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Abstract18

Oceanic quantities of interest (QoIs), e.g., ocean heat content or transports, are often19

inaccessible to direct observation, due to the high cost of instrument deployment and lo-20

gistical challenges. Therefore, oceanographers seek proxies for undersampled, unobserved,21

or unobservable QoIs. Conventionally, proxy potential is assessed via statistical corre-22

lations, which measure covariability without establishing causality. This paper introduces23

an alternative method: assessing dynamical proxy potential. Using an adjoint model, this24

method unambigiously identifies the physical origins of covariability. A North Atlantic25

case study illustrates our method, within the ECCO (Estimating the Circulation and Cli-26

mate of the Ocean) state estimate. We find that wind forcing along the eastern and north-27

ern boundaries of the Atlantic drives a basin-wide response in North Atlantic circula-28

tion and temperature. Due to these large-scale teleconnections, a single subsurface tem-29

perature observation in the Irminger Sea informs heat transport across the remote Iceland-30

Scotland ridge (ISR), with a dynamical proxy potential of 19%. Dynamical proxy po-31

tential allows two equivalent interpretations: Irminger Sea subsurface temperature (i)32

shares 19% of its adjustment physics with ISR heat transport; (ii) reduces the uncertainty33

in ISR heat transport by 19% (independent of the measured temperature value), if the34

Irminger Sea observation is added without noise to the ECCO state estimate. With its35

two interpretations, dynamical proxy potential is simultaneously rooted in (i) ocean dy-36

namics and (ii) uncertainty quantification and optimal observing system design, the lat-37

ter being an emerging branch in computational science. The new method may therefore38

foster dynamics-based, quantitative ocean observing system design in the coming years.39

40

Plain Language Summary41

To understand the Earth’s changing climate, it is important to estimate how much42

heat the ocean takes up from the atmosphere and how the ocean recirculates the heat43

around the globe. Directly obtaining these estimates from measurements is complicated44

because oceanographers cannot measure the ocean everywhere. Ocean measurements taken45

from ships or freely drifting instruments are expensive and difficult to obtain, especially46

in regions with ice coverage or rough weather conditions. To analyze how existing mea-47

surements can be used to estimate unmeasured aspects of the ocean, past studies have48

used statistical correlations, although it is usually unclear whether correlations have a49

real, physical origin. This paper introduces a new method: we replace statistical corre-50

lations by correlations that have an underlying physical mechanism. As an example, the51

paper reveals that (A) a subsurface ocean temperature measurement close to the south-52

ern tip of Greenland helps to better estimate (B) poleward ocean heat transport across53

the Iceland-Scotland ridge, hundreds of kilometers away. (A) and (B) are related by physics-54

based correlation, which is created by a similar response of (A) and (B) to changes in55

the near- and far-field wind. The new method can be used to plan effective instrument56

placements in the future.57

1 Introduction58

Satellite altimetry and the global array of Argo floats have vastly increased the ob-59

servational coverage of the world’s oceans over the last two decades. Nevertheless, large60

parts of the ocean remain undersampled in space and time, due to the high cost of in-61

strument deployment, ongoing technical and logistical challenges, and the fact that crit-62

ically relevant processes occur on a wide range of spatial and temporal scales (e.g., Weller63

et al., 2019). Therefore, many oceanographic quantities of interest (QoIs) are not directly64

or continuously measured. Examples are volume, heat, and freshwater transports across65

many oceanographic passages, straits and latitude bands, as exemplified by the Atlantic66

meridional overturning circulation (AMOC), and ocean heat and freshwater content. Other67
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examples are strongly related to future societal concerns and key targets for climate pre-68

dictions. These include the Niño 3.4 index, future Arctic sea ice cover, or regional sea69

level anomalies. In oceanography, we are therefore on the quest for proxies. That is, it70

is desirable - and an active part of climate research - to employ observed quantities as71

proxies for QoIs that are undersampled, unobserved or unobservable.72

Past efforts in this direction include studies which found that sea level anomalies73

(available from altimetry) or ocean bottom pressure (available from gravimetry) can serve74

as a skillful proxy for AMOC variability on interannual time scales (e.g., Bingham & Hughes,75

2009; Ezer, 2015; Frajka-Williams, 2015; Landerer et al., 2015; McCarthy et al., 2015).76

Other studies suggested that, on decadal and longer time scales, North Atlantic surface77

or subsurface temperature have a characteristic “fingerprint” associated with changes78

in AMOC, and that the temperature fingerprint can be used as a proxy for AMOC (e.g.,79

Baehr et al., 2007; Caesar et al., 2018; Knight et al., 2005; Latif et al., 2004; Vellinga &80

Wood, 2004; R. Zhang, 2007, 2008). Consequently, sea level and surface/subsurface tem-81

perature records have been used to reconstruct AMOC changes back in time (Ezer, 2015;82

Frajka-Williams, 2015; Lopez et al., 2017; Ritz et al., 2013; Thornalley et al., 2018; X. Zhang83

et al., 2015). Moreover, sea surface height and hydrographic observations at selected lo-84

cations have been proposed as a useful observing system to detect AMOC changes in the85

present ocean and under future climate change scenarios, complementing or substitut-86

ing current direct North Atlantic trans-basin transport measurements, which are lim-87

ited in space and time (see Frajka-Williams et al., 2019, for a review).88

Proxy potential is typically assessed by means of statistical regression or correla-89

tion (e.g., see all AMOC proxy studies referenced in the previous paragraph), including90

regression using “modes” of variability obtained e.g., via principal component analysis.91

Fig. 1(a) sketches the concept of evaluating statistical proxy potential: one assesses co-92

variability between an observable quantity (pink time series) and an unobserved QoI (pur-93

ple time series), often in model output. This method provides an empirical measure for94

proxy potential, but does not identify causal relations. Without dynamical underpinnings,95

reported dependency on model choice, forcing scenario and time period considered (Alexander-96

Turner et al., 2018; Little et al., 2019; Roberts & Palmer, 2012) complicate robust iden-97

tification of proxy potential. The goal of this work is to overcome the limitations of sta-98

tistical proxy potential. Here, we establish a new methodology that quantifies dynam-99

ical, rather than statistical, proxy potential.100

Our goal is to unambiguously identify shared dynamical processes and pathways101

that provide a mechanistic underpinning for what we will refer to as dynamical proxy102

potential. To do so, we take advantage of the adjoint of an ocean general circulation model.103

The adjoint can efficiently uncover the dynamical cause of variations in observed and un-104

observed ocean quantities, extracted from the equations of motion and conservation laws105

governing the underlying general circulation model (Marotzke et al., 1999). For instance,106

adjoint-derived sensitivities have been used to study the dynamical cause of the follow-107

ing QoIs: Atlantic meridional heat transport (Heimbach et al., 2011; Köhl, 2005; Marotzke108

et al., 1999), Atlantic meridional overturning circulation (Czeschel et al., 2010; Heim-109

bach et al., 2011; Pillar et al., 2016; Smith & Heimbach, 2019), temperature in the east110

equatorial Pacific (Galanti et al., 2002; Galanti & Tziperman, 2003), Florida Current trans-111

port (Czeschel et al., 2012), sea level on the Californian coast (Verdy et al., 2013), ocean112

bottom pressure in the Arctic Mediterranean (Fukumori et al., 2015), and Labrador Sea113

heat content (Jones et al., 2018). Building on previous studies, we exploit the adjoint114

in a novel fashion, as sketched in Fig. 1(b): we identify shared mechanisms (green shad-115

ing) that affect both an observed quantity (e.g., temperature in the pink box) and an116

unobserved QoI (e.g., heat transport across the purple section). By this approach, we117

find dynamical causes and controls of covariability between the observed and unobserved118

quantity.119
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(a) Statistical proxy potential
(conventional approach)

time

observable quantity
unobserved QoI

(b) Dynamical proxy potential
(approach introduced in this work)

(c) Two interpretations of dynamical proxy potential

Ocean state estimation framework

control variables Fm(xi, yj , tk)
atmospheric forcing initial conditions model parameters

equations of motion/
ocean general

circulation model

observable quantity
Obs

unobserved quantity
QoI

Figure 1. (a),(b) Two approaches to assess proxy potential of an observable quantity (pink)

for an unobserved QoI (purple): (a) statistical proxy potential assesses covariability based on

empirical evidence; (b) dynamical proxy potential assesses causes and controls (green shading)

of covariability based on dynamical laws. (c) Two equivalent interpretations of dynamical proxy

potential (see section 2.3): via (i) shared ocean adjustment physics (pink & purple arrows) and

(ii) uncertainty quantification (black arrows).
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Moreover, we establish a link between the notion of dynamical proxy potential and120

Hessian-based uncertainty quantification (UQ) in ocean state estimation (Tarantola, 2005;121

Thacker, 1989). Within the UQ framework, dynamical proxy potential can be interpreted122

to measure uncertainty reduction in the QoI, given the new dynamical information pro-123

vided by the observation, under all potential forcing scenarios. This second interpreta-124

tion of dynamical proxy potential is further developed in a forthcoming paper. The com-125

putational sciences are currently exploring UQ - or in our terminology: dynamical proxy126

potential - as a tool for optimal observing system design (Alexanderian et al., 2016; Bui-127

Thanh et al., 2012, 2013; Flath et al., 2011; Isaac et al., 2015). The novel approach in-128

troduced in this work may therefore contribute to foster UQ and optimal observing sys-129

tem design in the field of ocean climate science in the coming years.130

We illustrate the new concept of dynamical proxy potential for a case study in the131

North Atlantic, choosing heat transport across the Iceland-Scotland ridge as our exem-132

plary QoI. The Iceland-Scotland ridge (ISR) is the key gateway for poleward heat pro-133

gession from the North Atlantic toward the Arctic Ocean (Hansen & Østerhus, 2000).134

Warm Atlantic waters are carried across the ridge by the Norwegian Atlantic Current135

(NwAC), one of the main branches of the North Atlantic Current (NAC, see Fig. 2). While136

observational estimates for ISR heat transport since the mid 1990s exist (e.g., Berx et137

al., 2013; Hansen et al., 2015; Østerhus et al., 2005, 2019), cross-ridge heat transport es-138

timates remain uncertain, due to a sparse array of current meter moorings and the sen-139

sitivity to the choice of calculation method (Berx et al., 2013; McCarthy et al., 2019).140

In contrast, upper ocean temperatures are well constrained throughout the larger part141

of the North Atlantic basin via remote and in situ platforms. For this reason, we select142

our representative observed quantities as temperature at the sea surface and at 300 m143

depth, at two locations in the North Atlantic: in the Irminger Current (IC) and off the144

Portuguese coast (Fig. 2), monitored by the OSNAP (Lozier et al., 2017, 2019) and OVIDE145

(Lherminier et al., 2007; Mercier et al., 2015) sections, respectively. These locations are146

intentionally chosen in two branches of the NAC that are distinct from the branch cross-147

ing the ISR (Fig. 2) and are therefore not expected to be ideal placements for monitor-148

ing ISR heat transport. We will show that these observations nevertheless provide par-149

tial constraints on the QoI through shared adjustment physics, which are uncovered and150

quantified by dynamical proxy potential.151

Here, we work within the ECCO (Estimating the Circulation and Climate of the152

Ocean) version 4 state estimate (Forget et al., 2015) and focus on monthly to multian-153

nual time scales up to five years, since now approximately five years of continuous OS-154

NAP measurements are available. We note that the quantification of dynamical proxy155

potential does not require actual (here: OSNAP and OVIDE) observational data, since156

it investigates dynamical relationships in the model equations, rather than observed co-157

variability. This paper is structured as follows. In section 2, we introduce the framework158

of ocean state estimation, describe the inbuilt adjoint infrastructure, and explain how159

these tools are used to compute dynamical proxy potential. Section 3 applies the method-160

ology to our North Atlantic case study. In section 4, we discuss our results as well as lim-161

itations and future directions.162

2 Assessing Dynamical Proxy Potential163

To assess dynamical proxy potential, we leverage the framework of ocean state es-164

timation and inbuilt adjoint capability. Ocean state estimation defines a set of uncer-165

tain input or control variables (green box in Fig. 1(c)). For simplicity, we will refer to166

the control variables as the time-dependent two-dimensional forcing fields Fm(xi, yj , tk).167

In practice, control variables also comprise time-independent three-dimensional fields of168

initial conditions and model parameters. In ocean state estimation, each forcing vari-169

able Fm(xi, yj , tk) gets assigned a weight, ∆Fm(xi, yj , tk), reflecting an estimate of the170

forcing uncertainty. Ocean state estimation then fits the model to the available obser-171
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vations. For this, one adjusts the control variables, within the range of their weights. In172

contrast, the model state variables within the white box in Fig. 1(c), e.g., temperature173

and velocity, adjust freely following the model dynamics, to ensure dynamic and kine-174

matic consistency. An implicit assumption in ocean state estimation is that the control175

variables Fm(xi, yj , tk) comprise all possible sources of changes in the ocean state and176

circulation and that the model is perfect (Tarantola, 2005; Wunsch, 1996).177

2.1 Information Required vs. Information Captured178

Given a quantity of interest, QoI, and an observed quantity, Obs, we compute their179

linear sensitivity to all forcings Fm(xi, yj , tk), using the adjoint of the underlying gen-180

eral circulation model. The weighted sensitivity matrices181

Q̃ =

[
∂(QoI)

∂Fm(xi, yj , tk)
∆Fm(xi, yj , tk)

]
i,j,k,m

(1)182

and183

Ṽ =

[
∂(Obs)

∂Fm(xi, yj , tk)
∆Fm(xi, yj , tk)

]
i,j,k,m

(2)184

reveal all possible dynamical mechanisms via which typical perturbations in the forcing185

fields Fm(xi, yj , tk) can change the QoI and observed quantity, respectively. All the dif-186

ferent dynamical mechanisms encoded in Q̃ have to be informed by the observations; Q̃187

is therefore the information required to recover the QoI. Similarly, Ṽ is the information188

captured by the observed quantity.189

2.2 Quantifying the Constraint Provided190

Comparing the sensitivity distributions of the QoI and observed quantity, identi-191

fies the adjustment physics that affect both quantities. A comparison of sensitivities is192

rigorously performed by the following three consecutive steps:193

1. normalizing the weighted sensitivity matrices Q̃ and Ṽ via the respective normal-194

ization factor195

σQuantity =

√√√√ ∑
i,j,k,m

(
∂(Quantity)

∂Fm(xi, yj , tk)
·∆Fm(xi, yj , tk)

)2

, (3)196

for Quantity ∈ {QoI,Obs}, resulting in197

Q = σ−1QoI Q̃, V = σ−1Obs Ṽ, (4)198

2. projecting Q onto V, and199

3. taking the square of this projection.200

These three steps result in the dynamical proxy potential of the observed quantity for201

the QoI:202

(Q • V)
2

=

(
(σQoI · σObs)

−1 ∑
i,j,k,m

{[
∂(QoI)

∂Fm(xi, yj , tk)
·∆Fm(xi, yj , tk)

]
(5)203

·
[

∂(Obs)

∂Fm(xi, yj , tk)
·∆Fm(xi, yj , tk)

]})2

.204

205

The projection in eq. (5) compares the information required, Q, with the information206

captured, V. The square of this projection provides the dynamical proxy potential, rang-207

ing between 0 and 1. These bounds correspond to the cases for which Obs (0) provides208
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no constraint and (1) serves as a perfect proxy for the QoI. The expression in eq. (5) is209

valid for measuring the dynamical proxy potential of a single observation for the QoI.210

This expression can be generalized for multiple available observations, through an or-211

thogonalization of the observations’ sensitivity matrices, as will be the demonstrated in212

forthcoming work.213

2.3 Two Equivalent Interpretations214

The concept of dynamical proxy potential, as defined in eq. (5), has two equiva-215

lent interpretations, sketched in Fig. 1(c). Dynamical proxy potential of an observed quan-216

tity (pink box) for an unobserved QoI (purple box) measures217

(i) the similarity between the ocean adjustment physics for the observed vs. unob-218

served quantity (pink vs. purple arrows) in response to changes in forcing (green219

box), on a scale from 0% (no similarity) to 100% (identical);220

(ii) the relative uncertainty reduction in the QoI that would be achieved if the obser-221

vation were to be added without noise to the state estimation framework in Fig. 1(c).222

The flow of information and uncertainty reduction within the state estimation frame-223

work - from the observation via the controls to the QoI - is delineated by the black224

arrows in Fig. 1(c).225

Interpretation (i) provides the following intution: if the observed quantity and QoI are226

forced by similar ocean mechanisms and pathways, the observed quantity can capture227

a large degree of the variability of the QoI, thus has high dynamical proxy potential for228

the QoI. Interpretation (ii) is formally derived in the supporting information and will229

be more thoroughly explained in a forthcoming paper, while this paper mainly focuses230

on enlightening interpretation (i).231

3 Application to the North Atlantic232

This section exemplifies our method for a case study in the North Atlantic. Sec-233

tion 3.1 describes the experimental setup, including our choice of QoI and observations.234

Sections 3.2 and 3.3 present the information required to recover the QoI and the infor-235

mation captured by the observations, respectively. Section 3.4 assesses the dynamical236

proxy potential of the observations for the QoI.237

3.1 Experimental Setup238

Our experiments are performed about the ECCO version 4 release 2 (ECCOv4r2,239

Forget et al., 2015) solution. The Massachusetts Institute of Technology general circu-240

lation model (MITgcm, J. Marshall, Adcroft, et al., 1997; J. Marshall, Hill, et al., 1997),241

serves as the dynamical core in ECCO and is configured at a nominal horizontal reso-242

lution of 1◦ with 50 vertical levels in this release. The optimized state provides an ac-243

ceptable fit to most available oceanographic data and has been used extensively for mech-244

anistic investigations of ocean variability, including in the North Atlantic (e.g., Buck-245

ley et al., 2014; Jones et al., 2018). We refer the reader to Forget et al. (2015) for de-246

tails on the model configuration and estimated ocean state.247

To quantify dynamical proxy potential, one requires the linear sensitivities of the248

QoI and observed quantities to all forcing variables (eqs. (1),(2)). To perform these sen-249

sitivity calculations, we take advantage of the flexible ECCOv4 adjoint modeling frame-250

work (Forget et al., 2015). Algorithmic differentiation, through source-to-source code trans-251

formation with the commercial tool transformation of algorithms in Fortran (TAF Gier-252

ing & Kaminski, 1998), produces the code for our adjoint models. Ice-covered regions253

are masked in the sensitivity calculation.254
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Figure 2. Schematic of the North Atlantic quantities examined in our case study. The quan-

tity of interest (QoI) is heat transport across the Iceland-Scotland ridge (ISR, green line). The

temperature observations θA, θB and θC are located inside the green dots. θA and θB are sub-

surface (at 300 m depth), θC at the sea surface. The arrows represent approximate pathways of

major near-surface currents carrying warm, saline Atlantic waters (orange) and cold, fresh Arctic

waters (yellow): NAC = North Atlantic Current; NwAC = Norwegian Atlantic Current; IC =

Irminger Current; EGC = East Greenland Current.
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3.1.1 QoI and Observations255

The QoI in our case study is heat transport across the Iceland-Scotland ridge, de-256

noted by HTISR. We investigate three different temperature observations in the North257

Atlantic, located inside the green dots in Fig. 2 and labelled by θA, θB , and θC . Obser-258

vations θA and θC are located in the Irminger Sea at (40 ◦W, 60 ◦N), while observation259

θB is situated in the eastern North Atlantic off the Portuguese coast at (12 ◦W, 41 ◦N).260

θA and θB are subsurface observations, situated at 300 m depth, and θC is a surface ob-261

servation.262

We quantify the dynamical proxy potential of the five-year mean of the observa-263

tions for the five-year mean of our QoI, for zero lag. Sensitivity matrices of the QoI (eq. (1))264

and observations (eq. (2)) are computed from the final five years (2007-2011) of the EC-265

COv4r2 state estimate. Dependence of the specific evaluation period is weak, given that266

HTISR, θA, θB , and θC depend approximately linear on the forcing variables in Table 1267

(Appendix A).268

The QoI, as simulated by the model, is diagnosed as follows:269

HTISR =
ρ0 cp
∆t

∫ 2011

2007

∫ top

bottom

∫
L

(θ − θref) v⊥ dLdz dt [W]. (6)270

L denotes the Iceland-Faroe-Scotland line segment, ∆t =
∫ 2011

2007
dt the length of the in-271

tegration period, ρ0 = 1029 kg/m3 the reference density, and cp = 3994 J/(kg ·K) the272

specific heat capacity of water. Further, θ denotes potential temperature, and v⊥ the ve-273

locity perpendicular to the line segment L; sign convention is such that positive v⊥ cor-274

responds to positive north- and eastward velocity. Note that since L is only a partial line275

segment, rather than a closed boundary, heat transport in equation (6) has to be defined276

relative to a reference temperature θref (Schauer & Beszczynska-Möller, 2009). Consis-277

tent with many observational studies (e.g., Østerhus et al., 2005; Berx et al., 2013; Hansen278

et al., 2015), we choose θref = 0 ◦C, motivated by the observation that southward flow279

across the ISR is close to this temperature (Hansen et al., 2003).280

For ? ∈ {A,B,C}, the observation θ∗ is diagnosed as the mean potential temper-281

ature282

θ? =
1

∆t · V?

∫ 2011

2007

∫ h?
1

h?
0

∫
A?

θ dx dy dz dt [◦C]. (7)283

(h0)?, (h1)?, and A? denote the lower and upper boundaries, and the horizontal area,284

of the model grid cell which the respective observation θ? is located in. For the subsur-285

face observations (? = A,B), we have (h0)? = −325 m and (h1)? = −275 m. For the286

surface observation, we choose the uppermost two model grid cells as a representative287

depth range, corresponding to (h0)C = −20 m and (h1)C = 0 m. The area of AA =288

AC is approximately (52 km)2 and the area of AB is approximately (84 km)2. In equa-289

tion (7), θ denotes potential temperature, ∆t =
∫ 2011

2007
dt the length of the integration290

period and V? =
∫ h∗1
h∗0

∫
A∗ dx dy dz the volume of interest.291

3.1.2 Forcings and Weights292

Table 1 shows the set of forcing fields that is chosen in this work: the spatially-varying293

fields of net upward surface heat flux, Qnet,↑, net surface freshwater flux, E-P-R, and zonal294

and meridional wind stress, τx and τy, respectively. Consistent with assessing dynam-295

ical proxy potential of the five-year mean of the observations for the five-year mean of296

the QoI, only adjustments to changes in the five-year mean of the forcing fields are con-297

sidered (fourth column in Table 1).298

The weights associated with the forcing fields are set to the spatially constant val-299

ues shown in the last column of Table 1. Choosing the weights as spatially uniform im-300
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Table 1. Forcing Fields and Weights in our Case Study.

m Forcing Fm(xi, yj , t̄) Symbol Time average ∆Fm

1 Net upward surface heat flux Qnet,↑ five years 50 W/m2

2 Net surface freshwater flux E-P-R five years 5 · 10−8 m/s
3 Zonal wind stress τx five years 0.05 N/m2

4 Meridional wind stress τy five years 0.05 N/m2

plies that the sensitivity projection (eq. (5)) for each individual forcing field is fully de-301

termined by the adjustment physics, and not by the forcing weight. In contrast, spatially302

varying weights can obscure the relative importance of sensitivity/physics vs. weights303

(Pillar et al., 2018). The choice of uniform weights adds therefore clarity to the presen-304

tation in this paper, whose primary goal is to exemplify the new concept of dynamical305

proxy potential. The concept of dynamical proxy potential permits straightforward gen-306

eralization to spatially (and even temporally) varying weights as per eq. (5).307

3.2 Information Required to Recover the QoI308

Figs. 3(a)-(d) show the weighted and normalized sensitivities309

Q�,�,m = σ−1HT

[
∂(HTISR)

∂Fm(xi, yj , t̄)
∆Fm

]
i,j

, m = 1, 2, 3, 4, (8)310

equal to the information required to recover HTISR (cf. eqs. (1),(4)). Here, t̄ indicates311

that we consider five-year mean sensitivities, and ∆Fm are the uniform forcing weights312

from Table 1. The normalization factor, σHT = 11 TW, is computed according to eq. (3).313

The bar chart in Fig. 3(e) shows the relative importance of the four forcings Fm for im-314

pacting HTISR. Relative importance is measured by the ratios315

‖Q�,�,m‖2 = σ−2HT

∑
i,j

(
∂(HTISR)

∂Fm(xi, yj , t̄)
∆Fm

)2

, m = 1, 2, 3, 4, (9)316

equivalent to integrating the sensitivities in Fig. 3(a)-(d) around the globe (in the l2-norm).317

Fig. 3(e) demonstrates that the influence of wind stress, τx and τy, prevails over the in-318

fluence of buoyancy forcing, Qnet,↑ and E-P-R.319

The positive sensitivity of HTISR to τy along the western African and European320

coast (Fig. 3(d)) is consistent with the following dynamical mechanism. An increase in321

northward wind stress along the western African and European coast induces Ekman on-322

shore convergence and a positive pressure anomaly along the coast. The positive pres-323

sure anomaly travels northward, along the eastern boundary of the North Atlantic, to324

the eastern end of the ISR. The increased zonal pressure gradient leads to a strength-325

ened northward geostrophic transport across the ridge, and, consequently, an increase326

in HTISR. The sensitivity to zonal wind stress along the western African and European327

coastline (Fig. 3(c)) is due to the same mechanism. Here, the sensitivity sign alternates328

because it is determined by the orientation of the coastline.329

The emerging wind stress sensitivities of HTISR around Iceland (Figs. 3(c),(d)) can330

be explained by a similar mechanism. The Icelandic coastline is a waveguide for clock-331

wise propagation around Iceland, delivering signals to the western end of the ISR sec-332

tion. Thus, negative pressure anomalies along the entire Icelandic coastline result in a333

positive perturbation of the zonal pressure gradient along the ISR section, and a strength-334

ening of the northward geostrophic transport across the ridge. This explains the sign of335

the sensitivities around Iceland: increased eastward (westward) wind stress along the south-336

ern (northern) coast of Iceland (Fig. 3(c)) and increased southward wind stress along the337
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Figure 3. Sensitivities of five-year mean heat transport across the Iceland-Scotland ridge

(HTISR), to changes in the five-year mean (a) upward surface heat flux Qnet,↑, (b) surface fresh-

water flux E-P-R, (c) zonal wind stress τx and (d) meridional wind stress τy. The sensitivities

are weighted and normalized (eq. (8)). Red (blue) colors indicate that an increase in (a) heat loss

to the atmosphere, (b) surface salinification, (c) eastward wind stress and (b) northward wind

stress would lead to a subsequent increase (decrease) in HTISR on a five-year time scale. The

solid black-yellow contour in (a)-(d) delineates the ISR. The bar chart in (e) shows the relative

contributions of Qnet,↑, E-P-R, τx and τy to HTISR sensitivity, when integrating the sensitivities

in (a)-(d) around the globe (eq. (9)).
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western coast of Iceland (Fig. 3(d)), all drive Ekman offshore divergence, resulting in a338

negative pressure anomaly at the Icelandic coast and a subsequent increase in HTISR.339

The wind stress sensitivity dipole along the coastline of the United Kingdom (UK) seen340

in Figs. 3(c),(d) can be understood similarly. The responsible mechanism delivers pos-341

itive pressure anomalies to the eastern end of the ISR section, explaining the fact that342

the sensitivity dipoles around Iceland and the UK are of opposite sign.343

HTISR shows positive sensitivity to Qnet,↑ and E-P-R to the west of the ISR, around344

Iceland, and negative sensitivity to the east of the ISR, along the western European coast345

(Figs. 3(a),(b)). This sensitivity dipole across the core of the NAC is consistent with a346

strengthening of the cross-ridge geostrophic transport in response to a negative pertur-347

bation of the density gradient along the section. The sensitivity of HTISR to Qnet,↑, rel-348

ative to the remaining forcing fields, is surprisingly small: only 3% (Fig. 3(e)). We note349

that even if we tripled ∆Qnet in Table 1, while keeping the weights for the remaining forc-350

ings unchanged, HTISR would still be less sensitive to Qnet,↑ than to any of the remain-351

ing three forcing fields in Fig. 3(e). This is consistent with previous observation- and model-352

based studies, which found that on seasonal to multiannual time scales ISR heat trans-353

port variability is dominantly driven by velocity fluctuations, rather than temperature354

fluctuations (Årthun & Eldevik, 2016; Asbjørnsen et al., 2019; Orvik & Skagseth, 2005).355

3.3 Information Captured by Observations356

The information captured by each of the three temperature observations θ?, for ? =357

A,B,C, is represented by the weighted and normalized sensitivities358

V?
�,�,m = σ−1?

[
∂θ?

∂Fm(xi, yj , t̄)
∆Fm

]
i,j

, m = 1, 2, 3, 4, (10)359

cf. eqs. (2),(4). Here, the normalization factor σ? is computed according to eq. (3) with360

Quantity = θ?, giving σA = 0.05 ◦C, σB = 0.06 ◦C, and σC = 0.23 ◦C. Note that σC361

is much larger than σA and σB since the surface temperature θC is more sensitive to at-362

mospheric forcing than the subsurface temperatures θA, θB . Figs. 4(a)-(f) show the weighted363

and normalized sensitivities (eq. (10)) for two of the four forcings, F1 = Qnet,↑ and F4 =364

τy. The bar charts in Figs. 4(g)-(i) show the relative importance of the four forcings Fm365

for impacting θ?, for ? = A,B,C. Relative importance is measured as in Fig. 4(d), by366

the ratios in eq. (9), where Q is substitued by V?.367

The relative importance of Qnet,↑ is high for the surface observation θC (Fig. 4(i)),368

but low for the subsurface observations θA and θB (Figs. 4(g),(h)). The high sensitiv-369

ity of θC to Qnet,↑ is concentrated at the observed site (Fig. 4(c)), due to the strong in-370

fluence of local air-sea heat fluxes on surface temperature. All temperature observations371

show weak negative Qnet,↑ sensitivity upstream of the respective observed sites (Figs. 4(a)-372

(c)), as an increased upward heat flux locally cools surface waters which are then advected373

(Fig. 2) to the observed locations. For all three temperature observations, the relative374

importance of E-P-R is very small (Figs. 4(g)-(i)). Wind stress is important for all three375

observations (Figs. 4(g)-(i)), and the remainder of this section is devoted to wind stress376

sensitivities. For the sake of brevity, we focus on τy sensitivities, which can be regarded377

as representative for τx sensitivities, too. Indeed, τx and τy sensitivities emerge along378

the same pathways (not shown) due to the same wind-driven adjustment mechanisms.379

All observations are characterized by a sensitivity dipole local to the observed site380

and explained by Ekman dynamics. For instance, at (12 ◦W, 41 ◦N), right where θB is381

located, a sensitivity dipole is visible, with positive sensitivities to the west and nega-382

tive sensitivities to the east (Fig. 4(e)), interrupting the otherwise positive sensitivities383

along the eastern boundary of the Atlantic. Here, a wind stress perturbation matching384

the sensitivity dipole (i.e., increased northward wind stress to the west and increased south-385

ward wind stress to the east) causes Ekman downwelling and pumps warm surface wa-386

ters down to the subsurface observation, which increases θB .387
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Figure 4. (a)-(c): Sensitivities of five-year mean (a) subsurface temperature in the Irminger

Sea (θA), (b) subsurface temperature off the Portuguese coast (θB), and (c) surface temperature

in the Irminger Sea (θC) to changes in five-year mean upward surface heat flux Qnet,↑. (d)-(f):

Same as (a)-(c), but sensitivities to meridional wind stress τy. The sensitivities are weighted

and normalized (eq. (10)), as in Fig. 3. Red (blue) colors indicate that an increase in (a),(b),(c)

heat loss to the atmosphere and (d),(e),(f) northward wind stress would lead to a subsequent

increase (decrease) in (a),(d) θA, (b),(e) θB , and (c),(f) θC on a five-year time scale. The yellow

dots mark the respective locations of the temperature observation. The bar charts in (g)-(i) show

the relative contributions of Qnet,↑, E-P-R, τx and τy to (g) θA, (h) θB , and (i) θC sensitivity,

computed as in Fig. 3.
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Figure 5. Response of North Atlantic subsurface temperature at 300 m depth to a positive

northward wind stress anomaly of amplitude 0.05 N/m2 along the (a) western African coast and

(b) the western Icelandic coast. The wind stress perturbations are imposed inside the green

contour in (a) and (b), and maintained over five years. The shown temperature anomalies are

time-averaged over the same five-year time period. The black line marks the 300 m depth con-

tour. The yellow dots show the locations of the temperature observations θA and θB .

The large-scale wind stress sensitivity patterns of θC (Fig. 4(f)) are very similar388

to the ones of θA (Fig. 4(d)), except that they are of much weaker amplitude. The sim-389

ilarity of the patterns suggests that the surface observation θC is sensitive to similar re-390

mote wind-driven adjustment mechanisms as the subsurface observations θA. However,391

local forcing massively dominates the surface temperature response, as indicated by the392

strong sensitivities concentrated near (40 ◦W, 60 ◦N) in Figs. 4(c),(f).393

For all three temperature observations, positive sensitivity to northward wind stress394

emerges along the western African and European coastline (Figs. 4(d)-(f)), similar to what395

was seen for HTISR in section 3.2. To explain the underlying mechanism, we perform a396

perturbation experiment, in which the final five years of the ECCOv4r2 serve as our con-397

trol simulation. We increase northward wind stress in the region highlighted in Fig. 5(a),398

along the western African coast, by 0.05 N/m2, and maintain the perturbation over the399

full five-year period. Fig. 5(a) shows the response anomalies in subsurface temperature,400

at a depth of 300 m, time-averaged over the five-year experiment. We see that, in response401

to the positive northward wind stress anomaly along the western African coast, the north-402

east Atlantic (north of 30 ◦N) experiences anomalous high temperatures.403

The responsible mechanism operates exactly as demonstrated by Jones et al. (2018),404

see their Fig. 10. The northward wind stress anomaly creates a positve pressure anomaly405

along the eastern boundary of the Atlantic, which, after traveling across the ISR, sets406

up an anomalous pressure gradient between the Nordic Seas and the North Atlantic. The407

basin-scale pressure gradient along the eastern and northern boundary of the North At-408

lantic spins up the subpolar gyre and the northeastern part of the subtropical gyre. The409

strengthened subpolar and subtropical gyres lead to the large-scale subsurface warming410

pattern that is seen in the northeast Atlantic in Fig. 5(a). The anomalous warming in-411

cludes the locations of the temperature observations θA, θB , and θC , in the Irminger Sea412

and off the Portuguese coast, explaining the consistently positive sensitivities along the413

western African coast in Figs. 4(d)-(f). We also note that the positive temperature anomaly414
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in the Norwegian Sea in Fig. 5(a) is a consequence of increased HTISR, as predicted by415

the positive τy sensitivity band along the western African coast in Fig. 3(d).416

North of 50 ◦N, the subsurface temperature observation off the Portuguese coast,417

θB , is insensitive to wind stress (Figs. 4(e)). Meanwhile, the temperature observations418

in the Irminger Sea show sensitivity to wind stress also in the northeastern Atlantic, be-419

tween 50 ◦N and 70 ◦N (Figs. 4(d),(f)). We note that, in this region, the pattern of τy420

sensitivities for θA, θC (Figs. 4(d),(f)) are comparable to those for HTISR (Fig. 3(d)),421

except that sensitivities of θA, θC are of opposite sign, compared to HTISR (see Figs. 6(c),(d)422

for a side-by-side comparison).423

To explain the opposite signs, we perform a second perturbation experiment sim-424

ilar to the one presented in Fig. 5(a). In the second experiment, we increase northward425

wind stress along the western Icelandic coast, in the region highlighted in Fig. 5(b), where426

θA and θB show positive sensitivity (Fig. 4(d),(f)) and HTISR shows negative sensitiv-427

ity (Fig. 3(d)). Fig. 5(b) shows the response anomaly in subsurface temperature, at a428

depth of 300 m. The Irminger and Labrador Seas experience a warming, while the Nor-429

wegian Sea cools. The underlying mechanism is the following: the northward wind stress430

anomaly along the western Icelandic coast drives Ekman onshore convergence and a pos-431

itive pressure anomaly. The positive pressure anomaly is rapidly communicated along432

the entire Icelandic coastline, resulting in an across-bathymetry pressure gradient, which433

drives an anomalous clockwise barotropic circulation around Iceland (not shown). The434

anomalous clockwise circulation around Iceland weakens the northward transport across435

the ISR by the NwAC as well as the southward transport through Denmark Strait by436

the East Greenland Current (EGC), while strengthening the IC (cf. Fig. 2). The weak-437

ened northward transport of warm Atlantic waters across the ISR leads to the anoma-438

lous cold temperatures that are seen in the Norwegian Sea in Fig. 5(b), and is consis-439

tent with a reduced HTISR, as predicted by the negative sensitivities in Fig. 3(d). The440

weakened southward transport of cold Arctic waters through Denmark Strait, together441

with the strengthened IC, results in the anomalous warming that is seen in the Irminger442

and Labrador Seas in Fig. 5(b). The increased temperature in the Irminger Sea is con-443

sistent with the positive sensitivities along the western Icelandic coast in Figs. 4(d),(f).444

The perturbation experiment presented in Fig. 5(b) explains the opposite sign in445

the sensitivities along the western Icelandic coast in Fig. 3(d) vs. Fig. 4(d). The fact that446

in Fig. 3(d) vs. Fig. 4(d), sensitivities are consistently of opposite sign in the northeast447

Atlantic between 50 ◦N and 70 ◦N can be understood similarly. The sensitivity patterns448

in this region are characterized by topographically steered bands, which connect to Ice-449

land or the ISR (Figs. 3(d), 4(d)). The sensitivity patterns have opposite sign in Fig. 3(d)450

vs. Fig. 4(d) because wind stress in this region creates pressure anomalies that are trans-451

ported to the Icelandic coastline. Once there, the pressure anomalies drive a simultane-452

ous strengthening (or weakening) of the NwAC and EGC, as described before, which re-453

sults in opposite temperature responses in the Irminger vs. Norwegian Sea, similarly as454

in Fig. 5(b).455

3.4 Quantifying the Constraint Provided456

This section investigates the contraints on our QoI, heat transport across the Iceland-457

Scotland ridge (HTISR), provided by the three temperature observations θA, θB , and θC .458

These constraints are quantified by dynamical proxy potential, computed as the square459

of the following projection of sensitivity matrices:460

Q • V? =

[
σ−1HT

∂(HTISR)

∂F
∆F

]
•
[
σ−1?

∂θ?

∂F
∆F

]
, (11)461

for ? = A,B,C, cf. eq. (5). Fig. 6 shows the projection (11) for the case ? = A. The462

left column of Fig. 6 shows the information that is required to recover HTISR. The right463

column of Fig. 6 contains the information that is captured by the temperature obser-464
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Figure 6. Projection of sensitivity matrices (eq. (11)) of the QoI, HTISR (left column), and

the observed quantity, θA (right column). All shown sensitivity maps are replots of subpanels

in Fig. 3 and 4, as indicated by the yellow labels. The color shading in each of the shown model

grid cells (inlets in (c),(d)) corresponds to an entry in either of the two sensitivity matrices,

associated with the forcing variable τy. The three cases (+), (−), and (0), resulting from the

elementwise projection, are further discussed in the text.
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vation θA. In Fig. 6(c)-(d), we highlight three cases resulting from the elementwise pro-465

jection in eq. (11):466

(+) overlapping sensitivities of equal sign, resulting in a positive contribution to the467

projection Q •VA;468

(−) overlapping sensitivities of opposite sign, resulting in a negative contribution to469

Q •VA;470

(0) non-overlapping sensitivities, resulting in no contribution to Q •VA.471

Fig. 7(i) is a quantitative summary of Fig. 6: showing total positive (case (+)) and472

negative (case (−)) contributions to the projection Q•VA, for the four different forc-473

ings. The maximum absolute value for the projection is equal to 1, because the sensi-474

tivity matrices in (11) are normalized. An absolute value of 1 would only be attained475

if the sensitivity matrices of HTISR and θA, Q and VA, were identical, or identical with476

reversed sign.477

For all observations considered, the generation of proxy potential is dominated by478

existence of wind-driven adjustments that are shared with those for HTISR (Figs. 7(i)-479

(k)). Minor importance of Qnet,↑ and E-P-R is not surprising when recalling the fact that480

HTISR is relative insensitive to Qnet,↑ and E-P-R (Fig. 7(a)). Note that even for the sur-481

face temperature observation θC , which is highly sensitive to surface heat fluxes (Fig. 7(d)),482

the Qnet,↑ contribution to the projection (11) is negligible (Fig. 7(k)).483

Positive τy contributions to Q •VA arise along the eastern boundary of the At-484

lantic (solid box, Fig. 7(f)), where both HTISR and θA exhibit a band of positive sen-485

sitivity along the western African and European coast, due to the shared pressure ad-486

justment mechanism discussed in sections 3.2, 3.3 and Fig. 5(a). Negative τy contribu-487

tions to Q•VA arise in the northeast Atlantic (dashed box, Fig. 7(f)), where wind stress488

sensitivities are of large amplitude and of opposite sign for HTISR (Fig. 7(e)) and θA (Fig. 7(f)),489

as discussed in section 3.3 and Fig. 5(b). The negative projection in the northeast At-490

lantic exceeds the positive projection in the eastern Atlantic waveguide (Fig. 7(i)). To-491

tal positive and negative contributions sum to Q•VA = −0.44 (Fig. 7(i)). Here, par-492

tial cancellation between the positive and negative projections leads to a loss of constraint493

by cA = 0.29. For ? = A,B,C, cancellation is quantified as494

c? = |Q| • |V?| − |Q •V?| ≥ 0, (12)495

where |M| denotes the matrix whose entries are defined as the absolute values of the re-496

spective entries of the matrix M, for M = Q,V?. As an example, if all contributions497

shown in Fig. 7(i) were either consistently positive or consistently negative (in which cases498

no cancellation occurred), the absolute value of the projection Q•VA would be increased499

by the addition of cA, resulting in an absolute value of 0.44 + 0.29 = 0.73.500

Positive wind stress contributions to Q•VB (Fig. 7(j)) are of similar magnitude501

as positive wind stress contributions to Q•VA (Fig. 7(i)), due to the pressure adjust-502

ment mechanism in the eastern Atlantic waveguide, shared among θB , HTISR (and θA).503

The total overlap of HTISR sensitivity with θB sensitivity (Fig. 7(j)) is much smaller than504

with θA sensitivity (Fig. 7(i)), since θB does not show any sensitivity north of 55 ◦N (Fig. 7(g)).505

For the Irminger Sea surface observation θC , proxy origins are similar as for the Irminger506

Sea subsurface observation θA (boxes in Figs. 7(f),(h)), but contributions from each forc-507

ing are reduced by a factor of about 0.25 (Figs. 7(i),(k)), due to relatively weaker exci-508

tation of surface temperature by remote forcing, as discussed in section 3.3.509

The dynamical proxy potential of each of the observations θA, θB , and θC for HTISR510

is computed by taking the square of the respective value Q•V? (eq. (5)) that was ob-511

tained in Figs. 7(i)-(k). The result is shown in Figs. 7(l)-(n): the dynamical proxy po-512

tential of θA for HTISR is 19%, while the dynamical proxy potentials of θB and θC for513

HTISR are only 1%. These values can be interpreted either in terms of (i) shared ocean514
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(f) Fig. 4(d)

+

−

(c) Fig. 4(h)

(g) Fig. 4(e)

+

−
+

(d) Fig. 4(i)

(h) Fig. 4(f)

+

−

HTISR

Qnet,↑
E-P-R
τx
τy

θA θB θC

-0.30

-0.20

-0.10

0

0.10

cA = 0.29

Q •VA = −0.44

cB = 0.10

Q •VB = +0.11

cC = 0.08

Q •VC = −0.11

(i) (j) (k)

+

−

+

−
+

−

θA θB θC
0%

10%

20%
(l) (m) (n)

Dynamical proxy potential for HTISR

Figure 7. (a)-(h): Replots of subpanels in Figs. 3 and 4, as indicated by the yellow labels. (i)-

(k): Contributions from the forcings F = Qnet,↑,E-P-R, τx, τy to the projection Q • V? (eq. (11)),

where (i) ? = A, (j) ? = B, and (k) ? = C. The projections are computed as shown in Fig. 6.

That is, in each of the subpanels (i)-(k), the τy-contribution is computed by projecting the sen-

sitivity map σ−1
HT

∂(HTISR)
∂τy

∆τy (shown in (e)) onto the respective sensitivity map σ−1
?

∂θ?

∂τy
∆τy

(shown in (f) for ? = A, (g) for ? = B, (h) for ? = C). Positive (negative) τy-contributions,

arise in the Atlantic subregion inside the black solid (dashed) box in (f) for ? = A, (g) for ? = B,

(h) for ? = C, inside which sensitivities correlate (anticorrelate) with those in subpanel (e). The

value for Q • V? (bottom of subpanels (i)-(k)) is obtained by summing up all upward- and down-

ward pointing bars in the respective subpanel. Here, destructive interference is quantified by c?

(eq. (12)). (l)-(n): Dynamical proxy potential of (l) θA, (m) θB , (n) θC for HTISR, computed by

squaring Q •V? obtained in (i),(j),(k), respectively (cf. eq. (5)).
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adjustment physics or (ii) uncertainty quantification (cf. Fig. 1(c)). As for (i), HTISR515

shares 19% of its dynamical causes and controls with θA, but only 1% with θB and θC .516

As a result, θA (θB , θC) captures 19% (1%, 1%) of the variability of HTISR, taking into517

account all potential forcing scenarios. As for (ii), dynamical proxy potential predicts518

that uncertainty in HTISR would get reduced by 19% (1%, 1%), if a noise-free measure-519

ment value of θA (θB , θC) was added to the state estimation framework that was described520

in section 3.1.521

4 Summary and Discussion522

The design of effective climate observing systems relies on a both physical and quan-523

titative understanding of which processes are captured by existing and future observa-524

tions and which quantities of interests (QoIs) that capture important aspects of the cli-525

mate system can be informed. Toward this goal, we introduced the concept of dynam-526

ical proxy potential - a tool for ocean observing system design which is rooted in both527

(i) dynamical and (ii) quantitative principles. To establish this tool, our approach was528

to expose the potential of optimal observing system design, an emerging branch of com-529

putational science and engineering, in the context of ocean state estimation for climate.530

We applied the general theoretical framework (as laid out, e.g., in Flath et al. (2011);531

Bui-Thanh et al. (2012, 2013); Isaac et al. (2015)) to the ECCO version 4 estimation frame-532

work, and, importantly, provided ocean dynamical interpretations. For pedagogical rea-533

sons, this paper simplifies the general framework in three important ways: (1) only one534

observational asset is considered, (2) observations are treated as noise-free, and (3) the535

QoI, observations and uncertain control variables are defined as five-year mean quanti-536

ties. We note, however, that the concept is readily generalized to cases where all of the537

restrictions are relaxed, and we will present such generalized applications in forthcom-538

ing work. In the following, we summarize the results from our exemplifying case study,539

point out potential limitations, and provide specific directions for future work.540

In this work, heat transport across the Iceland-Scotland ridge (HTISR) was the ex-541

emplary QoI. We explored the potential for three example observed quantities to serve542

as proxies for this QoI: two temperature observations, θA, θC , in the Irminger Sea, and543

one temperature observation, θB , off the Portuguese coast. Here, θA, θB were assumed544

subsurface, and θC at the sea surface. Examination of the sensitivity matrices of the QoI545

and observations - exposing all viable adjustment processes - revealed the following. On546

a five-year time scale, HTISR and θA are most sensitive to changes in wind forcing in two547

main regions: (I) along the eastern boundary of the Atlantic and (II) in the northeast548

Atlantic and the Nordic Seas. Wind forcing in region (I) excites a pressure adjustment549

mechanism, which strengthens (or weakens) both the ISR geostrophic transport and the550

Irminger Current, leading to anomalies in HTISR and θA of equal sign. Wind forcing in551

region (II) drives a barotropic circulation around Iceland which simultaneously strength-552

ens (or weakens) the Norwegian Atlantic and East Greenland Currents, leading to anoma-553

lies in θA and HTISR of opposite sign.554

Dynamical proxy potential is computed by projecting the sensitivity matrices of555

the QoI and observation under consideration, by way of eq. (5). This projection effec-556

tively superimposes all viable sensitivity pathways and measures the degree of shared557

adjustment physics, taking into account the effects of constructive and destructive in-558

terference of information propagation. Destructive interference of information occurs be-559

cause wind forcing in region (I) leads to responses in HTISR and θA of equal sign, while560

wind forcing in region (II) leads to responses in HTISR and θA of opposite sign. Con-561

sidering the five-year mean of the two quantities, we find that the dynamical proxy po-562

tential of θA for HTISR is 19%. Dynamical proxy potential allows two equivalent inter-563

pretations: θA (i) shares 19% of its adjustment physics with HTISR; (ii) reduces the un-564

certainty in HTISR by 19%, if θA is added as noise-free to the ECCO state estimate.565
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The example presented in this work highlights four important results, which gen-566

eralize beyond the case study.567

(1) Conventionally, hydrographic observations are used for inferring two types of in-568

formation: first, local ocean temperature and salinity; and second, the geostrophic569

transport across an oceanic section, if hydrographic profiles at the end points of570

the section (and thus, along-section density gradients) are available. Based on end-571

point geostrophy, moorings that are to be informative for cross-ISR transport would572

be located along the ISR itself. Here, we demonstrated that remote hydrographic573

observations can provide strong constraints on cross-section transports due to large-574

scale oceanic teleconnections. This result highlights the importance of further prob-575

ing dynamical constraints contained within the existing observational database.576

(2) The information that the observation θA provides for the QoI HTISR originates577

in the observation’s potential to capture a certain degree of the variability of HTISR578

- a similar concept that underlies statistical proxy potential. However, in contrast579

to statistical proxy potential, dynamical proxy potential only accounts for covari-580

ability that has a dynamical underpinning, by employing sensitivity information581

that traces variability of HTISR and θA back to its origins in local or remote forc-582

ing. The dominant regions, (I),(II), and associated shared wind-driven adjustment583

mechanisms discussed in this study, have been shown to be key for many distinct584

oceanic quantities (see adjoint-based investigations referenced in the introduction)585

and reflect the ubiquitous nature of basin-scale barotropic and baroclinic adjust-586

ment processes (D. P. Marshall & Johnson, 2013, and references therein). Uncov-587

ering basin-scale teleconnections and common dynamical pathways and mechanisms588

via which many oceanic QoIs adjust, as performed here, may help to (i) explain589

the physical cause of observed variability in the North Atlantic, and (ii) build ef-590

ficient observing systems which capture these mechanisms reliably.591

(3) In contrast to statistical proxy potential, dynamical proxy potential does not pro-592

vide a direct recipe for recovering the QoI (here: HTISR), from existing measure-593

ments (here: of θA). Instead, the framework of ocean state estimation is required594

to extract the measurements’ constraint exerted on the QoI. An important fact595

- with implications for observing system design - is that, independent of the mea-596

surement value, potentially taken by a future observing system, inclusion of the597

observation will reduce uncertainty in the QoI by the pre-determined dynamical598

proxy potential (here: 19%, assuming a noise-free observation). While ocean state599

estimation is a well-established method for optimally combining ocean observa-600

tions with an ocean general circulation model (Heimbach et al., 2019), the way601

in which observations constrain QoIs (other than the actual model-data misfit func-602

tion to be minimized) in the ocean state estimate have remained unexplored. The603

computational framework for quantifying dynamical proxy potential, as introduced604

in this work, provides the first clear and dynamical interpretation of UQ and ob-605

servational constraints in ocean state estimation.606

(4) In our case study, destructive interference of competing adjustment mechanisms607

in regions (I) and (II) prevents the dynamical proxy potential of θA for HTISR from608

exceeding 19%. The method introduced in this work quantifies missing informa-609

tion and constructive & destructive interference, paving the way for extracting com-610

plementary information from further observations. In our case study, we found that611

θB is sensitive to wind forcing in region (I), but entirely insensitive to wind forc-612

ing in region (II). A forthcoming paper will show that considering θA and θB in613

combination, will help to extract some of the information which is lost in destruc-614

tive interference when viewing θA in isolation.615
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The adjoint of an ocean general circulation model is the key tool for obtaining com-616

plete sensitivity information to local and remote forcing. This sensitivity information,617

in turn, is the cornerstone of the quantification of dynamical proxy potential, laying the618

groundwork for dynamics-based observing system design. In previous work, adjoint-derived619

sensitivity information has been proposed to support observing system design in a dis-620

tinct fashion: Marotzke et al. (1999), Heimbach et al. (2011), and Köhl and Stammer621

(2004) use an adjoint model to compute sensitivities of a given QoI to hydrographic state622

variables or hydrographic observations, and suggest that regions of highest sensitivity623

are to be prioritized when deploying new hydrographic observations. Following this recipe624

and choosing heat transport across the Greenland-Scotland ridge (GSR) as their QoI,625

Köhl and Stammer (2004) find highest sensitivity (or ‘optimal’ hydrographic observa-626

tions) close to the GSR itself, consistent with the dynamical principle of endpoint geostro-627

phy (see discussion point (1) above). In this fashion, the philosophy of previous adjoint-628

based studies is to discover direct cause and effect relationships between changes in ob-629

servations and changes in the QoI. Dynamical proxy potential, as introduced in this work,630

looks further: by employing sensitivity information of not only the QoI, but also of the631

observations, dynamical proxy potential quantifies dynamics-based covariability of the632

QoI and observations, driven by local or remote forcings. As a result, dynamical proxy633

potential can exploit that multiple distinct QoIs may be connected by basin-wide dy-634

namical adjustments and thus well constrained by limited instrumentation in this shared635

adjustment pathway. Moreover, unlike dynamical proxy potential, the previous adjoint-636

based method do not provide a quantitative estimate on how much information the sug-637

gested observations contain on the QoI (and how much information is missing). Instead,638

the previous method provides only a relative estimate by suggesting that some obser-639

vations may be more informative than others.640

In the context of Arctic observing system design, Kaminski et al. (2015, 2018) uti-641

lized a method related to the one presented in this work. A key difference is that the au-642

thors handle sensitivity information averaged over large regions (e.g., Fig. 2 in Kamin-643

ski et al., 2015). While spatially averaged sensitivity enables numerically efficient quan-644

tification of the constraint from large-scale data acquisitions (e.g., from satellite or air-645

craft), it could entail large aggregation errors (Kaminski et al., 2001). Furthermore, we646

argue that it inhibits clear understanding of proxy origins, by grouping information from647

dynamically distinct regions. This is especially true for harnessing proxy potential from648

shared wind-driven adjustments, for which resolution of the coastal waveguides is key.649

While the adjoint model provides comprehensive sensitivity information through-650

out the global model domain, adjoint-derived sensitivity is limited by the linear approx-651

imation and inexactness of the adjoint (Czeschel et al., 2010; Errico, 1997; Hoteit et al.,652

2005; Forget et al., 2015). Perturbation experiments with the full nonlinear model dy-653

namics in Appendix A show that the adjoint-derived sensitivities in our case study re-654

liably capture the basin-wide adjustment mechanism that are excited by wind stress per-655

turbations in regions (I) and (II). However, estimation errors in the predicted response656

amplitudes can reach up to 20% - partly due to the linear approximation, and partly due657

to the inexactness of the adjoint. This emphasizes that we must keep validating the ac-658

curacy of adjoint-derived sensitivity information and that improving the exactness of the659

adjoint would add great value to dynamics-based observing system design.660

A second shortcoming of the methodology presented here is that dynamical proxy661

potential may be dependent on the underlying ocean GCM. Global ocean GCMs are typ-662

ically too coarse (here: of 1 ◦ horizontal resolution) to accurately represent density-driven663

gravity currents (e.g., across overflow regions in the subpolar North Atlantic), deep con-664

vection, and narrow boundary currents. Inability to test model dependency, due to un-665

available adjoints for almost all GCMs, is a limiting factor.666

As a third drawback, important limiting assumptions entering the calculation of667

dynamical proxy potential are the choice of forcing variables and the associated weights.668
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The forcing variables should include all uncertain elements in the model, i.e., the parts669

that are not determined by the known governing equations. In ocean state estimation,670

the uncertain variables are assumed to consist of atmospheric forcing variables, initial671

conditions, and parameters that are used for empirical, constitutive laws (such as mix-672

ing of tracers and momentum) and subgrid-scale parameterization (Forget et al., 2015),673

while structural model uncertainties or model inadequacy remain unrepresented. The674

associated weights reflect prior uncertainties in the forcing variables. In the choice of un-675

certain variables and weights, the notion of dynamical proxy potential follows the assump-676

tions of ocean state estimation. It is important to note that, while the sensitivity ma-677

trices uncover all dynamical processes (independent of the weights), the relative impor-678

tance of these mechanisms is determined by the weights.679

In our case study, we investigated how changes in time-mean forcing affects the time-680

means of temperature observations (e.g., θA) and QoI (HTISR), on five-year time scales.681

Thereby, we identified key forcings, adjustment pathways, and mechanisms for observa-682

tions and QoI, but did not disentangle whether the dominating mechanisms operate on683

weekly, monthly, seasonal, annual, or multiannual (< five years) time scales. Future work684

should consider time-variable changes in forcing and investigate the variability of obser-685

vations and QoIs on shorter (e.g., interannual) time scales. This will enable us to not686

only disentangle the dominant time scales of the operating mechanisms, but also to as-687

sess the predictive skill of observations for a QoI, if the QoI’s response to certain forc-688

ings is lagged behind the observations’ response. In view of the recently deployed OS-689

NAP mooring array, it will be exciting to explore the dynamical proxy potential of the690

OSNAP observations for remote oceanic quantities that are not readily accessible to di-691

rect observation but have important climatic repercussions.692

A further future direction is to extend the notion of dynamical proxy potential by693

taking into account observational noise as well as data redundancy and complementar-694

ity between multiple observations - an effort to be pursued in a forthcoming paper. By695

targeting information that is complementary to existing observing systems, the notion696

of dynamical proxy potential can support the design of effective future observing sys-697

tems. An interesting question is that of an optimal observing strategy, for instance: what698

is the value of surface (possibly remotely sensed) vs. subsurface (in situ) observations699

for unobserved or unobservable QoIs? In our case study, we found that the surface tem-700

perature observation θC is too sensitive to local air-sea heat exchanges. The strong sen-701

sitivity to local processes overrides the sensitivity to the large-scale basin-wide adjust-702

ment mechanisms that are relevant for HTISR - and potentially many other QoIs. The703

fact that the efficiency of observing systems depends on the targeted QoIs highlights the704

importance of an ongoing community discussion on which climate QoIs are most impor-705

tant to constrain.706

The oceanographic community needs a synergistic, quantitative approach to code-707

sign a cost-effective, long-term, and sustained observing system of the North Atlantic.708

In this work, we have introduced a dynamics-based alternative to statistical correlations709

and conventional observing system simulation experiments (OSSEs). With a focus on710

understanding and exploiting the underlying dynamics of covariability, we hope that our711

new approach can contribute to maximizing the information from existing and future712

observing systems.713

Appendix A Linear Approximation and Inexactness of the Adjoint714

The adjoint of an ocean GCM provides sensitivity information (eqs. (1),(2)) which715

is the key ingredient of dynamical proxy potential. Caveats are that (i) the sensitivity716

information is only a linear approximation for the nonlinear responses in QoIs and ob-717

servations to perturbations, and that (ii) the adjoint may be inexact, e.g., due to artif-718

ically increased viscosity compared to the foward model, which is often a requirement719
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to stabilize the adjoint (Hoteit et al., 2005, 2010; Forget et al., 2015). Here, we verify720

the adjoint-derived sensitivities against forward perturbation experiments with the non-721

linear forward model. Our control simulation covers the final five years of the ECCOv4r2722

state estimate. We focus on meridional wind stress perturbations inside the two green723

regions in Fig. 5, along the western African coast and the western Icelandic coast.724

For each of the two chosen regions, we perform two separate perturbation exper-725

iments, imposing meridional wind stress anomalies of ∆τy = ±0.05 N/m2 inside the re-726

gion, respectively. We maintain the wind stress perturbation over the full five-year pe-727

riod. For J ∈ {θA, θB ,HTISR} (eqs. (6),(7)), we then compute the differences728

∆±fwdJ := J± − J0.729

Here, J0 denotes the quantity J in the control simulation, and J+ and J− the same quan-730

tity in the simulation with the positive and negative perturbation, respectively. ∆+
fwdJ731

and −∆−fwdJ are identical if J depends linearly on τy inside the chosen perturbation re-732

gion. Even if a resemblance of ∆+
fwdJ and −∆−fwdJ suggests a linear response, the adjoint-733

derived anomalies can still deviate from the forward anomalies, due to inexactness of the734

adjoint. Therefore, we next compare the forward anomalies ∆+
fwdJ and −∆−fwdJ to the735

adjoint estimate736

∆+
adjJ :=

∂J

∂τy
·∆τy,737

where ∆τy now denotes the positive meridional wind stress anomaly (+0.05 N/m2 in-738

side the chosen region).739

Fig. A1 shows the comparison of the time-mean anomalies ∆+
fwdJ (solid horizon-740

tal lines), −∆−fwdJ (dashed horizontal lines), and ∆+
adjJ (horizontal lines with triangles),741

in response to wind stress anomalies along the western African coast (Figs. A1(a),(b))742

and along the western Icelandic coast (Figs. A1(c),(d)). Figs. A1(a),(c) show response743

anomalies in J = θA, θB (while in Fig. A1(c), the response in J = θB is invisible, be-744

ing two orders of magnitude smaller than the response in J = θA), and Figs. A1(b),(d)745

response anomalies in J = HTISR. Note that the solid horizontal lines in Figs. A1(a),(c)746

correspond to the time-mean temperature anomalies at 300 m depth, found at the yel-747

low dots in Figs. 5(a),(b), respectively. In Figs. A1(a)-(d), the solid and dashed thin lines748

show the time-evolving response anomalies in J from the forward perturbation exper-749

iments (as a function of years since the start of the perturbation), which the solid and750

dashed horizontal lines (∆+
fwdJ and −∆−fwdJ) are the time-average of.751

In Fig. A1, we see notable deviations between ∆+
fwdJ and −∆−fwdJ in two cases: for752

the anomalies in J = θB in response to a wind stress perturbation along the western753

African coast (green solid vs. dashed horizontal lines in Fig. A1(a)), and for the anomaly754

in J = θA in response to a wind stress perturbation along the western Icelandic coast755

(orange solid vs. dashed horizontal lines in Fig. A1(c)). In both cases, the amplitudes756

of the time-evolving forward anomalies start to develop an offset after 1-2 years. Since757

anomalies in θA and θB are the time-integrated result of ocean transport anomalies, the758

offset tends to becomes larger over time. In contrast, ∆+
fwdHTISR and −∆−fwdHTISR co-759

incide (purple solid vs. dashed horizontal lines in Fig. A1(b),(d)), suggesting that HTISR760

is linear as a function of τy forcing in the tested perturbation regions. Note however that,761

despite the suggested linearity, ∆+
adjHTISR slightly differs from the forward anomalies762

in Fig. A1(d) (purple horizontal lines with vs. without triangles), due to an inexact ad-763

joint. A similar situation occurs in Fig. A1(a) for the response anomalies in θA (orange764

horizontal lines with vs. without triangles). In all cases shown in Fig. A1, the adjoint765

estimate ∆+
adjJ predicts the response anomalies in J with the correct sign. Moreover,766

predicted amplitudes are generally close to those of the forward anomalies, although, in767

few cases, they can be off by up to 20%.768
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Responses to τy perturbation along western African coast
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Figure A1. Anomalies in (a),(c) J = θA, θB , and (b),(d) J = HTISR, in response to mer-

dional wind stress (τy) perturbations along the (a),(b) western African coast and (c),(d) western

Icelandic coast. The solid and dashed horizontal lines show the anomalies ∆+
fwdJ and −∆−fwdJ

from the nonlinear forward perturbation experiments (computed as the five-year mean of the thin

solid and dashed time-evolving lines, respectively). The horizontal lines with triangles show the

adjoint-derived anomalies ∆+
adjJ .
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Köhl, A. (2005). Anomalies of Meridional Overturning: Mechanisms in the North914

Atlantic. Journal of Physical Oceanography , 35 (8), 1455–1472. doi: 10.1175/915

JPO2767.1916

Köhl, A., & Stammer, D. (2004). Optimal Observations for Variational Data Assim-917

ilation. Journal of Physical Oceanography , 34 (3), 529–542. doi: 10.1175/2513918

.1919

Landerer, F. W., Wiese, D. N., Bentel, K., Boening, C., & Watkins, M. M. (2015).920

North Atlantic meridional overturning circulation variations from GRACE921

ocean bottom pressure anomalies. Geophysical Research Letters, 42 (19), 8114–922

8121. doi: 10.1002/2015GL065730923

Latif, M., Roeckner, E., Botzet, M., Esch, M., Haak, H., Hagemann, S., . . . Mitchell,924

J. (2004). Reconstructing, Monitoring, and Predicting Multidecadal-Scale925

Changes in the North Atlantic Thermohaline Circulation with Sea Sur-926

face Temperature. Journal of Climate, 17 (7), 1605–1614. doi: 10.1175/927

1520-0442(2004)017〈1605:RMAPMC〉2.0.CO;2928

Lherminier, P., Mercier, H., Gourcuff, C., Alvarez, M., Bacon, S., & Kermabon, C.929

(2007). Transports across the 2002 Greenland-Portugal Ovide section and com-930

parison with 1997. Journal of Geophysical Research: Oceans, 112 (C7). doi:931

–27–



manuscript submitted to JGR: Oceans

10.1029/2006JC003716932

Little, C. M., Hu, A., Hughes, C. W., McCarthy, G. D., Piecuch, C. G., Ponte,933

R. M., & Thomas, M. D. (2019). The Relationship Between U.S. East934

Coast Sea Level and the Atlantic Meridional Overturning Circulation: A935

Review. Journal of Geophysical Research: Oceans, 124 (9), 6435–6458. doi:936

10.1029/2019JC015152937

Lopez, H., Goni, G., & Dong, S. (2017). A reconstructed South Atlantic Meridional938

Overturning Circulation time series since 1870. Geophysical Research Letters,939

44 (7), 3309–3318. doi: 10.1002/2017GL073227940

Lozier, M. S., Bacon, S., Bower, A. S., Cunningham, S. A., Femke de Jong,941

M., de Steur, L., . . . Zika, J. D. (2017). Overturning in the Subpolar942

North Atlantic Program: A New International Ocean Observing System.943

Bulletin of the American Meteorological Society , 98 (4), 737–752. doi:944

10.1175/BAMS-D-16-0057.1945

Lozier, M. S., Li, F., Bacon, S., Bahr, F., Bower, A. S., Cunningham, S. A., . . .946

Zhao, J. (2019). A sea change in our view of overturning in the subpolar North947

Atlantic. Science, 363 (6426), 516–521. doi: 10.1126/science.aau6592948

Marotzke, J., Giering, R., Zhang, K. Q., Stammer, D., Hill, C., & Lee, T. (1999).949

Construction of the adjoint MIT ocean general circulation model and applica-950

tion to Atlantic heat transport sensitivity. Journal of Geophysical Research:951

Oceans, 104 (C12), 29529–29547. doi: 10.1029/1999JC900236952

Marshall, D. P., & Johnson, H. L. (2013). Propagation of Meridional Circula-953

tion Anomalies along Western and Eastern Boundaries. Journal of Physical954

Oceanography , 43 (12), 2699–2717. doi: 10.1175/JPO-D-13-0134.1955

Marshall, J., Adcroft, A., Hill, C., Perelman, L., & Heisey, C. (1997). A finite-956

volume, incompressible Navier Stokes model for studies of the ocean on parallel957

computers. Journal of Geophysical Research: Oceans, 102 (C3), 5753–5766.958

doi: 10.1029/96JC02775959

Marshall, J., Hill, C., Perelman, L., & Adcroft, A. (1997). Hydrostatic, quasi-960

hydrostatic, and nonhydrostatic ocean modeling. Journal of Geophysical961

Research: Oceans, 102 (C3), 5733–5752. doi: 10.1029/96JC02776962

McCarthy, G. D., Brown, P. J., Flagg, C. N., Goni, G., Houpert, L., Hughes, C. W.,963

. . . Smeed, D. A. (2019). Sustainable observations of the AMOC: Method-964

ology and Technology. Reviews of Geophysics, 58 (1), e2019RG000654. doi:965

10.1029/2019RG000654966

McCarthy, G. D., Haigh, I. D., Hirschi, J. J.-M., Grist, J. P., & Smeed, D. A.967

(2015). Ocean impact on decadal Atlantic climate variability revealed by968

sea-level observations. Nature, 521 (7553), 508–510. doi: 10.1038/nature14491969

Mercier, H., Lherminier, P., Sarafanov, A., Gaillard, F., Daniault, N., Desbruyères,970

D., . . . Thierry, V. (2015). Variability of the meridional overturning circulation971

at the Greenland-Portugal OVIDE section from 1993 to 2010. Progress in972

Oceanography , 132 , 250–261. doi: 10.1016/j.pocean.2013.11.001973

Orvik, K. A., & Skagseth, Ø. (2005). Heat flux variations in the eastern Norwegian974

Atlantic Current toward the Arctic from moored instruments, 1995-2005. Geo-975

physical Research Letters, 32 (14). doi: 10.1029/2005GL023487976

Østerhus, S., Turrell, W. R., Jónsson, S., & Hansen, B. (2005). Measured volume,977

heat, and salt fluxes from the Atlantic to the Arctic Mediterranean. Geophysi-978

cal Research Letters, 32 (7). doi: 10.1029/2004GL022188979

Østerhus, S., Woodgate, R., Valdimarsson, H., Turrell, B., Steur, L. d., Quadfasel,980

D., . . . Berx, B. (2019). Arctic Mediterranean exchanges: a consistent vol-981

ume budget and trends in transports from two decades of observations. Ocean982

Science, 15 (2), 379–399.983

Pillar, H. R., Heimbach, P., Johnson, H. L., & Marshall, D. P. (2016). Dynamical984

Attribution of Recent Variability in Atlantic Overturning. Journal of Climate,985

29 (9), 3339–3352. doi: 10.1175/JCLI-D-15-0727.1986

–28–



manuscript submitted to JGR: Oceans

Pillar, H. R., Johnson, H. L., Marshall, D. P., Heimbach, P., & Takao, S. (2018).987

Impacts of Atmospheric Reanalysis Uncertainty on Atlantic Overturn-988

ing Estimates at 25◦N. Journal of Climate, 31 (21), 8719–8744. doi:989

10.1175/JCLI-D-18-0241.1990

Ritz, S. P., Stocker, T. F., Grimalt, J. O., Menviel, L., & Timmermann, A. (2013).991

Estimated strength of the Atlantic overturning circulation during the last992

deglaciation. Nature Geoscience, 6 (3), 208–212. doi: 10.1038/ngeo1723993

Roberts, C. D., & Palmer, M. D. (2012). Detectability of changes to the Atlantic994

meridional overturning circulation in the Hadley Centre Climate Models. Cli-995

mate Dynamics, 39 (9), 2533–2546. doi: 10.1007/s00382-012-1306-3996
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