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Abstract 17 

The drought resilience of forest ecosystems is generally believed to depend on the dominant tree 18 

species’ hydraulic traits. These traits define the maximum water transport capacity and the 19 

degree of vulnerability to hydraulic failure of a tree species. This work evaluates the effect of the 20 

intraspecific variability of hydraulic traits on the simulated tree water use in the Community 21 

Land Model (CLM, version 5.0). We selected two contrasting broadleaved tree species and 22 

performed a series of numerical experiments by modifying the parameters of the plant 23 

vulnerability curve and the maximum xylem hydraulic conductance accounting for the variability 24 

within each species. Our prescribed parameter sets represent vulnerable and resistant tree 25 

responses to the water deficit. At sites with an ample water supply, the resistant configuration 26 

simulates reduced water stress and increased transpiration compared to the vulnerable 27 

configuration. Meanwhile, the model results are counter-intuitive at temporarily dry sites when 28 

water availability is the limiting factor. The numerical experiments demonstrate the emergent 29 

role of the maximum xylem conductance as a modulator of the plant water use strategy and the 30 

simulated transpiration within the model. Using the default value for maximum xylem 31 

conductance, the model tends to overestimate the early summer transpiration at drier sites, 32 

forcing the vegetation to experience unrealistic water stress later in the year. Our findings 33 

suggest that the parameterization of maximum xylem conductance is an important yet unresolved 34 

problem in the CLM and similar land surface models. 35 

 36 

Plain Language Summary 37 

The survival of trees in drought conditions depends on their ability to adapt to water scarcity. 38 

Part of this adaptation is characterized by specific plant traits, which are an important component 39 

of Land Surface Models and largely determine the relationship between soil moisture and canopy 40 

gas exchange. Our study explores how the variability of specific plant traits of individual tree 41 

species may affect the selected model's ability to reproduce the water use observed in forest 42 

stands in Europe. For climates with a pronounced summer dry period, we found that the default 43 

model settings overestimated the vegetation water use in the early growing season, when water is 44 

abundant, resulting in severe water stress and underestimated transpiration as the dry season 45 

progressed.  We specifically demonstrate that a rarely considered plant trait, representing the 46 

maximum water transport capacity, plays an essential role in controlling the magnitude of 47 

simulated water use and that adjustments to this parameter greatly help to reproduce the 48 

vegetation water use observed in seasonally dry climates. 49 

1 Introduction 50 

The recent worldwide increase in drought incidence and severity (He et al., 2020) has 51 

been associated with alterations in the soil carbon and nitrogen dynamics (Deng et al., 2021), 52 

high rates of tree mortality (Powers et al., 2020; Senf et al., 2020) as a consequence of the high 53 

atmospheric water demand (Hammond et al., 2022; McDowell et al., 2022),  and a diminution in 54 

forest evaporation (Lansu et al., 2020; Lindroth et al., 2020). The severity of drought impacts on 55 

forest ecosystems and the spatial extent of them depends on the vegetation resistance and 56 

resilience to water scarcity. The latter reflects the admixed vulnerability of individual trees 57 

(Haberstroh & Werner, 2022) and is partly driven by the safety mechanisms used to overcome 58 

disturbances in the whole tree hydraulic system (Arend et al., 2022).  59 
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The resistance of a species to water stress is commonly expressed in the plant 60 

vulnerability curve and the recovery patterns shown by the tree species (Klein et al., 2018). This 61 

curve postulates a continuous decline of plant organ conductance (e.g., roots, branches, leaves) 62 

with declining water pressure in the plant organ (Sperry & Love, 2015; Venturas et al., 2017). 63 

The parameters of the curve differ among and within tree species (Rosner et al., 2019), and are 64 

influenced by the provenance of the species (Hajek et al., 2016; Lobo et al., 2018) and xylem 65 

features (Pereira et al., 2018). The plant vulnerability curve has been analyzed across species and 66 

biomes (Choat et al., 2012), allowing the degree of vulnerability to hydraulic failure to be 67 

quantified (Venturas et al., 2017). Vulnerable trees commonly have a low wood density, an early 68 

loss of conductance, and a small threshold between unstressed conditions and the occurrence of 69 

hydraulic damage. Resistant trees have vulnerability curves ranging from gradual to steep 70 

responses at lower water potentials. These trees commonly have large safety margins and high 71 

wood density (Johnson et al., 2012; Meinzer & McCulloh, 2013; Mrad et al., 2019). The degree 72 

of vulnerability to hydraulic failure has been related to the trade-off between xylem safety and 73 

efficiency for many tree species (U. G. Hacke et al., 2006; Venturas et al., 2017). This trade-off 74 

requires the coordination of the plant hydraulic traits and water use strategy (WUS), which 75 

ranges from aggressive to conservative (Flo et al., 2021; Mrad et al., 2019). Also, the WUS is 76 

influenced by the stomatal regulation capacity of the tree species (Konings & Gentine, 2017), 77 

modulated by the vapor pressure deficit (Novick et al., 2019), and driven partially by the soil 78 

water content (Fu et al., 2022). However, the current evidence does not allow the generalization 79 

of this trade-off for all plant species (Gleason et al., 2016).  80 

The plant hydraulic theory is numerically implemented in models using either a plant 81 

pipe model, a porous media model, an electrical analogy model (Li et al., 2021), or optimality-82 

based models (Sabot et al., 2020; H. Xu et al., 2021). Plant pipe models follow the Hagen-83 

Poiseulle law and require the use of allometric scaling laws (Li et al., 2021; Mrad et al., 2018), 84 

whereas porous media models are based on Richards equation assuming that water movement 85 

through the xylem mimics an unsaturated porous media flow (Christoffersen et al., 2016; Li et 86 

al., 2021). The electrical analogy models resemble an electrical circuit with resistance and 87 

capacitance parameters that control the water flow following Darcy's law (Bonan et al., 2014; Li 88 

et al., 2021). Finally, optimality-based models do not prescribe hydraulic traits based on 89 

observations, but assume that vegetation finds its “optimum” by maximizing a carbon-related 90 

goal function for given environmental conditions (Joshi et al., 2022; Sabot et al., 2020). An 91 

electrical analogy model has low to moderate computational requirements making it a suitable 92 

model for implementation in large scale Land Surface Models (LSMs). For example, the 93 

Community Land Model 5.0 (CLM5, Lawrence et al., 2019) implements an electrical analogy 94 

model using the plant vulnerability curve to downscale the segment conductance according to the 95 

percent loss of conductance (PLC) (Kennedy et al., 2019). Given its recent implementation, the 96 

simulated plant hydraulic response (e.g., vulnerability to hydraulic failure) of CLM5 during 97 

drought conditions and across different forested ecosystems has not yet been evaluated in detail. 98 

Specifically, it has never been examined in detail to what extent the current (and default) plant 99 

hydraulic formulation and parameterization of the model reproduces realistic transpiration rates 100 

and plant water status under varying soil moisture availability and atmospheric water demand.  101 

The implementation of plant hydraulic formulations for LSMs from a species-specific 102 

perspective is rare (e.g., De Kauwe et al., 2022; Sabot et al., 2020), and most of the current 103 

LSMs rely on the definition of plant hydraulic traits within the Plant Functional Type (PFT) 104 

classification framework (e.g., D. M. Lawrence et al., 2019; Zhang et al., 2022) . This 105 
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classification assumes that hydraulic traits are spatially homogeneous and temporally fixed 106 

within predefined vegetation categories, which is equivalent to assuming the same drought 107 

sensitivity within the same PFT class. Several studies have addressed the implications associated 108 

with the loss of diversity in the PFT classification in terms of water and carbon dynamics by 109 

using deterministic or stochastic coordinated plant attributes (Christoffersen et al., 2016; Pappas 110 

et al., 2016; Y. P. Wang et al., 2012; X. Xu et al., 2016) or by exploiting plant trait-climate 111 

relationships (Verheijen et al., 2013). A recent study by Butler et al. (2022) showed that the 112 

aggregation of allocation and hydraulic traits into PFTs reduces the productivity of the modelled 113 

ecosystem with respect to the flux data of sites with a strong dependency on vegetation 114 

phenology. Liu et al. (2021) argues the negative impacts of generalizing the plant hydraulic traits 115 

at PFT level and proposed a set of hydraulic functional types as an alternative to current PFTs. 116 

Overall, representing the plant trait inter- and intraspecific diversity within the PFT broad 117 

classification scheme remains a challenging task requiring the characterization of the emergent 118 

plant response by coordinating water use strategies with the xylem vulnerability (Skelton et al., 119 

2015). While the trade-off between plant hydraulic traits has been addressed in previous studies 120 

using detailed plant hydrodynamic models (e.g., Mirfenderesgi et al. (2019)), the coordination 121 

between hydraulic traits and water use strategies remains largely unexplored, with some attempts 122 

carried out aiming to improve the plant hydraulic framework implemented in LSMs (e.g., Eller et 123 

al., 2020; Sabot et al., 2020). Addressing this issue may provide an opportunity to define optimal 124 

strategies for large-scale parameterizations of key plant hydraulic traits (e.g., maximum xylem 125 

conductance), which are rarely documented in existing hydraulic trait databases (Liu et al., 126 

2021). 127 

This manuscript aims to evaluate the effect of the intraspecific variability of plant 128 

hydraulic traits on the simulated transpiration response of two contrasting tree species in CLM5. 129 

The intraspecific variability of plant hydraulic traits defines the spectrum of vulnerability 130 

responses to hydraulic failure and the water use strategies of each species. This spectrum 131 

considers that individual tree species have different boundaries determining their degree of 132 

vulnerability to hydraulic failure. Our hypothesis is that vulnerable trees transpire more than 133 

resistant trees under unstressed water conditions and strongly reduce transpiration during dry 134 

periods. On the other hand, resistant trees maintain low transpiration rates but experience less 135 

stress on the plant hydraulic system. This hypothesis is evaluated for two broadleaved tree 136 

species, Quercus ilex L. and Fagus sylvatica L., with contrasting phenologies and provenances. 137 

For each species, we distinguish between a resistant and vulnerable hydraulic trait configuration 138 

by extracting from the reported parameter sets for that species the plant vulnerability curves with 139 

the minimum and maximum xylem pressure inducing 50% loss of hydraulic conductance (Ψp50) 140 

value, respectively. The results of point-scale numerical experiments with CLM5 based on each 141 

parameterization are compared to the sap flux observed at four experimental sites across Europe. 142 

The representation of the simulated vulnerability to hydraulic failure and the water use strategy 143 

of each species are interpreted using the simulated leaf water stress factor (β) and percent loss of 144 

conductance (PLC) in different plant organs. 145 

2 Materials and Methods 146 

2.1 Tree Species and Experimental Sites 147 

The tree species selected for this study, Fagus sylvatica L. and Quercus ilex L., belong to 148 

the same botanical family (Fagaceae) but differ in their phenology and spatial distribution in 149 
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Europe (Figure 1). Fagus sylvatica is a deciduous broadleaved tree distributed in Central and 150 

Western Europe, from Southern Italy to Southern Norway. This tree species grows from sea level 151 

to 1000 m a.s.l., with a higher upper elevation limit in dryer regions. It does not survive in 152 

locations with poor drainage or stagnant water, and its relatively shallow root system makes it 153 

susceptible to emerging hot droughts and high temperatures (Houston Durrant et al., 2016; von 154 

Wuehlisch, 2008). Quercus ilex is a broadleaved evergreen species that grows as a tree or shrub. 155 

It inhabits the Mediterranean basin from the coast up to 1800 m a.s.l. This species can survive 156 

low temperatures and its sclerophyllous character increases its resistance to drought by reducing 157 

water loss during dry periods  (de Rigo & Caudullo, 2016; Schirone et al., 2019). 158 

Two experimental sites for each species were selected from the SAPFLUXNET database 159 

(Poyatos et al., 2020). Fagus sylvatica is the dominant tree species in Hesse (France, FR-Hes) 160 

and Hinnensee (Germany, DE-Hin), over the sampling periods of 2001-2005 and 2012-2014, 161 

respectively (Table 1). Both sites have a temperate oceanic climate (Cfb) according to Köppen-162 

Geiger’s climate classification (Beck et al., 2018), with no significant intraseasonal precipitation 163 

variability. The stand age marks the main difference between these two sites; trees in FR-Hes 164 

were 34 years old during the selected measurement period while those in DE-Hin were more 165 

than 200 years old. The mean tree diameter reflects this age difference, with 12.9 cm at FR-Hes 166 

and 43.6 cm at DE-Hin. Quercus ilex is the dominant tree species in Puechabon (France, FR-167 

Pue) and Alto Tajo (Spain, ES-Alt). These sites cover the monitoring periods 2001-2005 and 168 

2012-2014, respectively. The climate differs slightly between these two sites; FR-Pue has a hot-169 

summer Mediterranean climate (Csa) while ES-Alt has a warm-summer Mediterranean climate 170 

(Csb). The different elevations of the sites explain the differences in climate classification (Table 171 

1). Despite a lack of differences in the stand age between these two sites, the diameter recorded 172 

for the trees in FR-Pue (9.1 cm) is much smaller than the diameter in ES-Alt (24.4 cm). 173 
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 174 

Figure 1. Geographical location of the selected experimental sites and the spatial distribution of 175 

Fagus sylvatica L. (diamonds) and Quercus ilex L. (circles) and their spatial distribution across 176 

Europe. The spatial distribution of the tree species is based on Mauri et al. (2022). 177 

2.2 Model Setup 178 

The Community Land Model version 5.0 (CLM5, Lawrence et al. (2019)) was  applied at 179 

each experimental site using point-scale setups. Hourly atmospheric forcing was retrieved from 180 

the SAPFLUXNET dataset. This dataset includes precipitation, wind speed, air temperature, 181 

relative humidity, and incoming shortwave radiation. The incoming longwave radiation was 182 

calculated according to An et al. (2017) using the vapor pressure deficit and temperature. The 183 

COSMO-REA6 reanalysis product (Bollmeyer et al., 2015) with a temporal and spatial 184 

resolution of one hour and 0.05°, respectively, was used to fill in the missing variables (i.e., 185 

atmospheric pressure) and  temporal data gaps for each site. The monthly leaf area index (LAI) 186 

in m
2
 m

-2 
is based on the 8-days’ time-series of the Global Land Surface Satellite (GLASS) 187 

product (Liang et al., 2013, 2014) that has a spatial resolution of 0.05° for the different periods 188 

under analysis. The monthly stem area index (SAI) in m
2
 m

-2 
was retrieved from the global 189 

surface dataset of the model as described in Lawrence & Chase (2010). The LAI of the sites 190 

covered with Fagus sylvatica trees was forced to 0.0 m
2
m

-2 
from October to April. This decision 191 

was based on the observed phenology at FR-Hes (Q. Wang et al., 2005) and DE-Hin (Blume et 192 

al., 2022). The root area index (RAI) in m
2
m

-2
 is calculated in the model (see Equation 2.11.15 of 193 

the technical documentation (UCAR, 2020)) based on plant functional type-specific parameters 194 

such as the LAI, SAI, root fraction in each soil layer, and the root-to-shoot ratio. The main soil 195 
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characteristics (e.g., soil texture, organic matter content) were taken from Bonan et al. (2002), 196 

while the depth to bedrock was taken from Pelletier et al. (2016). Multi-year spin-up runs were 197 

performed for each experimental site by reinitializing soil moisture and soil temperature until a 198 

dynamic equilibrium condition was reached. The tree species at the selected sites pertain to two 199 

distinctive plant functional types (PFTs), with Fagus sylvatica representing the Temperate 200 

Broadleaf Deciduous Tree (BDT) in FR-Hes and DE-Hin and Quercus ilex representing the 201 

Temperate Broadleaf Evergreen Tree (BET) in FR-Pue and ES-Alt; see Table 2 for the default 202 

plant hydraulic configuration (DC) of these two PFTs. 203 

2.3 Plant Vulnerability Curve 204 

The plant vulnerability curve (PVC) implemented in CLM5 (Equation 1) determines the 205 

plant segment specific hydraulic conductance k (mmH2O mmH2O
-1

s
-1

) based on three parameters: 206 

the xylem pressure inducing 50% loss of hydraulic conductance (Ψp50, MPa), the non-207 

dimensional sigmoidal shape parameter of the curve (ck), and the maximum plant hydraulic 208 

conductance (kmax, mmH2O mmH2O
-1

s
-1

). The CLM5 plant hydraulic routine uses a plant 209 

segmentation that differentiates between roots, stems, shaded and sunlit leaves. Each plant 210 

segment uses kmax, Ψp50 and ck as static parameters that can be adjusted and may differ between 211 

plant segments (i.e., root, xylem, and sunlit and shaded leaf) and PFTs. The plant hydraulic 212 

system of CLM5 uses k to determine the flux per plant segment by applying a Darcy’s law 213 

equation, where the reference area varies between plant segments: the leaf area index (LAI, m
2
m

-
214 

2
) for the stem-to-leaf, the stem area index (SAI, m

2
m

-2
) for the root-to-stem, and the root area 215 

index (RAI, m
2
m

-2
) for the soil-to-root segment. A detailed description of the equations used by 216 

the plant hydraulic system of CLM5 is provided in Kennedy et al. (2019) and Lawrence et al. 217 

(2019). 218 

 219 

𝑘 = 𝑘𝑚𝑎𝑥2
−(

𝛹
𝛹𝑝50

)
𝑐𝑘

 
Equation 1 

2.4. Intraspecific Variability of Plant Hydraulic Traits 220 

The intraspecific variability of both tree species was determined based on the loss of hydraulic 221 

conductance by 12%, 50%, 88%, and in some cases at 10% (Ψp12, Ψp50, Ψp88, and Ψp10, 222 

respectively), as reported in the Xylem Functional Traits (XFT) database (Choat et al., 2012). 223 

The limited data for Fagus sylvatica in the XFT database led to the selection of additional 224 

experimental data to improve the representation of the species. Meanwhile, the data set of 225 

Quercus ilex was subject to an additional screening of the individual records due to concerns 226 

about the measurement of the PVC in different species of Oaks (Cochard et al., 2013) and in 227 

particular to the open-vessels artefact issue affecting the measurements in Quercus ilex  (Martin-228 

StPaul et al., 2014). Therefore, we conducted a literature review and selected those experiments 229 

that implemented procedures to prevent such artefacts (e.g., excised under water). The complete 230 

list of references used to retrieve the additional data for Fagus sylvatica and Quercus ilex is 231 

available in Table S1. The ck parameter of each dataset was determined by converting the 232 

reported slope of the vulnerability curve at Ψp50 to ck or by solving the CLM vulnerability curve 233 

for ck and inserting any provided combination of PLC and Ψp10, or Ψp12, or Ψp88 values reported 234 

in the XFT database, with a preference for Ψp10 or Ψp12 if available. The procedure to determine 235 

the ck parameter assumes that Equation 1 follows the Weibull distribution, allowing the 236 
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vulnerability curve formulation from Domec and Gartner (2001) to be used. From this 237 

formulation, we derived Equation 2 to calculate the ck parameter based on the Ψp50, the slope of 238 

the curve (s) at Ψp50 (Pa
-1

), and V as a constant dimensionless value of 34.66. To determine V, we 239 

deduced Equation 3 from Domec and Gartner (2001) and inserted the percent loss of 240 

conductivity (τ50) of 50%. Equation 4 is used to calculate s (Pa
-1

) using the slope at any specific 241 

loss of conductivity (𝜏). This indicator is calculated with Equation 4 using 𝜏 in %, Ψp50, and Ψx 242 

that represents the matric potential at the selected 𝜏. Finally, the two curves with the highest and 243 

lowest Ψp50 values were selected for each species to represent the vulnerable (VC) and resistant 244 

(RC) configuration, respectively (Figure 2); see Table 2 for more details on the obtained values. 245 

 246 

𝑐k =
Ψp50 ∙ 𝑠

𝑉
 Equation 2 

 247 

𝑉 = (τ50 − 100) ∙ ln (1 −
τ50

100
) Equation 3 

 248 

𝑠 = −25
log (

100 − τ
τ )

Ψx − Ψp50
 Equation 4 

 249 

The xylem water potentials of Fagus sylvatica have a narrow distribution, with the Ψp12, 250 

Ψp50, and Ψp88 values ranging from -2.0 MPa to -5.0 MPa (Figure 2). The two extreme curves 251 

obtained from this dataset have a steep decline of hydraulic conductance with the diminution of 252 

water potentials, with a small range in ck (1.73 to 3.33) and Ψp50 (-1.9 MPa to -4.7 MPa) values 253 

(Table 2). Quercus ilex has a more negative range of xylem water potentials than Fagus 254 

sylvatica, ranging from -4.97 MPa to -7.66 MPa. Therefore, the VC of Quercus ilex is described 255 

by a Ψp50 of -4.97 MPa and a ck value of 1.06; meanwhile, its RC has a Ψp50 of -7.66 MPa and a 256 

ck of 2.27.  257 

The kmax values used by default in CLM5 are assumed constant for the different PFTs and 258 

homogeneous across the different plant organs (i.e., root, xylem, and leaves). kmax values for each 259 

plant segment can be determined based on the experimental specific hydraulic conductance (ks, 260 

kg m
-2

MPa
-1

s
-1

), which is defined as the flow rate per cross sectional area per unit of pressure 261 

difference along a plant segment (kg m
-2

MPa
-1

s
-1

) (Eamus et al., 2016). However, a standard 262 

procedure for determining kmax for its use in CLM5 (i.e., at PFT level and for each plant segment) 263 

from tree- and plant organ-specific information existing in literature has not been specified yet. 264 

Therefore, considering the large uncertainty in estimating this parameter and the unknown effect 265 

of its variability, we arbitrarily choose a range of values between one order of magnitude above 266 

(2.0 x 10
-7

 mmH2O mmH2O
-1

s
-1

) and below (2.0 x 10
-9 

mmH2O mmH2O
-1

s
-1

) the default value (2.0 x 267 

10
-8 

mmH2O mmH2O
-1

s
-1

) of the model. The upper and lower values of this variability range are 268 

referred to from now as high (Hkmax) and low (Lkmax) xylem conductance, respectively. 269 

 270 
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 271 

 272 

Figure 2. Spectrum of the vulnerability curves of Quercus ilex L. and Fagus sylvatica L. 273 

The solid blue, red, and dashed black lines represent the resistant (RC), vulnerable (VC), and 274 

default (DC) vulnerability curves used in the numerical experiments, respectively. The 275 

vulnerability curves were not differentiated between plant organs within the same tree species. 276 

The solid green lines show the full data set of vulnerability curves used for each species. 277 

 278 

2.5. Numerical Experiments 279 

The role of the intraspecific variability of plant hydraulic traits in contrasting tree species 280 

was examined based on a series of numerical experiments. These experiments aimed to assess to 281 

what extent the plant hydraulics representation of CLM5 reproduces the measured transpiration 282 

of each experimental site based on the spectrum of vulnerability to the hydraulic failure of each 283 

tree species (Table 2). All the experiments considered that the plant segments (i.e., roots, stems, 284 

leaves) of a given plant functional type (PFT) have the same plant hydraulic parameterization 285 

(i.e., kmax, Ψp50, and ck); allowing the same degree of vulnerability to hydraulic failure between 286 

the distal portions of the modeled vegetation. 287 

The first set of experiments compared the effect of the PVC shape on the distribution of 288 

PLC values, leaf water stress (β), and the transpiration simulated by the model. In this 289 

experiment we only changed the shape of the PVC without modifying the default kmax value 290 
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among configurations. The PVC shape parameters determine the steepness of the hydraulic 291 

response (ck) and the range of water potentials at which the plant will start experiencing extreme 292 

water stress (Ψp50). We hypothesized that the RC describes a plant response less affected by low 293 

soil water potentials, while the VC describes a plant response with a high susceptibility to 294 

hydraulic failure at low water potentials. 295 

The second set of experiments explored the role of kmax in constraining the whole plant 296 

water use strategy of the different tree species. This was achieved by changing only the kmax 297 

value of the default configuration (DCkmax) to the high (Hkmax) and low (Lkmax) xylem 298 

conductance while keeping the default model configuration for the shape parameters of the 299 

vulnerability curve (Table 2). Finally, two additional intermediate values were added to this 300 

experiment representing the midpoint between the boundaries and the default kmax (1.1 x 10
-7

 301 

mmH2O mmH2O
-1

s
-1 

and 1.1 x 10
-8 

mmH2O mmH2O
-1

s
-1

) and are referred to as intermediate-high 302 

(IHkmax) and intermediate-low (ILkmax) xylem conductance, respectively. The optimal choice of 303 

the defined kmax configurations was selected based on the maximum value of the index of 304 

agreement (see section 2.6.4) and is referred to in the manuscript as the ‘optimal’ kmax. For sites 305 

where the index of agreement of the ‘optimal’ kmax is lower than 0.6 we used an additional kmax 306 

configuration corresponding to the midpoint between the best performing kmax and the following 307 

kmax until we achieve an index value > 0.6. 308 

The third set of experiments aimed to evaluate the role of coordinated changes in safety 309 

(i.e., shape parameters) and transport capacity (i.e., maximum xylem conductance). We analyzed 310 

the plant hydraulic response simulated by CLM5 using the kmax configuration that has the largest 311 

index of agreement (see section 2.6.4) obtained for each site in the second set of experiments 312 

together with both Ψp50 and ck values used in the first set of experiments (Table 2).  We 313 

hypothesized that a more appropriate kmax value would lead to the expected pattern of vulnerable 314 

hydraulic configurations experiencing more water stress. The stress was evaluated based on the 315 

variation of the percent loss of conductance (PLC) and the leaf water stress factor (β) described 316 

later in section 2.6.3. 317 

2.6. Data Analysis 318 

2.6.1. Reference Evaporation 319 

Equation 5 is based on Equation 6 from Allen et al. (1998), and calculates the reference 320 

evaporation (Eo) used as a descriptive variable of the atmospheric water demand for each 321 

experimental site but has no relevance for the model simulations. Equation 5 assumed a 322 

reference crop of 0.12 m height, a surface resistance of 70 s m
-1

, and an albedo of 0.23. This 323 

equation requires wind speed (u) in m s
-1

, net radiation (Rn) and ground heat flux (G) both in MJ 324 

m
-2

d
-1

, air temperature (T) in C, and the actual and saturated vapor pressures (ea and es, 325 

respectively) in kPa. G was extracted from the modeled results of the default configuration of 326 

each experimental site. The slope of the saturation vapor pressure curve at air temperature (∆, 327 

kPa K
-1

) was computed using Equation 6, based on Equation 13 from Allen et al. (1998). The 328 

psychrometric constant (𝛾) was estimated with Equation 7 based on Equation 8 from Allen et al. 329 

(1998), where 𝜆 is the latent heat of vaporization (2.45 MJ kg
-1

), cp is the specific heat at constant 330 

pressure (1.013 x 10
-3

 MJ kg
-1

 K
-1

), p is the atmospheric pressure (kPa), and 𝜖 is the molecular 331 

weight ratio of water vapor and dry air (0.622). 332 

 333 
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𝐸𝑜 =
0.408 ∙ ∆ ∙ (𝑅𝑛 − 𝐺) + 𝛾

900
𝑇 + 273 ∙ 𝑢 ∙ (𝑒𝑠 − 𝑒𝑎)

∆ + 𝛾 ∙ (1 + 0.34 ∙ 𝑢)
 Equation 5 

 334 

∆=
4098 ∙ (0.6108 ∙ 𝑒𝑥𝑝(

17.27∙𝑇
𝑇+273.3

))

(𝑇 + 237.3)2
 

Equation 6 

 335 

𝛾 =
𝑐𝑝𝑝

𝜖𝜆
 Equation 7 

2.6.2. Upscaled Transpiration 336 

Observed forest transpiration (ET) in mm hr
-1

 was calculated based on the hourly and sub-337 

hourly sap flux of individual trees (Qtree) in cm
3
 hr

-1
 available on the SAPFLUXNET data set 338 

(Poyatos et al., 2020). We used equation 8 to obtain ET and summarized it in daily time steps 339 

following the recommendations of Nelson et al. (2020). Equation 8 requires Qtree aggregated in 340 

hourly fluxes per tree (m
3
 hr

-1
tree

-1
), the basal tree area (𝛺tree) in m

2
 tree

-1
, the stand basal area 341 

(𝛺stand) in m
2
 m

-2
, and the number of measured trees (n). All the information required in Equation 342 

8 is available on the SAPFLUXNET data set for each site. The stand basal area of DE-Hin was 343 

missing in the SAPFLUXNET data set, so we obtained it from Moreno et al. (2017) according to 344 

the geographical location of the plot. 345 

 346 

𝐸𝑇 =
𝛺𝑠𝑡𝑎𝑛𝑑

𝑛 ∙ 103
∙ ∑

𝑄𝑡𝑟𝑒𝑒

𝛺𝑡𝑟𝑒𝑒

𝑛

𝑡𝑟𝑒𝑒=1

 Equation 8 

2.6.3 Plant Water Stress 347 

The plant water stress was evaluated by comparing the percentage loss of hydraulic 348 

conductance (PLC) and the transpiration water stress parameter (β). The PLC was calculated 349 

using Equation 9 at the root-stem (hereafter named stem) and stem-leaf (hereafter named leaf) plant 350 

segments. This equation uses the simulated (k) and the maximum (kmax) plant organ conductance, where 351 

low PLC values represent a stressed plant segment. The leaf water stress factor (βx) of each 352 

component (i.e., sunlit and shaded leaf) is used to down-regulate the photosynthesis and stomatal 353 

conductance (D. M. Lawrence et al., 2019) and ranges from 0 (fully stressed component) to 1 354 

(non-stressed component). The βx is calculated as the ratio of the actual stomatal conductance 355 

(gx.s) over the unstressed stomatal conductance (gx.max) (Equation 10). The canopy water stress 356 

factor (β) is calculated as the weighted average of shade and sunlit components according to their 357 

corresponding LAI components (Equation 11). Further details on the mathematical formulation of β 358 

factor of CLM5 are provided in Kennedy et al. (2019). 359 

 360 

𝑃𝐿𝐶 = 100 ∙ (1 −
𝑘

𝑘𝑚𝑎𝑥
) Equation 9 
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 361 

𝛽x =
𝑔x.s

𝑔x.max
 Equation 10 

 362 

𝛽 =
𝛽sunlit ∙ LAIsunlit + 𝛽shaded ∙ LAIshaded

LAIsunlit + LAIshaded
 Equation 11 

 363 

We used the modeled PLC as a proxy of realistic plant responses considering that when 364 

the PLC is closer to 12%, the stomatal control of the plants prevents the trees from reducing the 365 

internal water storage and dehydrating further. When the PLC is closer to 50% the hydraulic 366 

stress in the plants triggers a series of negative effects such as leaf shedding or partial dieback of 367 

branches, and the recovery process of the plant does not necessarily reach a full recovery. 368 

Meanwhile, when the PLC is closer to 88% it is considered that most of the trees are dying or are 369 

already dead (Choat et al., 2018; Johnson et al., 2012; Meinzer et al., 2009; Preisler et al., 2022). 370 

2.6.4 Index of Agreement 371 

The data analysis across sites and model configurations focused on comparing the 372 

measured and modeled transpiration during extended summer periods lasting from May to 373 

September using the Index of Agreement (Γ) proposed by Duveiller et al., (2016). Equation 11 374 

determines Γ as the product between an α coefficient and the Pearson correlation coefficient (r). 375 

The α coefficient represents any bias existing between measured and modeled daily transpiration 376 

rates, where a value of 1.0 represents a perfect agreement between both data sets and a 0 value 377 

means no agreement between them. This coefficient is determined using the standard deviation 378 

of measured and modeled transpiration (σX and σY, respectively) and their mean values (𝑋̅ and 379 

𝑌̅). 380 

  381 

Γ = 𝛼 ∙ 𝑟       where 𝛼 = 𝑓(𝑥) = {

0, if 𝑟 ≤ 0
2

𝜎𝑋

𝜎𝑌
+

𝜎𝑌

𝜎𝑋
+

(𝑋̅ − 𝑌̅)2

𝜎𝑋 ∙ 𝜎𝑌

, otherwise Equation 12 

 382 

3. Results 383 

The impact of the different plant hydraulic parametrizations was investigated by 384 

comparing the simulated time series of transpiration (ETm) to the upscaled sap flux measurements 385 

(ET). Furthermore, a comprehensive insight into the simulated plant hydraulic response was 386 

gained by analyzing the temporal evolution and probability density of PLC, the transpiration 387 

water stress parameter (β), and the water potentials across the soil-vegetation continuum (Ψ).  388 

3.1. Reference Evaporation and Measured Transpiration  389 

Figure 3 shows the multiannual variability of Eo and ET for each site. During the 390 

extended summer period, the atmospheric water demand is two- and four-times larger than the 391 



manuscript submitted to JAMES 

 

ET in FR-Hes/DE-Hin and FR-Pue/ES-Alt, respectively. It is worth noting that despite belonging 392 

to the same climate classification, the DE-Hin and FR-Hes sites have a large difference in Eo 393 

values. This difference is linked to lower temperatures at DE-Hin compared to FR-Hes. 394 

ET patterns differ among species, with sites dominated by Fagus sylvatica (i.e., FR-Hes and DE-395 

Hin) showing maximum ET values of more than 4 mm d
-1

 during summer and 0 mm d
-1

 in spring 396 

and autumn due to the deciduousness of the forest species. In contrast, the evergreen Quercus 397 

ilex at FR-Pue and ES-Alt keep maximum ET values lower than 4 mm d
-1

, have smaller intra-398 

seasonal variations with greater spring and autumn ET, but smaller values in summer compared 399 

to the Fagus sylvatica sites. 400 

 401 

 402 

Figure 3. Multi-annual variation of reference evaporation (Eo) and measured daily transpiration 403 

(ET) of the four forested sites in Europe. The dashed vertical lines show the extended summer 404 

period (from May to September) used for the current analysis of model results. The box plots 405 

show the difference between Eo  and ET  of the extended summer period for each site. 406 

 407 

3.2. Effects of Changing the Shape of the Vulnerability Curve 408 

Looking first at the deciduous sites, the experimental site FR-Hes has similar measured 409 

and modeled transpiration estimates with Γ values larger than 0.7 (Figure 4), with the DC having 410 

the best ET representation. Nonetheless, the data distribution (i.e., interquartile range) of the VC 411 

has a better match than the DC with the observed transpiration despite its slightly lower Γ value 412 
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(VC: 0.73, DC: 0.76).. The Γ values in DE-Hin are larger than 0.5 with the VC as the best 413 

representation of the ET in this site (Γ= 0.65), with minor differences during the end of the 414 

extended summer period (see Figure S1). The RC and DC show a significant over-estimation of 415 

ET during May (see Figure S1). Figure 4 indicates that there are marginal differences of the PLC 416 

at the root-stem segment at both sites (i.e., FR-Hes and DE-Hin) when representing a vulnerable 417 

(VC) and resistant (RC) shape of the vulnerability curve. As expected, the VC tends to produce 418 

lower transpiration rates and higher water stress conditions represented by low β values. These 419 

stress conditions are mainly found at the stem-leaf level with the median of the PLC values going 420 

beyond 12% while those at the root-stem level remain close to zero. The comparison of the 421 

distribution of the PLC values at different plant levels (i.e., root-stem and stem-leaf) with those 422 

of the β stress factor provides some additional insights into the relative effect of stomata and 423 

plant hydraulics on the simulated transpiration response. For example, the low root-stem values 424 

at FR-Hes and DE-Hin show that β is influenced by environmental stressors at leaf level, because 425 

there is no strong reduction of the plant hydraulic conductance at the root-stem segment (Figure 426 

4). 427 

The effects of changing the shape of the vulnerability curve are remarkably different at 428 

the evergreen sites (i.e., FR-Pue and ES-Alt) populated with Quercus ilex species (Figure 4). At 429 

these sites, all configurations overestimate the transpiration response in May, which leads to a 430 

strong underestimation of ET during prolonged dry conditions of summer and followed by a slow 431 

recovery in September (see Figure S1). Counterintuitively, the resistant configuration (RC) does 432 

not alleviate the canopy stress as expected; meanwhile, the vulnerable configuration (VC) 433 

simulates higher transpiration rates than the default configuration (DC) during most of the 434 

summer. The unexpected model response is confirmed by the distribution of the simulated water 435 

stress factor and PLC values, with the response of the RC and VC reflecting a higher level of 436 

hydraulic failure compared to DC. The sites FR-Pue and ES-Alt show that β is partly influenced 437 

by the reduction of the plant hydraulic conductance for part of the extended summer, because 438 

both sites have a large period experiencing low PLC values (PLC < 50%) at the root-stem 439 

compartment. 440 
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  441 

 442 

Figure 4. Distributions of daily transpiration (ET), leaf water stress factor (β) and percentage loss 443 

of hydraulic conductance (PLC) during extended summer periods for different hydraulic 444 

vulnerability configurations. Each configuration represents a specific combination of the shape 445 

parameters (i.e., Ψp50 and ck) of the plant vulnerability curve. Each violin plot contains the multi-446 

annual data for each site. The distribution of measured ET is contained in the upper row plots of 447 

each site, with the observations shown on the right side of each violin plot (in dark green), and 448 

the simulations using the vulnerable (VC), default (DC), and resistant (RC) configurations shown 449 

on the left side, in red, grey, and blue, respectively. The PLC values per configuration and site 450 

are split between the plant compartments root-stem (R-S) and stem-leaf (S-L) colored in brown 451 

and lime green, respectively. 452 

 453 
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3.3. The Regulating Effects of Xylem Conductance  454 

The second set of numerical experiments investigated the extent to which the water use 455 

strategy can be modified in the model through gradual changes over a spectrum of kmax values. 456 

Figure 5 illustrates how the default kmax configuration (DCkmax) has the relatively best 457 

performance at FR-Hes (Γ=0.818) compared to other sites (Γ<0.7). Also, this figure shows that 458 

moving from the high kmax (Hkmax) towards the low kmax (Lkmax) configuration, the simulated 459 

transpiration can be ‘adjusted’ to better capture the differences in transpiration seasonality at the 460 

four selected sites. The Hkmax and intermediate high kmax (IHkmax) did not show differences in the 461 

simulated ET for the selected sites, as within this range of kmax values transpiration rates are 462 

limited by the atmospheric water demand. Most effective changes in the simulated ET values 463 

occur in the range between the default kmax (DCkmax) and low kmax (Lkmax), with the best 464 

correspondence between observed sap flow and simulated transpiration rates achieved by ILkmax 465 

for all the sites. Here it is interesting to note that at ES-Alt, the model performances can be 466 

further improved by increasing the sampled kmax values between ILkmax and Lkmax (see Figure 467 

S4), with an ‘optimal’ kmax value of 6.5 x 10
-8

 mmH2O mmH2O
-1

s
-1

. 468 

We found that gradual changes in kmax systematically affected the soil matric potential 469 

(Ψsoil) across all sites (Figure S2). This tendency shows the impact of transpiration on the soil 470 

water reservoir by increasing the plant water acquisition. Higher kmax values allow more water to 471 

be extracted from the soil and hence a reduction in the soil moisture. In contrast, reduced kmax 472 

compared to the default value results in a reduced water transport capacity and diminishing soil 473 

water acquisition. The Lkmax configuration restricts the plant water transport at all sites to a point 474 

where the soil matric potential is close to 0 all year round (Figure S2). 475 

Sites covered with Fagus sylvatica do not experience extreme transpiration stress (β<0.5) 476 

even when the ET is overestimated as in the Hkmax, IHkmax, and DC configurations (Figure 5). 477 

The increment of leaf water stress with the Lkmax configuration at these two sites (i.e., FR-Hes 478 

and DE-Hin) does not go beyond 0.5. This is the result of a constrained water transport within 479 

the plant due to the limitation created by an extremely low kmax. Therefore, the stomatal 480 

conductance used to determine the β values is reduced, increasing the difference between the 481 

stomatal conductance (gs) and the maximum gs (gmax). The sites with Quercus ilex (i.e., FR-Pue 482 

and ES-Alt) experience a more significant leaf water stress in summer when the kmax 483 

overestimates the transpiration in spring (Hkmax, IHkmax, and DC). The use of smaller kmax values 484 

at these drier sites triggers a more restricted vegetation water use under wet conditions (i.e., 485 

spring and early summer). Using a smaller kmax at sites with stronger dry seasons enables the 486 

vegetation to not use all the water in spring, allowing the soil water reservoir to supply the 487 

moisture needed in summer.  488 



manuscript submitted to JAMES 

 

  489 

 490 

Figure 5. Temporal variation of measured transpiration (ET-mea), modelled transpiration (ET-mod), 491 

and leaf water stress factor (β) to gradual changes of maximum xylem conductance (kmax) at each 492 

experimental site. The plots for each site represent a decrease of maximum xylem conductance 493 

from left (larger kmax) to right (low kmax). The leaf water stress (β) in each plot is represented by 494 

daily bars and tends towards reddish colors when β falls below 0.5 (extreme stress), while the 495 

blueish colors represent unstressed leaf conditions (β above 0.5). The index of agreement (Γ) is 496 

used for comparing the different model configurations per site.  497 

 498 

3.4. The Combined Effects of Changing the Shape of the Vulnerability Curve and the 499 

Maximum Xylem Conductance 500 

The third set of experiments was designed to evaluate the sensitivity of ET to the plant 501 

vulnerability curve (PVC) parameters with the modified kmax. We expect that the use of best-502 

fitted kmax values obtained in the second set of experiments allows a better evaluation of the 503 

impacts of the coordinated changes between ck and Ψp50. As compared to Figure 4, the simulated 504 

ET is much closer to the observed at all sites for DC, also avoiding extreme stress at xylem level 505 

(PLC < 50%) for extended periods (Figure 6). Furthermore, the coordinated changes of the shape 506 
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parameters with the kmax enable the simulation of a more realistic hydraulic response of the root-507 

stem and stem-leaf segment to dry season conditions across the four selected sites (Figure 6). 508 

Similarly to the experiment 1, the results indicate that at sites populated by Fagus sylvatica, the 509 

severe hydraulic failure events (PLC > 50%) simulated by the model are much less frequent at 510 

FR-Hes and are completely absent at DE-Hin. Meanwhile, the Mediterranean sites (i.e., FR-Pue 511 

and ES-Alt) are characterized by low PLC values (<20 %) for the root-stem plant segment, while 512 

more severe PLC values are simulated at the stem-leaf level. Only the RC of these evergreen 513 

sites shows a more severe stress response in summer, where the root-stem compartment 514 

experiences PLC values larger than 20% for half of the time (second half of the violin plot of 515 

Figure 6). At the same time, the xylem-leaf compartment also shows a strong reduction of 516 

conductance (PLC > 50%). The impact of the RC also affects the xylem-leaf compartment, 517 

where the bimodal distribution depicts the problem of the reduced provision of water for 518 

vegetation during summer due to a more aggressive soil water extraction in late spring or early 519 

summer. 520 

  521 

 522 
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Figure 6. Distributions of daily transpiration (ET), leaf water stress factor (β) and percent loss of 523 

conductance (PLC) during the extended summer period for different hydraulic vulnerability 524 

configurations with optimal kmax. Each configuration represents the specific combination of the 525 

shape parameters (i.e., Ψp50 and ck) of the plant vulnerability curve and the optimum kmax per site 526 

from Experiment 2. Each violin plot contains the multiannual data for each site. The distribution 527 

of measured ET is contained in the upper plot of each site (solid dark green). The vulnerable 528 

(VC), default (DC), and resistant (RC) configurations are represented by red, grey, and blue solid 529 

colors, respectively. The PLC values per configuration and site are split between the plant 530 

compartments root-stem (R-S) and stem-leaf (S-L) colored in brown and lime green, 531 

respectively.  532 

4. Discussion 533 

4.1. What is known about the selected tree species? 534 

Fagus sylvatica and Quercus ilex are two tree species with contrasting responses to dry 535 

periods. These responses depend on physiological adaptations and the cumulative exposure to 536 

specific environmental conditions that shape the WUS of each species. Fagus sylvatica relies on 537 

a small water reservoir because of its shallow root system (Houston Durrant et al., 2016; Kirchen 538 

et al., 2017; Leuschner, 2020). This has been documented at FR-Hes and DE-Hin (Granier et al., 539 

2000; Heinrich et al., 2018), where the species were found to be more susceptible to reductions 540 

of soil water availability due to dry spells and droughts. This tree species prefers to grow in 541 

environments with abundant precipitation, with no water stagnation on the ground or prolonged 542 

dry periods (Houston Durrant et al., 2016; von Wuehlisch, 2008). This could be why Fagus 543 

sylvatica, keeps significant transpiration rates as leaf water potentials decline, but it is also 544 

frequently observed to shed leaves prematurely under extreme drought, which could be due to 545 

reduce water loss and hydraulic failure or due to hydraulic failure (Leuschner, 2020). 546 

Quercus ilex can grow deep roots, increasing the accessible water reservoir and allowing 547 

the trees to withstand long dry periods (Peñuelas & Filella, 2003; Zapater et al., 2011), as has 548 

been shown at FR-Pue and ES-Alt (Baldocchi et al., 2010; Forner et al., 2018). Its evergreen 549 

character is maintained during summer thanks to its physiological adaptations such as 550 

sclerophyllous leaves, summer growth reduction, and strong stomatal control (Barbeta & 551 

Peñuelas, 2016; Terradas & Savé, 1992). The high wood density of oak is linked to its reduced 552 

porosity, allowing it to resist lower matric potentials during summer, reducing its susceptibility 553 

to hydraulic failure (Terradas & Savé, 1992). The strong stomatal control of this species 554 

classifies it as the most isohydric species of the Quercus genus (Barbeta & Peñuelas, 2016). This 555 

process is clearly visible in summer at FR-Pue and ES-Alt, where precipitation is scarce, and the 556 

trees reduce transpiration rates by closing their stomata. Overall, the difference between the two 557 

selected species relies on the degree of vulnerability to hydraulic failure and the WUS, with 558 

Fagus sylvatica showing a vulnerable response and aggressive WUS, while Quercus ilex is more 559 

resistant to hydraulic failure with a conservative WUS. 560 

4.2. Some unexpected effects of the vulnerability curve shape parameters  561 

The plant vulnerability curve (PVC) is widely used to model the plant water use response 562 

to water stress from single trees up to the ecosystem scales (Kennedy et al., 2019; Li et al., 2021; 563 

Mackay et al., 2015; Mencuccini et al., 2019; Sloan et al., 2021). However, linking a PVC to a 564 

vegetation classification framework based on plant form and phenology, such as the PFT system, 565 
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introduces biases linked to the homogenization of highly diverse plant responses (Matheny et al., 566 

2017). Despite the existence of some species-specific LSM studies focused on the impact of 567 

varying the PVC parameterizations for different species within the same PFT (e.g., De Kauwe et 568 

al., 2022; Sabot et al., 2020), to our knowledge, the impact of characterizing the shape 569 

parameters of the PVC (Ψp50 and ck) for the same species or plant functional types (PFTs) has not 570 

been investigated in detail for the current implementations of the PVC in land surface models 571 

(LSMs). In CLM5, the default parameterization of the plant hydraulic traits is the same for the 572 

PFTs under analysis at the four experimental sites. This parameterization does not agree with the 573 

current evidence showing a high degree of variability for parameters such as Ψp50 (e.g., Eller et 574 

al., 2020; Lu et al., 2022; Xie et al., 2023). Nonetheless, this homogeneity in the 575 

parameterization of the plant hydraulic traits of CLM5 provided the opportunity to evaluate the 576 

effect of the environmental conditions, namely the dynamics of atmospheric water demand and 577 

soil water availability, on the simulated plant hydraulic response. FR-Hes and DE-Hin are sites 578 

with a continuous water supply during summer due to the low intra-seasonal variability of 579 

precipitation (Blume et al., 2022; Granier et al., 2008). Regular precipitation prevents the drying 580 

out of the soil water reservoir during summer, allowing the vegetation to operate at low to 581 

moderate levels of water stress throughout the year. The default plant hydraulic parameterization 582 

of CLM5 reproduces an aggressive water use strategy (WUS) of Fagus sylvatica at FR-Hes, 583 

allowing the vegetation to transpire at rates close to the atmospheric water demand. However, the 584 

use of the same plant hydraulic parameterization across the selected PFTs (Table 2) does not 585 

reflect the conservative WUS expected at Mediterranean sites, such as FR-Pue and ES-Alt, 586 

which are inhabited by Quercus ilex. These two sites have a strong atmospheric water demand 587 

but receive very little precipitation in summer (Allard et al., 2008; Lorenzo-Lacruz et al., 2010), 588 

resulting in extremely negative soil water potentials and severe plant water stress in the default 589 

model simulations (Jiménez-Rodríguez et al., 2022). Although, the inclusion of water uptake 590 

from deeper soil reservoirs can also reduce the severity of simulated water stress and under-591 

estimation of transpiration rates in the model during summer periods, as shown by Jiménez-592 

Rodríguez et al. (2022), the need to regulate the extreme plant water consumption during un-593 

stressed wet periods prevailed.  594 

The limitations underscored by the default plant hydraulic parameterization of CLM5 in 595 

reproducing the aggressive and conservative WUS persist when changes are applied only to the 596 

Ψp50 and ck parameters. That is, the model response is dominated by the instantaneous 597 

atmospheric water demand and restricted by the soil water availability. Therefore, at sites where 598 

water supply is continuous throughout the year (e.g., FR-Hes and DE-Hin) the decrease of Ψp50 599 

with the resistant configuration (RC) allows more water to be extracted under given 600 

meteorological conditions while reducing plant water stress (PLC and β) as expected (Knüver et 601 

al., 2022; Walthert et al., 2021). However, the deciduous character of both sites with leaf absence 602 

during the first part of the year does not prevent the RC configuration from overestimating 603 

transpiration rates (ET) for both sites (Figure 4 and Figure S1) during the first part of the 604 

extended summer. This pattern of the model response illustrates the dominant role of plant 605 

hydraulics over stomatal control of ET. Under seasonally limited soil water supply, as is the case 606 

at FR-Pue and ES-Alt during summer, the model simulates a counter-intuitive response when 607 

changing the shape parameters of the PVC, with the resistant configuration (RC) suffering more 608 

water stress and a reduced ET than the default or vulnerable configurations (DC and VC, 609 

respectively) (Figure 4). The entire intraspecific variability in PVC shape parameters for  610 

Quercus ilex does not reproduce the conservative WUS in the model that would be expected of a 611 
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tree species able to withstand significant water shortage conditions (Barbeta & Peñuelas, 2016; 612 

Terradas & Savé, 1992). On the contrary, the choice of more resistant PVC shape parameters 613 

diminished the soil water availability simulated at FR-Pue and ES-Alt during summer due to 614 

over-use of water in spring, magnifying the overall vegetation water stress. 615 

4.3. Uncovering the role of maximum xylem conductance 616 

The results of the second set of numerical experiments highlight the role of the maximum 617 

xylem conductance (kmax) in determining the transpiration rates under ample water supply and 618 

therefore shaping the seasonal water use strategy. Here we found that reducing the plant 619 

hydraulic conductance can improve both, the over-estimation of transpiration in the early 620 

growing season and the under-estimation in late summer, due to more carry-over soil resources 621 

from the early to the late season. These results illustrate the effective role of kmax in constraining 622 

the water use at sites with seasonal water limitations (i.e., FR-Pue and ES-Alt). The maximum 623 

hydraulic conductance is a parameter highly influenced by plant segment age (Weithmann et al., 624 

2022) and local environmental conditions rather than genetics (Hochberg et al., 2018; Lu et al., 625 

2022). However, the complex interactions between environmental conditions and individual 626 

species made it difficult to identify individual environmental drivers for temperate tree species 627 

such as Acer platanoides L., Carpinus betulus L., and Tilia cordata Mill (Fuchs et al., 2021). 628 

The response of species response of hydraulic conductance to contrasting soil conditions is not 629 

fixed among species where Fraxinus ornus L. had shown a strong sensitivity to soil dryness 630 

(Gortan et al., 2009) while other species such as Pinus sylvestris are not affected by such soil 631 

gradients (Jackson et al., 1995). The high environmental plasticity has been documented for 632 

Fagus sylvatica (Weithmann et al., 2022) pointing out the age of the plant segments as the 633 

principal driver defining the hydraulic conductance. This characteristic is represented by the 634 

range of kmax values observed for Fagus sylvatica and Quercus ilex (Figure S5). The observed 635 

kmax values vary by two orders of magnitude for Fagus sylvatica (BDT) and five orders of 636 

magnitude for Quercus ilex (BET), with similar maximum values for both.  637 

The primary role of kmax for the plant hydraulic system of CLM5 is in constraining the 638 

water transport during unstressed conditions and thereby determining the magnitude of plant 639 

water use and how much water is left in the ground, some of which might be available later. At 640 

FR-Hes, larger kmax values compared to the default value increase the water transport in the 641 

model, allowing to match the atmospheric water demand and transpiration measurements. In 642 

contrast, smaller kmax values are needed at ES-Alt and FR-Pue to prevent the vegetation from 643 

depleting the soil water reservoir in spring and therefore enable continued plant water use under 644 

moderate stress during the dry summer. A lower kmax depicts a transport limitation allowing to 645 

reduce the water stress on the plant in the model, while a larger kmax allows the model to transpire 646 

at higher rates, mimicking an aggressive WUS. The large influence that kmax has in controlling 647 

the water acquisition in CLM5, despite the use of the Medlyn slope for controlling the stomatal 648 

conductance, makes the model to work differently than other numerical models that rely on 649 

stomatal conductance to control or mimic the WUS (Sloan et al., 2021). Therefore, in CLM5, an 650 

adequate selection of kmax plays the role of restraining the vegetation from transpiring 651 

excessively in spring and at the beginning of summer to ensure an adequate water supply as 652 

summer progresses in a Mediterranean (summer-dry) climate. Note that in the Darcy's law 653 

equation used in the plant hydraulics system of CLM5 a certain sensitivity in the simulated 654 

transpiration fluxes could be expected by also changing the cross-sectional area of the different 655 

plant segments (e.g., SAI). However, there is no direct correspondence between the prescribed 656 
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SAI values in the model (defined as the sum of all non-photosynthetic vegetation, including 657 

stems, branches, and dead leaves (P. J. Lawrence & Chase, 2007)) and the basal area reported 658 

from the selected sites (Table 1). Therefore, the uncertainty added using this variable in the 659 

simulated transpiration fluxes cannot be explained by structural properties of the forest. 660 

Most models describe the plant vascular factor by lumping the entire system into a single 661 

term (Fatichi et al., 2016), omitting the large variability of the forest ecosystems related to tree 662 

species and age (Weithmann et al., 2022). This is the case for kmax that is a key plant hydraulic 663 

trait contributing to the control of the water transport capacity of vegetation (Eamus et al., 2016). 664 

Within the plant hydraulic system of CLM5 the default kmax value is commonly used, 665 

disregarding the variability of different tree species and stand density within the PFT 666 

classification. This plant hydraulic trait (PHT) varies accordingly with the plant species, 667 

environmental conditions, and tree size (Anfodillo & Olson, 2021; Domec et al., 2012; Domec 668 

Jean-Christophe et al., 2008; Hochberg et al., 2018; Willigen et al., 2000), but previous studies 669 

argued that kmax expresses the maximum xylem conductance of vegetation under the most 670 

favorable environmental conditions (Sabot et al., 2020). However, to link kmax with the 671 

experimental evidence based on measurements of specific xylem conductance (ks) it is necessary 672 

to include the forest structure (e.g., forest height, branch network) to upscale and better represent 673 

the water flux within the vegetation. 674 

The use of plant hydraulics in land surface modelling provides a framework to connect 675 

the water stress with the stomatal response (Venturas et al., 2017), allowing a better control on 676 

the simulated plant water use strategies. However, the site-specific character of kmax has largely 677 

been ignored by the modelling community. In CLM5, the default value for kmax is the same for 678 

all PFTs, and an order of magnitude lower than the lowest reported specific xylem conductance 679 

(ks) for Fagus sylvatica, whereas the reported values for Quercus ilex have two outliers, one and 680 

three orders of magnitude below the default value (see Figure S5 for more details). The ks values 681 

of Fagus sylvatica do not match the range of kmax used in the second experiment, where the high 682 

xylem conductance (Hkmax) is close to the lowest ks value found for this tree species. However, 683 

we found little difference in the simulations between the highest values of kmax, so exploring the 684 

range of values where most observations lie would not improve the model simulations. The 685 

differences between the reported ks and model-default kmax highlights the complexity of defining 686 

the kmax value for different plant functional types (PFTs) based on experimental data with a larger 687 

number of species. The lack of detailed experimental ks data of tree roots for different tree 688 

species increases the difficulty to better understand the impact of the interaction between soil 689 

type and whole plant kmax. The data availability constraint also extends to the continuous 690 

monitoring of water potentials across and within ecosystems (Novick et al., 2022). There are 691 

some studies providing discrete measurements of soil water potential (e.g., Zapater et al., 2011) 692 

and predawn leaf water potentials (e.g., Lavoir et al., 2009; Peiffer et al., 2014) for the selected 693 

study sites. However, the scarcity of continuous data sets does not allow the analysis of the most 694 

stressful period during the day (i.e., noon) or the cumulative effect of water stress in the soil-695 

plant-atmosphere continuum. Nonetheless, the few data available for FR-Pue (i.e., Lavoir et al., 696 

2009) show a range changing from -1 MPa in early spring (i.e., DOY=90) to -5 MPa during the 697 

peak of summer (i.e., DOY= 250). This range of predawn leaf water potentials agrees with the 698 

leaf water potentials reproduced by the model during the same year and period (see Figure S7). 699 

Here we show how important the correct parametrization of kmax is in CLM5 for capturing the 700 

water use by vegetation in summer-dry climates. To progress, we need a better understanding of 701 
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how kmax is controlled by a complex set of growing conditions and co-ordination between the 702 

root system and leaf area index (Aranda et al., 2015; Lemoine, Jacquemin, et al., 2002).  703 

4.4. Understanding the impact of coordinated changes of plant hydraulic traits in CLM5  704 

We found that the adjustment of the hydraulic vulnerability curve shape parameters (Ψp50  705 

and ck) alone did not enable the reproduction of the observed water use dynamics (Figure 4), as 706 

choosing a parameterization that is more resistant to hydraulic failure (RC) resulted in even more 707 

reduced dry season water use, if the maximum hydraulic conductance (kmax) was too high. 708 

Indeed, the drastic effect caused by the more negative Ψp50 of the RC is diminished by using a 709 

smaller kmax, reducing the water extraction in spring, and letting the vegetation experience lower 710 

PLC values in summer (Figure 6). Also, the fact that the VC of Fagus sylvatica results in low 711 

PLC for the root-stem and more severe PLC for stem-leaf shows the model’s ability to reproduce 712 

important physiological processes along the PLC curve (Huber et al., 2019). These processes 713 

may trigger different drought survival strategies depending on the species. For Fagus sylvatica, 714 

water stress and loss in conductance may result in premature shedding of leaves during dry 715 

conditions (Arend et al., 2022) or stomatal closure (Schuldt et al., 2016). The sites populated by 716 

Quercus ilex are better simulated using low kmax values (Figures 5 and S4), which allow to better 717 

reproduce the WUS of species adapted to water scarce environments (Terradas & Savé, 1992). 718 

Nonetheless, extremely low Ψp50 still trigger an excessive water uptake during the driest part of 719 

the summer at Mediterranean sites (Figure 6), demonstrating the lack of stomatal regulation in 720 

the model and its strong dependency on hydraulic limitations and soil water availability to 721 

control the magnitude of ET. Note that in our study, kmax was selected based on the default 722 

vulnerability curve shape parameters, whereas the latter were adjusted in a second step, using the 723 

previously selected kmax. The results could likely be improved by choosing an optimal 724 

combination of kmax, Ψp50 and ck, but model calibration is not the goal of the present study. 725 

Additionally, the fact that CLM5 does not consider the vegetation capacitance increases the need 726 

to make use of the differentiation of kmax between plant segments, e.g. following the hydraulic 727 

vulnerability segmentation hypothesis (Tyree & Ewers, 1991). This hypothesis proposes that the 728 

stem should be the most resistant section of the tree, while the distal portions (i.e., roots and 729 

leaves) should be the most vulnerable. However, the response of plant segmentation cannot be 730 

generalized to all plant species because the effects of segmentation depends on the safety 731 

modulation of other plant traits (Wilkening et al., 2023). Our study does not evaluate the effect 732 

of different configurations per plant segment due to the lack of experimental data collected using 733 

a consistent methodology across plant segments and tree species. Nonetheless, we expect that 734 

any hydraulic differentiation between plant segments would lead to strong differences in the 735 

plant water stress experienced at the root-stem segment.  736 

The results of our study also demonstrate that generalizing the use of kmax as a 737 

homogeneous parameter across PFTs in CLM5 prevents an adequate reproduction of the 738 

magnitude and timing of ET at sites in different climates. The fact that the same species (e.g., 739 

Quercus ilex) is not represented by the same kmax at different sites points out that xylem 740 

conductance can be influenced by factors other than genetics (e.g., environmental conditions, 741 

growth history).  Also, the independence between stomatal control and hydraulic conductance in 742 

the model is contradictory to what the existing evidence suggests (Franks, 2004). These aspects 743 

magnify the effect that more negative Ψp50 has on the water extraction when we change only the 744 

curve shape parameters, something that was overlooked in previous studies (e.g., Bai et al. 745 

(2021), Song et al. (2020)). The results of the coordinated changes in safety (i.e., the shape 746 
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parameters Ψp50 and ck) and efficiency (i.e., kmax) hydraulic traits underline how kmax rules the 747 

WUS in the model, while Ψp50 and ck modulate the level of the hydraulic stress experienced. An 748 

adequate parameterization of kmax, Ψp50 and ck in combination is critical for obtaining a simulated 749 

plant hydraulic response that conforms with the plant water supply theory and the expected 750 

physiological response of vegetation subjected to dry conditions. In addition, any issue linked to 751 

plant hydraulic parameterization will also affect other variables such as carbon assimilation, 752 

forest growth, or tree mortality, which depend on the plant water use by the forest and are highly 753 

sensitive to extreme dry conditions (e.g., Joetzjer et al., 2022; Yao et al., 2022).  754 

4.5. Addressing the plant hydraulic traits: homogeneity versus diversity 755 

The plant functional type (PFT) classification system has been a valuable tool for 756 

understanding drought resilience from an ecosystem perspective (Sturm et al., 2022). However, 757 

the large variation in ecosystem functional properties related to the water cycle is insufficiently 758 

explained by this classification system (Reichstein et al., 2014). Skelton et al. (2015) stressed the 759 

need to characterize the plant response to drought by merging the current knowledge of the water 760 

use strategies (WUS) with the xylem vulnerability. To fulfill this need, this classification system 761 

requires the characterization of the physiological traits per vegetation type and growing stage. 762 

Recent studies have shown the importance of individual tree characteristics (e.g., size, age) that 763 

influence the tree water transport capacity (e.g., Bittencourt et al., 2023; Schoppach et al., 2021). 764 

The combination of tree growth and environmental condition influence the overall plant 765 

hydraulic performance (Fichtler & Worbes, 2012), which could explain the noted differences 766 

between sites sharing the same species. The bias introduced by the heterogeneity within 767 

individual tree species is enlarged by grouping per vegetation type, because the tree species 768 

composition is a major driver when determining the transpiration of different vegetation types 769 

(Bachofen et al., 2023). Nonetheless, these aspects are heavily homogenized using the current 770 

PFT classification system, affecting the capacity to correctly predict the ecosystem water use 771 

(Konings & Gentine, 2017) and leading to a poor predictive skill of the vulnerability to hydraulic 772 

failure (Matheny et al., 2017). 773 

Fagus sylvatica and Quercus ilex represent part of the variability of the plant hydraulic 774 

traits (PHT) within the broadleaf deciduous (BDT) and broadleaf evergreen (BET) PFT classes. 775 

Aiming to provide a broader context of the role of homogeneity versus diversity in plant 776 

hydraulic trait studies, we sampled the XFT database (Choat et al., 2012) for a preselected set of 777 

species per PFT in Europe (Buras & Menzel, 2019a; Fyllas et al., 2020; Leuschner & Meier, 778 

2018) with the emphasis placed on the temperate BDT, BET, and adding the needleleaf 779 

evergreen (NET) PFT to enrich the analysis (see Table S2 for details of the sampled species). 780 

Figure 7 illustrates that the Ψp50 used by default in CLM5 fails to capture the values of Ψp50 for 781 

NET and BDT in Europe, as the default values are not even close to the median values of the 782 

distributions. The Ψp50 of NET in CLM5 is way beyond the Ψp88 for this PFT, representing an 783 

extremely resistant tree with respect to the published data, while the Ψp50 of BDT depicts a more 784 

vulnerable tree closer to the reported median of Ψp12. The default Ψp50 of BET in CLM5 matches 785 

the median of the published data, but the large range showed by this PFT (-0.5 MPa to -9 MPa) 786 

raises the question of how much of this variability is driven by geography or environmental 787 

conditions. An even more important aspect to be considered is an adequate selection of kmax for 788 

the PFTs, where the large variability showed for individual species does not agree with the best 789 

fitted kmax of the model. This finding depicts the issue of considering kmax as constant among 790 

PFTs when the variability of the species describing these PFTs is large (see Figure S5). 791 
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Liu et al. (2020) showed the benefit of including plant hydraulics in Earth System Models 792 

improving the modeled vegetation response to climatic drivers, where the overestimation of 793 

vegetation water use is a common issue when compared against the traditional processes relying 794 

on soil moisture and VPD alone. They also recognize the ability of plant hydraulics to predict 795 

vulnerability to droughts. In this regard, Kennedy et al. (2019) did the same for LSMs by 796 

introducing the plant water stress routine in CLM5 that compartmentalized the PHT according to 797 

PFT type. From an ecosystem perspective, simplifying hydraulic traits into single plant 798 

functional types has additional repercussions. Matheny (2021) highlighted the importance of 799 

incorporating flexible traits based on prevalent environmental stressors since tree species’ 800 

sensitivity to water stress is determined by their plasticity to the environment (Haberstroh & 801 

Werner, 2022). This plasticity is exemplified by the different kmax values in Fagus sylvatica and 802 

Quercus ilex in this manuscript, and the reported variability of xylem specific conductance 803 

reported across many orders of magnitude for each species (e.g., Bär et al., 2018; Carevic et al., 804 

2014; Charra-Vaskou et al., 2012; Choat et al., 2012; David et al., 2007; Limousin et al., 2010; 805 

Lübbe et al., 2022; Martínez-Vilalta et al., 2002; Tomasella et al., 2019). Flexible traits based on 806 

the environmental stressors in CLM5 can be used by the spectrum of PVCs per PFT and 807 

exploiting the role of kmax in regulating the WUS in the model. By adjusting the kmax to better 808 

represent the transpiration response we may be able to identify the timing of important 809 

physiological processes (e.g., leaf shedding) that differ between the VC and RC. In this way, we 810 

may be able to better understand the significant changes in different ecosystem processes 811 

triggered by intense dry periods (Oddi et al., 2022).  812 

 813 
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Figure 7. Violin plots describing the variability of the plant hydraulic traits (Ψp12, Ψp50, and Ψp88) 814 

within broadleaf evergreen (BET), broadleaf deciduous (BDT), and needleleaf evergreen (NET) 815 

trees plant functional types (PFTs) representative of European forests (see Table S2 for the list of 816 

pre-selected tree species per PFT). The red, green, and yellow dashed lines represent the NET, 817 

BET, and BDT default values of Ψp50 used by CLM5, respectively. 818 

 819 

Grouping different tree species into the same PFTs in disregard of their physiological 820 

adaptations may affect other parameters that also influence the plant water use within the model. 821 

For example, CLM5 calculates the stomatal conductance (gs) using the Medlyn model (Medlyn 822 

et al., 2011). This model uses the minimum stomatal conductance (go) that is set to 100 μmol m
-

823 
2
s

-1
 in CLM5 (D. M. Lawrence et al., 2019) and a parameter that links stomatal conductance to 824 

photosynthesis (g1). These two parameters are segregated by PFT in CLM5 according to De 825 

Kauwe et al. (2015). However, the g1 values in the PFT parameterization can deviate greatly 826 

from the species specific values reported by Lin et al. (2015). CLM5 uses a g1 of 4.12 for the 827 

broadleaf evergreen trees, which is much larger than the value of 1.73 reported for Quercus ilex. 828 

This difference may induce an unconstrained transpiration at leaf level when using the default 829 

configuration, compromising the coordination of root-stem-leaf conductance. Nonetheless, a 830 

lower g1 value will induce a more constrained transpiration affecting the vegetation capacity to 831 

fulfill the atmospheric water requirements (see Figure S6). For the broadleaf deciduous sites (i.e., 832 

FR-Hes and DE-Hin), the differences are less pronounced, with the default g1 value (4.45) being 833 

closer to the reported value of 3.24 for Fagus sylvatica (Lin et al., 2015). This could be the 834 

reason why ET is over-estimated during wet conditions by the DC at FR-Pue and ES-Alt, but not 835 

so much at FR-Hes and DE-Hin (Figure 5) 836 

The use of PFTs in land surface modeling became a cornerstone enabling the reduction of 837 

computing time and degrees of freedom thanks to the grouping of species based on plant form 838 

and phenology (Colin Prentice et al., 1993). However, this grouping does not respect the large 839 

variety in eco-physiological traits within a PFT, leading to strong misrepresentation of some 840 

species. Therefore, a better approach for land surface modelling should target the description of 841 

the vegetation according to their plant response similarities to CO2 concentrations and 842 

temperatures (Wullschleger et al., 2014), shared evolutionary and optimality principles (Franklin 843 

et al., 2020), or by refining the current PFT classification based on key physiological processes 844 

that determine the tree response to environmental conditions. 845 

 846 

5 Conclusions 847 

The intraspecific variability of the plant hydraulic traits of individual plant functional 848 

types (PFT) allows to describe the spectrum of vulnerability to hydraulic failure from vulnerable 849 

to resistant responses of different tree species. Understanding the importance of the right 850 

selection of kmax, Ψp50 and ck from their large within-species variation requires a detailed 851 

understanding of the role played within the model. This information is crucial for the modelling 852 

community, where the parameter selection may induce considerable bias when assuming that all 853 

tree species within the same PFT behave equally in different environmental conditions. The 854 

adequate identification of dominant tree species per experimental site allows to narrow down the 855 

variability of multiple species or by weighing the tree species contribution within the PFT but, 856 
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given the large variability in hydraulic traits even within a single species, a large uncertainty 857 

prevails. Adjustments of the shape parameters of the hydraulic vulnerability curve (Ψp50 and ck) 858 

alone do not enable the model to reproduce ET during early summer at sites with seasonal water 859 

deficits. The seasonal differences between measured and modelled transpiration illustrate the 860 

importance of the maximum plant hydraulic conductance (kmax) for controlling the magnitude 861 

and timing of ET, i.e. the general water use strategy (WUS). A larger kmax allows the trees to 862 

transpire larger amounts of water during favorable water conditions, quickly depleting the soil 863 

water reservoir. In contrast, smaller kmax values limit the water transport and hence soil water 864 

extraction rates, pushing the vegetation towards a more conservative WUS. Consequently, kmax is 865 

a significant player in controlling the transpiration in CLM5 and allowing to mimic the WUS of 866 

different species by limiting or enhancing the water transport. However, given the large within-867 

species variability in kmax, more research is needed to enable adequate parameterization of the 868 

site-specific kmax. This work reveals the potential of plant hydraulic traits to mimic aggressive or 869 

conservative WUS in CLM5, crucial for adequate reproduction of plant water use dynamics in 870 

different climates. Given the large intraspecific variation in plant hydraulic traits and the 871 

importance of the stand characteristics (e.g., tree height, stem area index) for limiting 872 

transpiration rates in the model, a more fundamental understanding of the drivers for adjustments 873 

in these parameters is needed.  874 
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Table 1. Summary of the environmental characteristics of each experimental site. All data is 1490 

based on Poyatos et al. (2021) except those explicitly mentioning the source. 1491 

 DE-Hin ES-Alt FR-Hes FR-Pue 

Country Germany Spain France France 

Site Name Hinnensee Alto Tajo Hesse Puechabon 

Latitude () 53.33 40.802 48.674 43.741 

Longitude () 13.192 -2.230 7.065 3.596 

Elevation (m a.s.l.) 90 981 300 270 

Mean Annual Precipitation (mm yr
-1

) 606.40 566.90 1003.48 1022.97 

Mean Annual Temperature (C) 8.68 11.74 9.97 13.80 

Köppen-Geiger Climate Classification (Beck et 

al., 2018) 
Cfb Csb Cfb Csa 

Slope (%) 2-5 5-10 0-2 0-2 

Soil Texture Sandy n.a. Silty Clay-Loam 

Soil Depth (cm) n.a. n.a. 120 52.5 

Species under analysis Fagus sylvatica Quercus ilex Fagus sylvatica Quercus ilex 

Stand Age (yr) ~200 59 34 58 

Stand Basal Area (m
2
 ha

-1
) n.a. 13.1 19.7 28.1 

Stand Height (m) 24.0 4.9 13.0 5.0 

Period of Analysis 2012-2014 2012-2014 2001-2005 2001-2005 

 1492 

 1493 

Table 2. Plant hydraulic parameterization (i.e., kmax, Ψp50, and ck) used for the three numerical 1494 

experiments carried out in each experimental site. The kmax used in experiment 3 was selected 1495 

independently for each site after experiment 2. The plant hydraulic parametrization does not 1496 

differ between plant segments (i.e., roots, stem, leaves) within the same tree species and 1497 

configuration.  1498 

Experiment 
Plant Hydraulic 

configuration 
Parameter Units Fagus sylvatica Quercus ilex 

Experiment 1 

Default Model 

Configuration 

(DC) 

kmax mmH2O mmH2O
-1

s
-1

 2 x 10
-8

 

ck - 3.95 

Ψp50 MPa -2.7 

Vulnerable Tree 

Configuration 

(VC) 

kmax mmH2O mmH2O
-1

s
-1

 2 x 10
-8

 

ck - 1.73 1.06 

Ψp50 MPa -1.9 -4.97 

Resistant Tree 

Configuration (RC) 

kmax mmH2O mmH2O
-1

s
-1

 2 x 10
-8

 

ck - 3.33 2.27 

Ψp50 MPa -4.7 -7.66 

Experiment 2 

All configurations 
ck - 3.95 

Ψp50 MPa -2.7 

Hkmax kmax MPa 2.0 x 10
-7

 

IHkmax 
kmax MPa 1.1 x 10

-7
 

DCkmax 
kmax MPa 2.0 x 10

-8
 

ILkmax kmax MPa 1.1 x 10
-8
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Lkmax kmax MPa 2.0 x 10
-9

 

Experiment 3 

Default Model 

Configuration 

(DC) 

kmax mmH2O mmH2O
-1

s
-1

 1.1 x 10
-8

  
1.1 x 10

-8
 (FR-Pue) 

6.5 x 10
-8

 (ES-Alt) 

ck - 3.95 

Ψp50 MPa -2.7 

Vulnerable Tree 

Configuration 

(VC) 

kmax mmH2O mmH2O
-1

s
-1

 1.1 x 10
-8

  
1.1 x 10

-8
 (FR-Pue) 

6.5 x 10
-8

 (ES-Alt) 

ck - 1.73 1.06 

Ψp50 MPa -1.9 -4.97 

Resistant Tree 

Configuration (RC) 

kmax mmH2O mmH2O
-1

s
-1

 1.1 x 10
-8

  
1.1 x 10

-8
 (FR-Pue) 

6.5 x 10
-8

 (ES-Alt) 

ck - 3.33 2.27 

Ψp50 MPa -4.7 -7.66 
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