the same 602 

amount of agricultural water supply, farmers can tradeoff between crop type and irrigated area 603 

(decisions made before growing season) and the actual irrigation intensity (decisions made 604 

during growing season), which results in different water release amount and frequency.  The 605 

hierarchical temporal configuration of DDM in this study recognizes cross-scale interaction 606 

feature and handles this feature by simulating the daily release deviation from the 607 

weekly/monthly release.  For traditional optimization formulation in water resources 608 

management, we believe the hierarchical optimization (Yeo et al., 2007; Karsanina et al., 2018) 609 

would be a promising configuration to represent interaction of decisions made across scales. 610 

As hydrologic models and observations continue to improve and provide better 611 

prediction, the ultimate question is how hydrologic prediction (and what types of prediction) can 612 

be effectively utilized to improve the operation of reservoirs.  Although we find very limited case 613 

where hydrologic forecast is used in operation in the 300 reservoirs, there are efforts to explore 614 

the reservoir operation using streamflow prediction (Delaney et al., 2020; Zarei et al., 2021).  615 

Hydrologic predictions at different time scales are based on different processes (e.g., seasonal 616 

projection based on snow water storage, short-term prediction based on weather forecast) and 617 

subject to various level of uncertainty.  However, it remains challenging to have a consistent 618 

framework to integrate uncertainties from predictions across scales to inform decision makers on 619 

the tradeoffs among various reservoir operation targets. 620 
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5  Conclusions 621 

In this study, we proposed a hierarchical temporal scale framework to improve the data-622 

driven reservoir operation modeling. With observed inflow, storage, precipitation and potential 623 

evapotranspiration as inputs, more than 80% of reservoirs across the CONUS gain the 624 

improvement in model performances, while modeling of 90% of them can be more accurate by 625 

this framework if there is no hydroclimatic forcing. 626 

This hierarchical framework is not model specific and therefore has broad applicability. 627 

By further adjusting the primary states simulated on the first coarse scale, which is partially 628 

similar to the operating process of reservoir managers in response to the daily inflow 629 

corresponding to the predefined water control plans, the hierarchical architecture is conducive to 630 

improve both the performances and the interpretability of data-driven models, and can be further 631 

adapted to be closely integrated with the decision-making of managers. It also demonstrates the 632 

similarity of a natural-human system and hydrologic processes across temporal scales. In future 633 

work, deep learning-based reservoir components can be embedded in physics-based models for 634 

more accurate hydrological process simulation. 635 

Results of different experiment settings reveal that reservoir inflow and storage volume 636 

have a paramount influence on the release strategies. Model-based sensitivity analysis proves it, 637 

and further illustrates that variable importance can vary in time periods and across multiple time 638 

scales. For nearly 1/3 reservoirs across the CONUS, reservoir operations mainly depend on 639 

different decision variables at different time scales, and for several reservoirs, such as some in 640 

the Upper Colorado and Sacramento districts, hydroclimatic forcing still has major influence on 641 

the release, addressing more demands on the assessment and planning of reservoir status and 642 

accurate forecasting of hydroclimatic forcing. 643 
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