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Uncertainty quantification in ocean state estimation. Ocean state estimation

optimally ‘fits’ an ocean general circulation model to the available ocean observations, by

adjusting a set of uncertain control variables, consisting of initial conditions, atmospheric

forcing, and model parameters (green box in Fig. 1(c)). For the sake of a simpler notation,

the control variables Fm(xi, yj, tk) inside the green box in Fig. 1(c) are flattened into a

control vector x = (x1, . . . , xN), with each of the small green boxes illustrating one control

variable xi. The goal is to optimize x = (x1, . . . , xN) such as to minimize a least-squares

cost function J (Wunsch, 1996; Tarantola, 2005). For the simple case of a single available

observation, J takes the form

J(x) =
1

2

(
y −Obs(x)

ε

)2

+
1

2
(x− x0)

T B (x− x0). (S.1)
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The first term in eq. (S.1) measures the misfit between the observation y and the the

observation counterpart, Obs(x), simulated by the model. The second term penalizes

deviations from a first-guess x0. Observational noise and prior uncertainties are assumed

to be Gaussian, with distributions N (0, ε2) and N (x0,B).

The solution of the inverse problem is the minimizer of the cost function (S.1), xmin =

minx J . The posterior uncertainty in xmin can be approximated by the Gaussian covariance

matrix (Thacker, 1989; Bui-Thanh et al., 2012)

P =
(
ε−2 (∇xObs) (∇xObs)T + B−1

)−1
, (S.2)

with ∇xObs :=
[
∂Obs
∂x |xmin

]T
. The matrix P in eq. (S.2) is the inverse of the linearized

Hessian matrix of J at xmin, which describes the curvature of the cost function (S.1). By

means of the matrix inversion lemma, eq. (S.2) can be rewritten as

P = B−
(
ε2 + σ2

Obs

)−1
(B∇xObs) (B∇xObs)T , (S.3)

with σ2
Obs = (∇xObs)T B (∇xObs). Eq. (S.3) describes uncertainty reduction in all con-

trol variables x, which is achieved by the uncertainty propagation via the first two black

arrows in Fig. 1(c), from the pink box to the green box. Eq. (S.3) phrases the posterior

uncertainty P as the prior uncertainty B, less any information obtained from the obser-

vation.

To assess uncertainty reduction in a QoI, the uncertainty propagation along the first

two black arrows in Fig. 1(c) has to be followed by a subsequent uncertainty propagation

along the last two black arrows, from the green box to the purple box. The subsequent
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propagation is achieved by projecting the prior and posterior error covariance matrices

B and P onto the QoI, resulting in the prior variance σ2
QoI = (∇xQoI)T B (∇xQoI) and

posterior variance (σP
QoI)

2 = (∇xQoI)T P (∇xQoI) . The relative uncertainty reduction is

given by

∆̃σ2
QoI :=

σ2
QoI − (σP

QoI)
2

σ2
QoI

∈ [0, 1]. (S.4)

Due to the observational information that is propagated through the model dynamics,

(σP
QoI)

2 is smaller than σ2
QoI, i.e., uncertainty gets reduced. ∆̃σ2

QoI = 0 represents the case

(σP
QoI)

2 = σ2
QoI, when the observation does not add any information for the QoI. The other

extreme is ∆̃σ2
QoI = 1, which corresponds to σP

QoI = 0, i.e., a perfectly constrained QoI by

the observation. By means of identity (S.3), relative uncertainty reduction in eq. (S.4)

can be re-written as

∆̃σ2
QoI =

(
σ2
QoI · (ε2 + σ2

Obs)
)−1 (

B1/2∇xQoI •B1/2∇xObs
)2
, (S.5)

where B1/2 is the square root of the matrix B, and • denotes the dot product of two

vectors in RN . In the limit of vanishing observational noise ε2 ↘ 0, the expression in

eq. (S.5) converges to

∆̃σ2
QoI ↗

([
σ−1QoI B

1/2∇xQoI
]
•
[
σ−1Obs B1/2∇xObs

])2
. (S.6)

The limit in eq. (S.6) is equal to the definition of dynamical proxy potential (eq. (4)), if

the prior covariance matrix B is diagonal.
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