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Abstract14

Excess ground ice formation and melt drive surface heave and settlement, and are crit-15

ical components of the water balance in Arctic soils. Despite the importance of excess16

ice for the geomorphology, hydrology and biogeochemistry of permafrost landscapes, we17

lack fine-scale estimates of excess ice profiles. Here, we introduce a Bayesian inversion18

method based on remotely sensed subsidence. It retrieves near-surface excess ice pro-19

files by probing the ice content at increasing depths as the thaw front deepens over sum-20

mer. Ice profiles estimated from Sentinel-1 interferometric synthetic aperture radar (In-21

SAR) subsidence observations at 80m resolution were spatially associated with the sur-22

ficial geology in two Alaskan regions. In most geological units, the estimated profiles were23

ice poor in the central and, to a lesser extent, the upper active layer. In a warm sum-24

mer, units with ice-rich permafrost had elevated inferred ice contents at the base of the25

active layer and the (previous years’) upper permafrost. The posterior uncertainty and26

accuracy varied with depth. In simulations, they were best (≲ 0.1) in the central active27

layer, deteriorating (≳ 0.2) toward the surface and permafrost. At two sites in the Brooks28

Foothills, Alaska, the estimates compared favorably to coring-derived profiles down to29

35 cm, while the increase in excess ice below the long-term active layer thickness of 40 cm30

was only reproduced in a warm year. Pan-Arctic InSAR observations enable novel ob-31

servational constraints on the susceptibility of permafrost landscapes to terrain insta-32

bility and on the controls, drivers and consequences of ground ice formation and loss.33

Plain Language Summary34

Permafrost soils can contain substantial quantities of ice. This ice is of concern be-35

cause its melt due to, say, warming or disturbance can trigger terrain instability, threat-36

ening infrastructure, water resources and ecosystem services. We lack fine-scale ground37

ice maps across essentially the entire Arctic, limiting our ability to sustainably plan in38

the Arctic. Here, we develop the first satellite-based technique for mapping ground ice39

near the surface, including seasonal ground ice in that part that freezes and thaws ev-40

ery year and also perennial ground ice in soil that had previously remained frozen for41

long times. The central idea is to measure the subsidence over the summer from satel-42

lites and relate this to the ice profile near the surface. In exceptionally warm summers,43

layers that had previously been frozen for a long time may thaw; where they are ice-rich,44

elevated but limited subsidence toward the end of this summer can be used to identify45

areas whose large ice contents render them susceptible to long-term terrain instability.46

The regional to pan-Arctic maps our novel method can provide promise to bolster sus-47

tainable planning and stewardship in the Arctic and to help us understand how these48

landscapes are changing.49

1 Introduction50

1.1 Motivation51

Excess ice occurs in frozen ground across the Arctic (Pullman et al., 2007; French52

& Shur, 2010; Kokelj & Jorgenson, 2013). The excess ice content is defined to be the vol-53

umetric fraction of ice that exceeds the pore space of the thawed soil (Permafrost Sub-54

committee: Associate Committee on Geotechnical Research, 1988). Thus, subsidence tends55

to ensue when materials with excess ice thaw. Excess ice bodies cover a wide range of56

sizes and shapes, from sub-millimeter ice lenses to massive ice bodies tens of meters in57

size (French & Shur, 2010; Kanevskiy et al., 2013). As a rough guideline, we can sub-58

divide ground ice in continuous non-saline permafrost landscapes into perennial ground59

ice in the permafrost and seasonal ground ice in the active layer.60

Permafrost excess ice is critical for the stability, hydrology, and biology of Arctic61

environments. Terrain instability is induced by thawing of permafrost rich in perennial62
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excess ground ice (Kokelj & Jorgenson, 2013; Kanevskiy et al., 2017). The susceptibil-63

ity to near-term instability is strongly controlled by the excess ice characteristics of the64

upper permafrost (Jorgenson et al., 2015). In addition to damaging infrastructure, permafrost-65

thaw-induced deformation can radically alter the movement and storage of water, ecosys-66

tem composition and the cycling of carbon and nutrients (Jorgenson et al., 2010; C. Ping67

et al., 2015).68

The impacts of seasonal excess ground ice in the active layer are more subtle but69

no less pervasive (Mackay, 1984; Romanovsky et al., 2008). Seasonal heave and subsi-70

dence of up to ∼15 cm, driven by the formation and destruction of excess ice, can be detri-71

mental to infrastructure and vegetation (Palmer & Williams, 2003; C. L. Ping et al., 2008;72

Walker et al., 2008). During freeze up, the movement of water toward growing ice lenses73

near the surface and the active layer–permafrost boundary (assuming no talik) promotes74

formation of a desiccated zone in between (C. L. Ping et al., 2008). These processes are75

implicated in solute and organic matter redistribution; changes in hydraulic and mechan-76

ical properties; steep gradients in biogeochemical conditions; and elevated perennial ex-77

cess ice contents in the upper permafrost (Mackay, 1983; Shur et al., 2005; C. L. Ping78

et al., 2008).79

The abundance of excess ground ice varies greatly in continuous permafrost land-80

scapes (Morse et al., 2009; Jorgenson et al., 2010). The large spatiotemporal variabil-81

ity of seasonal excess ice is poorly constrained and difficult to model, owing to complex82

interactions between factors such as soil texture, water availability and meteorological83

forcing (Nicolsky et al., 2008; Rempel, 2010; Gruber, 2020). Perennial ground ice in per-84

mafrost below the active layer varies vertically and horizontally. Ice wedges, a common85

form of massive ice formed by repeated cracking and water infiltration, illustrate the small-86

scale (∼ 100–101 m) horizontal variability, with excess ice contents varying by an order87

of magnitude across polygonal networks. On landscape scales (∼ 102–104 m, the large88

spatial variability of ice in the upper permafrost is the result of an intricate balance of89

ice formation and melt over decades to millennia, influenced by such factors as drainage90

conditions, topography, and disturbance (Shur et al., 2005; French & Shur, 2010).91

There is a need for spatially resolved estimates of near-surface excess ground ice92

profiles on regional scales, but existing methods have limited spatial coverage. Coring93

is the most reliable method but expensive and spatially restricted (Morse et al., 2009;94

Kanevskiy et al., 2013). Local-scale geophysical observations such as electrical resistiv-95

ity techniques also provide valuable constraints (Yoshikawa et al., 2006; Ross et al., 2007;96

De Pascale et al., 2008). Alternatively, surface displacement observations of the cumu-97

lative seasonal heave or subsidence are proxies for the excess ice content integrated over98

the given year’s active layer (Little et al., 2003; Romanovsky et al., 2008; Harris et al.,99

2011; Gruber, 2020). Profile information can be obtained from temporally resolved ob-100

servations (Smith, 1985; Overduin & Kane, 2006; Harris et al., 2011; Gruber, 2020), al-101

beit hitherto mostly qualitatively. The recent availability of pan-Arctic subsidence time102

series from satellite InSAR (Interferometric Synthetic Aperture Radar) enables spatially103

resolved data products, but we lack a method and quantitative assessments.104

1.2 Contributions105

Here, we introduce a method to estimate near-surface excess ice profiles from In-106

SAR subsidence time series from the thaw period. The central tenet is that the instan-107

taneous subsidence rate is proportional to the excess ice content at the depth of the thaw108

front (Overduin & Kane, 2006; Harris et al., 2011). The idea, then, is to probe the ice109

content at increasing depths as the thaw front deepens over summer (Zwieback & Meyer,110

2021).111

We pursue the following objectives:112
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Figure 1. The idea is to relate the progression of subsidence over the thaw period to the ex-

cess ice profile. For instance, at the time of low subsidence rate indicated by the brown line on

the left, the thaw front (brown line on the right) is progressing through materials with very little

excess ice. Later, the subsidence rate increases when the thaw front progresses down to ice-rich

strata.
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Figure 2. The estimation approach combines an ensemble-based forward model with a

Bayesian inversion step. The inputs are the meteorological forcing, an ensemble of stratigraphies

and InSAR subsidence; the output is a posterior distribution of the excess ice profile.

1. Devise a Bayesian excess ice profile estimation method113

2. Conduct a synthetic performance assessment114

3. Estimate and assess ice profiles from InSAR115

We meet the first objective by inverting a forward model that simulates subsidence116

for large ensembles spanning a range of plausible soil (and excess ice) stratigraphies. The117

Bayesian inversion combines the simulation results with the InSAR subsidence observa-118

tions to yield posterior distributions of excess ice profiles. It accounts for the direct and119

the thaw-front-mediated dependence of subsidence on the excess ice profile.120

For the second objective, we apply the inversion to simulated InSAR observations.121

Comparison to the input excess ice profiles quantifies the location, width and fidelity of122

the posterior distribution as a function of depth and observational accuracy.123

For the third objective, we map excess ice profiles over two study regions from Sentinel-124

1 InSAR observations. We assess the results by comparison to excess ice profiles deter-125

mined independently from cores at two sites within the first region (Brooks Range Foothills).126

We also quantify the year-to-year variability, which in the future may constrain hydro-127

logical and biogeochemical processes. In Northwestern Alaska, our second study region,128

we estimate excess ice contents at the top of (the previous years’) upper permafrost in129

a very warm year when the thaw front penetrated materials that had previously been130
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Figure 3. The forward model predicts the subsidence s(t) and depth of the thaw front yf(t).

As the thaw front deepens in response to a surface heat flux Qs, the surface subsides further if

excess ice exists at yf(t).

perennially frozen. This second analysis highlights the method’s potential for mapping131

the susceptibility to terrain instability triggered by permafrost thaw.132

2 Forward model133

Our forward model couples a thaw subsidence module with a lumped energy bal-134

ance module.135

2.1 Subsidence136

2.1.1 Thaw subsidence137

We consider surface subsidence prompted by the melting of subsurface excess ice,138

with consolidation ensuing from meltwater drainage (Morgenstern & Nixon, 1971).139

In our one-dimensional model, the instantaneous rate of surface subsidence ds(t)/dt
equals the thickness of melted excess ice per unit time (Fig. 3). Excess is assumed to
melt at the depth of the thaw front, yf(t), so that

ds

dt
= e(yf)

dyf(t)

dt
, (1)

where e(y) is the volumetric excess ice content profile.140

The cumulative subsidence from the beginning of the thaw period t = 0 to time
t, s(t), equals the total amount of excess ice above the position of the thaw front at time
t

s(t) =

yf (t)∫
0

e(y)dy . (2)

The time t = 0 is taken to be the start of the thaw period yf(0) = 0.141

The y coordinates in Eq. 2 refer to the depth below the surface before the onset142

of thawing. Owing to the subsidence from thaw consolidation, the depth of the thaw front143

with respect to the surface at time t, ν(yf(t)), will be less than yf(t).144

2.1.2 Assumptions145

Equations 1–2 rest on simplifying assumptions.146
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The model assumes that subsidence arises exclusively from the expulsion of excess147

meltwater (Morgenstern & Nixon, 1971). This mechanism corresponds to classical pri-148

mary consolidation, according to which compaction results from the dissipation of ex-149

cess pore pressure, typically induced by an external load (Biot, 1941). Our model im-150

plicitly postulates a soil medium of incompressible particles and fluids, whose void space151

decreases from the pre-thaw to the post-consolidation stage by the excess ice content.152

It does not account for the dependence on the effective stress (history) or the minor vol-153

ume changes of quasi-saturated ground arising from melt-induced porewater volume ex-154

pansion (Dagesse, 2010). It further neglects deviations from poroelastic compaction such155

as creep (Fowler & Noon, 1999; Liu & Borja, 2022).156

Excess porewater pressures induced by meltwater release are assumed to dissipate157

faster than the subweekly time scales of interest, τ . Within Terzaghi’s one-dimensional158

consolidation theory, we require ∆ν2/cv ≪ τ , where ∆ν is the distance from the pres-159

surized stratum to unsaturated materials or the surface (Morgenstern & Nixon, 1971).160

The consolidation coefficient cv scales with the hydraulic conductivity (Biot, 1941), ren-161

dering fine-grained materials most susceptible to delayed consolidation. However, we cau-162

tion that thaw consolidation under natural conditions at ∼100 m scales is poorly under-163

stood owing to such phenomena as cryoturbated organic pockets (Fig. 8c) and macro-164

pores.165

The one-dimensional model does not capture lateral variability in ground ice con-166

tents, thaw depths, and subsidence (Jorgenson et al., 2015). Neither can it capture com-167

plex three-dimensional stress fields (e.g., cavity formation) (Osterkamp et al., 2000).168

2.2 Modeling the thaw front169

Linking the observed subsidence as a function of time to the sought excess ice as170

a function of depth necessitates knowledge of thaw front progression.171

2.2.1 Lumped energy balance172

We describe the thaw front progression using a lumped model for the energy bal-173

ance of the ground above the thaw front. We assume that the thaw front is at temper-174

ature Tm = 273.15K, the temperature at which the excess ice melts. The freezing point175

depression (Romanovsky & Osterkamp, 1997) of the interstitial ice is not considered.176

We consider four terms in the energy balance (Fig. 3). The surface heat flux Qs

drives the thawing and warming of the ground. The major energy sink is the melting
of ice at yf ,

dHi

dt ,

dHi

dt
= L(yf)

dyf
dt

, (3)

associated with thaw front deepening (Lunardini, 1991; Romanovsky & Osterkamp, 1997).
The volumetric enthalpy of phase change L increases with the ice content. We also in-
clude minor terms, namely the heat flux into the frozen ground, Qf , and the change in
enthalpy of the thawed ground, Ht. The energy balance then reads

dHi

dt
−Qs +Qf +

dHt

dt
= 0 . (4a)

A simplified energy balance will be used for demonstration purposes and to rapidly
obtain initial estimates. As in the Stefan solution (Lunardini, 1991), the energy required
to warm the thawed ground and the heat flux into the frozen substrate are neglected.
Thus,

dHi

dt
−Qs = 0 . (4b)
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The accuracy is expected to increase as the Stefan number approaches zero (phase change177

is the main heat sink) and the initial temperature of the frozen substrate approaches the178

melting point Tm.179

2.2.2 Energy balance terms180

The surface heat flux is modeled using a quasi-steady approximation of Fourier’s
law of conduction through (Lunardini, 1991)

Qs(t, yf) = k(yf)
Ts(t)− Tm

ν(yf)
, (5)

where k(yf) is the effective thermal conductivity of the thawed ground, and Ts(t) is the
surface temperature, modeled on daily time scales using an n-factor approach (Klene et
al., 2001; Cable et al., 2016). The denominator

υ(yf) = yf −
yf∫
0

e(y) dy . (6)

is the depth of the thaw front relative to the subsided surface. The assumed quasi-steady181

temperature profile will be appropriate when the diffusion length in the thawed mate-182

rials exceeds yf for time scales in excess of one day.183

The full model accounts for temperature changes in the thawed ground by track-184

ing Ht(t, yf) =
∫ yf

0
c̃t(y)T (t, y)dy, where c̃t is the thawed heat capacity of the consol-185

idated soil per unit volume of frozen ground (Zwieback et al., 2019). A steady-state tem-186

perature profile T (t, y) is assumed.187

The heat flux into the frozen ground, Qf , is estimated using a heat-balance inte-188

gral approach (Goodman, 1958; Lunardini, 1991). It postulates a quadratic temperature189

profile between the thaw front yf and the temperature penetration front yp. At yp(t),190

the temperature equals the initial pre-thaw temperature T0 < Tm with vanishing depth191

derivative for all t. The heat flux Qf is given by Fourier’s law just below yf , assuming192

a frozen thermal conductivity kf . A detailed description can be found in Sec. 1.193

2.3 Numerical solution194

Our fast algorithm retrieves yf(t) and thus s(t) at daily time steps using a pertur-195

bation approach. We first solve the simplified energy balance based on Eq. 4b to obtain196

a first-guess yf(t). We then refine yf(t) iteratively by estimating the minor energy sinks197

from the previous yf(t) and subtracting them in Eq. 4a.198

The first-guess yf(t) is obtained from integrating the separable ordinary differen-
tial equation that results from using Eq. 5 in Eq. 4b, viz.

yf (t)∫
0

1

k(y)
L(y)υ(y) dy =

t∫
0

(Ts(t
′)− Tm) dt

′ . (7)

Root finding yields yf(t) for each day.199

The iterative refinement evaluates the minor energy balance terms in Eq. 4a us-200

ing the previous yf(t) estimate. It then adjusts yf(t) by subtracting the minor terms in201

Eq. 7. A single refinement step was used for our study area owing to the large water con-202

tent and not too cold permafrost.203
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3 Inversion204

We first characterize the dependence of the subsidence time series s(t) on the ex-205

cess ice profile e(y), before introducing our Bayesian inversion for estimating e(y) from206

subseasonal InSAR subsidence observations.207

3.1 Sensitivity of subsidence to excess ice profiles208

3.1.1 Sensitivity from linearization209

The subsidence predicted from Eq. 2 depends on the excess ice profile e(y) directly
and also through yf(t). The Gateaux variation,

δs(t) =

yf (t)∫
0

δe(y)dy + e(yf)δyf , (8)

reflects a balance of two competing influences. The direct influence manifests as larger210

subsidence for increased excess ice above the (fixed) yf . However, a concomitant δyf <211

0 can reduce the total subsidence. We assume that δe(y) induces δL(y) = λe(y). The212

numerical value λ, a volumetric enthalpy of phase change, will depend on what constituent213

δe “replaces”.214

The sensitivity of s(t) to e(y) for the simplified energy balance of Eq. 4b and as-
suming k(y) = k can then be described by

δs(t) =

yf (t)∫
0

(Ke(y) +Kyf
(y)) δe(y)dy , (9)

where the integral kernels Ke(y) and Kyf
(y) capture the direct and thaw-front-mediated

sensitivity, respectively. The dependence of the kernels on t is omitted. The direct in-
fluence kernel Ke(y) = 1 states that the total change in excess ice above yf(t) induces

an equal change in subsidence, for constant yf . Using Λ(y) =
∫ y′

0
L(y′)dy′, the yf -mediated

kernel

Kyf
(y) =

e(yf)

υ(yf)

(
− λ

L(yf)
υ(y) +

Λ(yf)− Λ(y)

L(yf)

)
(10)

scales with e(yf). It consists of two contributions. The first term in the parentheses is215

nonpositive and proportional to λ: the energy expended to melt additional excess ice,216

δe > 0, retards the thaw front, thus decreasing s(t). The second term is nonnegative:217

additional excess ice induces more subsidence, thus keeping icy materials closer to the218

(subsided) surface, which in turn enhances subsidence1.219

3.1.2 Simulated sensitivity220

Simulations illustrate the dependence of the predicted subsidence on excess ice pro-221

files. The predictions were obtained using the model from Sec. 2.3, rather than the sim-222

plified energy balance, for a hypothetical uniform excess ground ice profile of e = 0.05.223

The two sensitivity scenarios had an 8-cm layer centered at 15 and 50 cm, respectively,224

enriched by δe = 0.1.225

The predicted subsidence accelerated when the thaw front hit the enriched layers226

(Fig. 4a). The subsidence rate ds/dt increased relative to the baseline, resulting in greater227

1 Integration by parts makes the physical link more readily apparent.
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Figure 4. Sensitivity of modeled subsidence to excess ice profiles. Compared to the baseline

with uniform e = 0.05, the shallow and deep scenarios featured ice-enriched layers indicated by

semi-transparent band in b). When the thaw front hit the enriched layer, greater subsidence s(t)

ensued (a), and the thaw front was (initially) retarded (b) compared to baseline (c).

subsequent cumulative subsidence s(t). After melt of the enriched layer, ds/dt was sim-228

ilar to the baseline, yielding a quasi-parallel s(t) trajectory. The legacy of the enriched229

layer is visible in the thaw front position yf (Fig. 4b–c), which initially lagged that of230

the baseline due to the increased energy sink but (partially) recovered.231

3.2 Bayesian inversion of InSAR observations232

We propose a fast approach to estimate e(y) from InSAR subsidence observations233

d̂, exploiting the dependence of s(t) on e(y). Its key characteristics are:234

Bayesian , yielding a posterior distribution for e(y) to also characterize the uncertainty;235

ensemble representation to capture uncertainty in parameters such as non-excess-ice236

content or thermal conductivity;237

fast by using the same forward model runs across many similar pixels;238

InSAR observations – time-lapse relative measurements with autocorrelated errors239

– are the main input.240

It naturally accounts for the direct and the thaw-front-mediated dependence of sub-241

sidence on excess ice. Conversely, (Overduin & Kane, 2006) estimated ice content pro-242

files from in-situ subsidence observations by prescribing the thaw front progression us-243

ing in-situ data, obviating the need to account for the coupling between e(y) and yf(t).244

3.2.1 Bayesian inference245

We evaluated the posterior distributions of e(y) (and also yf(t)) conditional on the246

InSAR subsidence observations using importance sampling. More precisely, we obtained247

an approximate sample-based estimate of the posterior density (Vehtari et al., 2019). The248

procedure requires a prior ensemble of N stratigraphies βn, where βn encompasses all249

the parameters in the model. We can think of a prior βn as a plausible configuration of250

the excess ice profile e(y) but also of parameters like k(y) or c(y). These latter depend251

on variables such as saturation and organic layer thickness; here, we propose simple pa-252

rameterizations and prior distributions introduced in Sec. 3.2.2. The estimation also re-253

quires temperature forcing data.254

–9–
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The staring point for the importance sampling is the prior ensemble (β1, . . . ,βN ),
from which the predicted subsidence time series sn(t) for each βn was obtained using
the forward model. The method then evaluated for each candidate ensemble member how
consistent its sn(t) was with the time-lapse InSAR observation d̂. The consistency was
quantified using the likelihood of βn, L(βn; d̂), accounting for the characteristics of the
observations (to be introduced in Sec. 3.2.3). Each ensemble member was assigned an
unnormalized weight w′

n = L(βn; d̂), thus emphasizing those whose subsidence matched
the observations (Hesterberg, 1995). Formally, this corresponds to importance sampling
using the prior distribution as proposal, similar to the original particle filter (Gordon et
al., 1993). Importance sampling can suffer from large variance induced by a handful of
samples being assigned exceptionally large weights. To reduce the variance, we used Pareto
smoothing (Vehtari et al., 2019), yielding adjusted final weights (w1, . . . , wN ). The pos-
terior density of any variable θ – for instance e at depths y1 and y2 – could then be ap-
proximated by

p
(
θ|d̂

)
=

1∑N
n=1 wn

N∑
n=1

wnδ (θ − θn) . (11)

Rather than dealing with the Dirac delta δ directly, we computed expectations such as255

means or probabilities.256

3.2.2 Prior ensemble of stratigraphies257

For our study areas, we modeled stratigraphies on a regular grid to a depth of ymax =1.5m258

with a grid spacing ∆y =2 mm.259

The prior profiles of excess ice before thaw onset were represented by smoothing
splines with 12 knots. The knot spacing increased quadratically from 5 cm at the sur-
face, attaining 15 cm at 0.5m, a typical active layer depth in our region. The logit of the
excess ice contents at the knots, le, was drawn from an autoregressive normal distribu-
tion

le ∼ NAR(1) (µle , σle , ρle) (12)

with mean µle = −3.0, standard deviation σle = 3.0, and auto-correlation ρle = 0.7.260

The knot spacing and auto-correlation were selected to achieve profiles whose smooth-261

ness reflects expectations on the InSAR scale of ∼80 m and stabilizes the estimation us-262

ing time-lapse observations. The logits le were interpolated between the knots and then263

converted to e profiles. The parameter values yield average e of 0.17 with a standard de-264

viation of 0.25, thus not imposing strong prior assumptions.265

The thermal properties were modeled based on the stratigraphy. A detailed descrip-266

tion can be found in in Sec. 2. To summarize, the volume not occupied by excess ice at267

each depth was allocated to the constituents mineral, organic, non-excess ice and air. The268

organic layer thickness was modeled with a uniform distribution, as were the saturation269

of the organic and mineral layers. From the volumetric fractions of all constituents, the270

thawed thermal conductivity was modeled following (Cosenza et al., 2003). Finally, the271

n-factor was drawn from a scaled beta distribution. The distributions of these quanti-272

ties were assumed to be mutually independent.273

3.2.3 Stochastic model for InSAR observations274

Let the InSAR subsidence observations be denoted by d̂, a P -dimensional vector
derived from P+1 time-lapse InSAR scenes acquired over a thaw season. The element
d̂i encodes the displacement at ti, the acquisition time of scene i+1, relative to the time
t0, the first scene of the season. The displacement is measured along the line of sight to
the satellite rather than along the vertical. Assuming the actual displacement to be along
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manuscript submitted to Water Resources Research

the vertical, the observation relates to the predicted s(t) as

d̂i = cos(θ) (s(ti)− s(t0))︸ ︷︷ ︸
≡di

+ εi , (13)

where θ is the incidence angle and εi the observation error for scene i.275

We modeled the observation error using a normal distribution with autocorrelated
errors. The InSAR displacement errors had zero mean, as we did not consider system-
atic errors from soil moisture or vegetation changes (Zwieback & Hajnsek, 2016). Their
covariance matrix Σ = Σs +Σa was partitioned into speckle and atmospheric errors,
respectively (Hanssen, 2001). Speckle induces quasi-random fluctuations in the InSAR
phase (Zwieback & Meyer, 2021). Their magnitude increases the lower the interferomet-
ric coherence, a measure of the temporal stability. The errors propagate to the displace-
ment estimates, often inducing substantial temporal autocorrelation. Here, we estimated
the covariance matrix Σs using the full Fisher-Information (Zwieback & Meyer, 2022)
evaluated using the regularized InSAR magnitude matrix (Zwieback, 2022). Second, at-
mospheric errors affect the relationship between the observed phases and inferred dis-
placement. They are spatially correlated. We modeled the atmospheric error covariance
matrix Σa based on temporally uncorrelated errors, one for each scene (Hanssen, 2001).
Thus, the log-likelihood of parameters β giving rise to a predicted d(β) was described
by

logL(β; d̂) = −1

2

(
log(|Σ|+

(
d̂− d(β)

)T

Σ−1
(
d̂− d(β)

))
+ c , (14)

where |·| denotes the determinant and c is a constant of no consequence in normalized276

importance sampling.277

4 Synthetic performance assessment278

4.1 Rationale279

To explore the estimation in a controlled setting, we conducted a synthetic twin280

experiment. The synthetic performance obtained in the twin experiment provided con-281

straints on the real-world estimation performance. In contrast to real-world conditions,282

the twin experiment was based on the premises that the forward model provided a per-283

fect representation of nature and that the uncertainty in the parameters was accurately284

captured. For instance, even though the organic layer thickness and thus k(y) was not285

assumed to be known in the inversion, its variability as captured by the ensemble matched286

the variability of the synthetic truth.287

In a first step, we simulated the synthetic truth, i.e., the subsidence time series s(t),288

for prescribed stratigraphies drawn from the prior distribution. Second, we generated289

synthetic noisy InSAR observations d̂. Third, we applied the Bayesian inversion to these290

observations to estimate e(y) and compared it to the prescribed profile.291

4.2 Methods292

4.2.1 Synthetic truth293

The synthetic truth was obtained by running the forward model from Sec. 2.3 for294

Nsim = 500 stratigraphies βn drawn independently from the prior distribution (Tab.295

S1). No additional synthetic noise was applied to the predicted subsidence time series.296

4.2.2 Synthetic observations297

Synthetic InSAR observations d̂ were generated from Eq. 13 for an incidence an-298

gle θ of 30◦ and regular 12-day sampling. For each of the Nsim stratigraphies, we gen-299

–11–



manuscript submitted to Water Resources Research

erated Nrep = 100 sets of replicates with independent and identically distributed er-300

rors ε.301

We considered three scenarios for the observation error ε. First, a baseline scenario302

based on the actually observed covariance Σ at our Ice Cut site (see Sec. 5.1). Second,303

a low-accuracy scenario where Σ was scaled by 16. Third, a high-accuracy scenario where304

Σ was 1/16th of the baseline.305

4.2.3 Inversion assessment306

We compared the posterior distribution of the discretized e(y) to the prescribed307

e(y) for a given y. We retrieved the posterior pp (e(y)) ≡ p
(
e(y)|d̂

)
for each synthetic308

observation d̂ using the same atmospheric forcing as in the forward model.309

The error of the posterior mean of e(y) was quantified through the mean absolute310

deviation (MAD) with respect to the truth.311

The posterior uncertainty was characterized through its width and calibration. The312

width was summarized by the credible interval I10−90 bounded by the 10th and 90th per-313

centile of the posterior pp (e(y)). The decrease in size, expressed through the half width314

HW(I10−90), with respect to the corresponding prior interval is an internal measure of315

the insight gained from the observations. The interval’s independence of the truth im-316

plies that a small half-width may be of little value if the posterior is not calibrated (Gneiting317

et al., 2007). The calibration of the posterior distribution was evaluated using the cov-318

erage C(I10−90) of the 10–90% credible interval. Theory predicts a coverage of 80%, as319

the simulated truth was drawn from the prior distribution (Dawid, 1982). Deviations from320

80% are diagnostic of issues with the approximate Bayesian inference.321

4.3 Results322

4.3.1 Three examples323

Synthetic inversion results for three contrasting stratigraphies are shown in Fig.324

5. One is ice-rich only near the surface, one is ice-poor in the upper 50 cm, while the third325

one features an abrupt increase in excess ice at 40 cm. The associated subsidence tra-326

jectories are reconstructed with fidelity by the Bayesian inversion of the InSAR subsi-327

dence.328

The accuracy of the inverted excess ice profiles varied with depth. In the central329

active layer (15–30 cm), the posterior mean followed the prescribed with deviations of330

≲0.05 . The deviations were greater near the surface, most strongly so for “unprobed”331

layers that thawed prior to the first InSAR scene. The accuracy also decreased toward332

the base of the active layer, corresponding to the late season when the uncertainty in yf(t)333

is greatest. The identification of an ice-rich layer at depth was contingent on whether334

it thawed sufficiently to trigger late-season subsidence.335

The posterior uncertainty, as quantified by the 10–90% credible interval in Fig. 5,336

was largest near the surface or near the base of the active layer when these strata were337

ice rich.338

4.3.2 Comprehensive assessment339

Across all synthetic stratigraphies, Fig. 6a) shows the accuracy of the posterior mean340

from N = 105 ensemble members was best in the central active layer. Between 15 and341

35 cm, the MAD was around 0.05. It increased in either direction. For depths exceed-342

ing ∼60 cm, it approached the MAD of the prior, as these layers remained frozen through-343
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Figure 5. Excess ice profile estimates for three synthetic stratigraphies (columns). Top row:

blue line shows the “true” subsidence simulated with the forward model with prescribed stratig-

raphy, the brown line the posterior mean obtained by Bayesian inversion based on InSAR ob-

servations converted to subsidence (brown markers). Bottom row: true excess ice profile in blue,

posterior mean in brown, with the shaded region indicating the 10–90% credible interval; esti-

mated thaw front depth yf at time of last InSAR scene is shown in gray.
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Figure 6. Synthetic performance assessment for N = 105 ensemble members and three set-

tings of the observational accuracy. a) Mean Absolute Deviation (MAD) of the posterior mean

versus the prescribed excess ice content; b) average width of the posterior 10–90% credible inter-

val; c) coverage of the 10–90%, with the 80% target shown in gray.

out. Throughout the profile, the accuracy was virtually identical when only 104 ensem-344

ble members are used (Fig. S1).345

The accuracy of the InSAR observations had a limited impact on the estimation346

performance as measured by the MAD. The MAD improved by up to 0.02 in the high-347

accuracy scenario, for which the variance of the observation errors was reduced by a fac-348

tor of four. In the low-accuracy scenario (quadrupled variance), the MAD increased by349

up to ∼0.05. For both scenarios, the changes with respect to baseline were greatest in350

the central active layer.351

The estimated uncertainty was likewise smallest in the central active layer (Fig.352

6c), with an average width of the 10–90% credible interval of around 0.06. It approached353

the prior one of ∼ 0.2 at the surface and below 60 cm. The sensitivity to the observa-354

tional accuracy was comparable to that of the MAD.355
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Figure 7. a) Map of Alaska; Landsat true-color composite of b) the Kivalina, Northwestern

Alaska and c) the Brooks Foothills study region, respectively; d) thaw depth measurements at

Happy Valley, characterized by tussock and dwarf shrub tundra.

The 10–90% credible intervals are shown to be well calibrated in Fig. 6c. The un-356

certainty intervals were slightly too wide in the active layer, with a coverage of 0–5 per-357

centage points below the 80% target. The deviations were greater for the high-accuracy358

scenario and for N = 104 ensemble members (Fig. S1).359

5 InSAR inversion360

Our Sentinel-1 InSAR analyses focused on two regions in the continuous permafrost361

zone of Alaska (Fig. 7a).362

5.1 Study regions363

5.1.1 Brooks Foothills364

Our first study region is located along the Dalton Highway, a rolling tundra land-365

scape between the Brooks Range and the Beaufort Sea (Fig. 7c). Mean annual air tem-366

peratures of ∼-7◦C sustain continuous permafrost. Sentinel-1 observations from path 131,367

frame 363 were made every twelve days in the summers of 2019 and 2022.368

We focused on two sites, Happy Valley (HV) and Ice Cut (IC). Each contains a 100369

× 100 plot at which we obtained ground ice and thaw depth data (Sec. 5.2.2). Their veg-370

etation cover includes sedges, most notably the tussock-forming Eriophorum vaginatum,371

and dwarf shrubs (Fig. 7d). The soils at both are silty loams with some larger clasts.372

The gently sloping HV site is moderately well drained due to its crest-proximal location,373

and it does not contain recognizable ice wedge troughs. The IC site is on a flat plateau;374

while no surficial signs of ice wedges are apparent within the plot, disturbed locations375

nearby feature well-developed troughs.376

5.1.2 Kivalina, Northwestern Alaska377

Our second study region is near the town of Kivalina in northwestern Alaska. The378

tundra landscape is underlain by warm continuous permafrost. We focused on the Tatchim379

Isua location, a candidate site for relocating the flood-prone town (Tryck Nyman Hayes,380

2006). Geotechnical analyses conducted in 2005 revealed that a narrow rocky bench was381

ice poor whereas the upper permafrost of the surrounding hillslope was rich in segregated382

and massive ground ice, limiting the location’s suitability for relocation (Shannon & Wil-383

son, Inc., 2006).384
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We studied Sentinel-1 data from the extremely warm summer of 2019, when thaw-385

ing degree days exceeded the long-term average by more than 50%. A strong associa-386

tion between elevated late-season subsidence and independent estimates of the ice con-387

tent at the top of the permafrost was previously documented by Zwieback and Meyer388

(2021) across the wider landscape. Here, we illustrate the profile inversion from Sentinel-389

1 (path: 15, frame 367) for the Tatchim Isua location, with the goal of generating a quan-390

titative ground ice map. The absence of in-situ excess ice measurements precludes a quan-391

titative assessment.392

5.2 Materials and methods393

5.2.1 Forward and inverse modeling394

The forward modeling yielded an ensemble of N = 10000 predicted displacements395

d at the Sentinel-1 observation times. The daily temperature forcing for the Brooks Foothills396

was taken from NOAA station USS0048U01S, located 30 km north of HV. For Kivalina,397

we used the MERRA-2 re-analysis product (Gelaro et al., 2017).398

The InSAR displacements d̂ were derived in four steps. First, we multilooked the399

single-look complex observations to obtain the interferometric covariance matrix at a ground-400

equivalent resolution of 80m. Second, from each pixel’s covariance matrix we estimated401

the phase history using the Hadamard regularization from Zwieback (2022). Third, the402

phase history was unwrapped sequentially with SNAPHU (Chen & Zebker, 2001) and403

converted to an equivalent displacement. Fourth, we locally referenced the displacement404

to a location (e.g., rocky outrcrop) assumed to be stable. From the second step, we also405

obtained an estimate of the covariance due to speckle, Σspeckle. An estimate of the to-406

tal covariance Σ was obtained by addition of atmospheric errors. Our study areas’ spa-407

tial extent of only ∼2 km implies small atmospheric errors; we assumed a displacement-408

equivalent standard deviation of 4 mm.409

The inversion used the importance sampling from Sec. 3.2. Each InSAR pixel was410

treated independently. Only one ensemble was used for all pixels, with stratigraphies gen-411

erated using parameters from Tab. S1. While the parameter values are plausible for the412

two Brooks Foothills sites with coring data, their applicability to other locations such413

as recent floodplains or the rocky bench is questionable. For instance, underestimation414

of the thaw depth at sites with thinner organic layers will compress the inverted profiles.415

5.2.2 Comparison with cores416

The quantitative assessment was focused on the two locations in the Brooks Foothills.417

We compared the InSAR estimates with the site-averaged excess ice profiles derived from418

cores.419

We collected cores of the frozen active layer and the upper permafrost from May420

02–05, 2022. At the HV and IC sites, we took 11 cores each within the 100 by 100 m tran-421

sect area. Using a 7.5 cm diameter SIPRE corer, we drilled down to depths of 90–150 cm422

but only show results for the top 60 cm.423

Two example cores are shown Fig. 8. In core HV-C1 (subfigure a), visible ground424

ice is found primarily at the top of the mineral soil (12–20 cm; dark) and below 45 cm,425

where it appears transparent, gray or dark. The previous year’s active layer thickness426

as measured from the surface position in spring is unknown but was presumably ∼45 cm.427

Conversely, the central active layer (25–40 cm) is characterized by a massive soil struc-428

ture without visible excess ice. The core IC-D4 in Fig. 8c also features an ice-poor cen-429

tral active layer and ice-rich strata below 40 cm, which are, however, interrupted by or-430

ganic soil.431
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Figure 8. Core analysis results from Happy Valley and Ice Cut, Brooks Foothills. a,c) Pho-

tograph of the cleaned cores stitched together from pictures taken in the lab. Depth increases

toward the right; the segments and their excess ice content e are indicated by the purple boxes

(photograph c was made before the segments were cut). b, d, h) Beakers containing the thawed

samples, with supernatant water in b) and h) appearing yellow. e, f) Site-level excess ice pro-

files (heavy line: mean, shaded area: 10–90% confidence interval, thin lines: individual cores). g)

Mid-August thaw depth at the Happy Valley CALM grid approximates the active layer thickness.
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We determined each core’s excess ice profile in the laboratory. The profiles were
obtained in 5–10 cm increments by sawing the frozen core into segments (Fig. 8a). The
segment length varied because the cores already fragmented while drilling. For each seg-
ment, we first determined the frozen volume Vf by submersion in water. The sample was
subsequently thawed in a beaker, homogenized and allowed to settle (Fig. 8b, d, h). Fol-
lowing Morse et al. (2009), we determined the volume of supernatant water Vs (by weigh-
ing) and estimated the excess ice content as

e = (ρwVs)/(ρiVf) . (15)

The estimates tend to be conservative because air inclusions in ground ice (Morse et al.,432

2009) and uptake of excess ice meltwater by unsaturated mineral soil reduce Vs. Wedge433

ice – encountered in five IC cores – was assumed to consist entirely of excess ice.434

Site-level e profiles were determined on a 1 cm grid from the arithmetic mean across435

cores. An 80% confidence interval was derived from percentile bootstrapping using 1000436

samples, assuming independence between cores. According to the site-level profiles at437

HV and IC (Fig. 8e and f, respectively), average excess ice below the surface organics438

are low ≲ 0.10, decreasing to zero below 20 ,cm and gradually increase below 35 cm to439

values ≳ 0.25 at 50 cm. The observed variability was substantial at all depths with ex-440

cess ice (10–20 cm; below 35 cm), in contrast to the central active layer.441

We measured the 2022 late-season thaw depth at 150 transect points each at Ice442

Cut (August 15) and Happy Valley (August 17) by manual probing (Fig. 7d). The thaw443

depths were measured from the subsided surface, thus corresponding to υyf . The aver-444

age values were 41 and 40 cm, respectively. Thaw was shallow in 2022 compared to pre-445

ceding years such as the warm summer of 2019 (Fig. 8g), according to mid-August thaw446

depth measurements from the Circumpolar Active Layer Monitoring (CALM) 1 km grid447

(121 points) at Happy Valley (Nyland et al., 2021)448

In the Kivalina study region, we qualitatively compared the excess ice estimates449

at 55–65 cm depth, an approximate active layer depth for vegetated locations (Shannon450

& Wilson, Inc., 2006), to a binary classification of the upper permafrost (ice-rich/ice-451

poor) based on 8 cores collected in 2005 (Shannon & Wilson, Inc., 2006; Zwieback & Meyer,452

2021).453

5.3 Results454

5.3.1 Comparison to cores, Brooks Foothills455

The 2022 coring excess profiles largely fell within the 10–90% credible interval of456

the InSAR estimates, but the posterior mean deviated notably from the coring profile,457

especially in the lower active layer (Fig. 9a,d).458

Near the surface, the large uncertainty and concomitantly elevated mean mirrored459

the simulations. The ice-enriched layers near 15 cm, corresponding to subsidence of ∼5460

mm, were not resolved by the inversion (Fig. 9a,d).461

The agreement was better in the central (15–35 cm) active layer. At both sites, the462

coring estimates captured the low excess ice contents e <0.05 in the central active layer463

(15–35 cm), with narrow (<0.1) uncertainty intervals. This corresponds to ∼0 cm InSAR464

subsidence from mid-June to late July (Fig. 9c,f).465

The inversion underestimated the increase in e at the depth of the long-term ac-466

tive layer. The inferred probed depth, the estimated yf on September 14 (final Sentinel-467

1 acquisition), was 48 and 44 cm at Ice Cut and Happy Valley, respectively. The poste-468

rior mean e at 45 cm of ∼0.1 was smaller than the core-derived values of ∼0.2 at both469

sites. Furthermore, the core results show a steep increase of average excess ice content470

at and below this depth. Testing whether the low ice contents inferred from limited late-471
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Figure 9. Comparison of InSAR and coring profiles for Ice Cut (top row) and Happy Valley

(bottom row) in the Brooks Foothills. a, d) Coring profile from 2022 in blue (line: mean, shaded:

80% confidence interval) versus 2022 InSAR profile in brown (line: posterior mean, shaded: 10–

90% credible interval); the transparency of the InSAR profiles is proportional to the probability

of ground remaining frozen at the time of the last InSAR acquisition, and the inferred probed

depth yf (50% probability of remaining frozen) is marked with a horizontal line. b, e) InSAR pro-

files from warmer summer 2019 versus 2022 cores. c, f) InSAR time series converted to vertical

subsidence (marker: point estimate, vertical bar: ± standard deviation).

season subsidence of ∼1 cm were due to the thaw front barely penetrating the ice-rich472

materials would require field observations from the end of the thawing season. Instead,473

we were only able to assess the inferred probed depths in mid-August 2022. At Ice Cut,474

the inversion-based inferred probed depth of yf =41 cm was close to frost-probing-derived475

υ(yf) of 42 ,cm. At Happy Valley, yf =37 cm is to be compared to υ(yf) of 40 cm and476

38 cm from our transects and the CALM grid, respectively.477

For 2019, the InSAR-derived e below 40 cm matched the coring data from 2022 rea-478

sonably well, capturing the increased ice contents at depth. The discrepancy in years lim-479

ited quantitative comparisons of e in the active layer, but the shallow thaw in the inter-480

vening years (Fig. 8g) suggests comparisons below ∼45 cm remained meaningful. Thaw481

was deep in 2019, with the mean mid-August υ(yf) at the CALM grid of 46 cm exceed-482

ing the 2022 value by 8 cm. The inferred probed depth yf of 46 cm was comparable to483

the CALM observations on August 12, increasing to 51 cm at the day of the last Sentinel-484

1 acquisition. At both sites, the InSAR posterior mean profiles captured but smoothed485

the steep increase in ice contents below 40 cm depth. The identification of ice-enriched486

layers at depth reflected the substantial late-season subsidence of ∼4 cm observed at both487

sites in this warmer summer.488

5.3.2 Ice Cut, Brooks Foothills489

The estimated e profiles in 2022 varied little across the landscape, with consistently490

low (≲0.1) posterior means. Exceptions include the floodplain with pockets with elevated491

e ≳0.15 near the surface and also at the base of the active layer. These areas do not align492

neatly with apparent deposit age and vegetation cover.493

The interannual variability in estimated e profiles was most apparent where the up-494

per permafrost is interpreted to be ice rich. In the warmer summer of 2019, large pos-495

terior means ≳0.3 at 50 cm prevail across older and more ice-rich geological units, with496

low estimates largely confined to (in)active floodplains. Elevated e estimates in the cen-497
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Figure 10. Ice Cut, Brooks Foothills: InSAR-derived excess ice profiles for 2022 (cool) and

2019 (warm). a–f) Posterior means averaged over 10 cm layers of increasing depth, with the deep-

est (45–55 cm being at the base and below a typical active layer thickness in organics-covered

locations. g) Sentinel-2 near-infrared–red–green image with elevation contours and annotated

coring location (circle), reference point (cross) and transect. h–i) Posterior mean profiles along

T1 (in direction of arrow), with inferred probed depth (estimated yf at last InSAR observation)

shown in white.

tral active layer were associated with larger ice contents at depth, consistent with the498

limited depth resolution found in the simulations. At 10 cm, the inferred excess ice con-499

tents were even lower than in 2022.500

5.3.3 Happy Valley, Brooks Foothills501

In the cool summer of 2022, low InSAR-derived excess ice contents in the active502

layer predominate. Minor, and patchy, exceptions were found on the floodplain (near the503

surface and at ∼0.5 m) and in the uplands (at 0.5 m).504

The warmer summer of 2019 yielded elevated InSAR-derived excess ice at depth505

across units where the upper permafrost is thought to be ice rich. Across transect T1,506

these include abandoned floodplain deposits and soil-covered hillslopes with visible ice507

wedge polygons. Conversely, low excess ice contents were inferred for inactive floodplains508

and rocky outcrops.509

5.3.4 Tatchim Isua, Northwestern Alaska510

Vast parts of the landscape exhibited an strong increase in estimated excess ground511

ice at depths of ∼0.6m. While the posterior means of the excess ice contents e(y) were512

near 0.1 at 10 cm depth and smaller at 25 cm (Fig. 12a–b), values exceeding 0.4 were preva-513

lent at 60 cm (Fig. 12c) on the hillslopes and in the drained lake basin (lower left). The514

most notable exceptions with e ∼ 0 were rocky outcrops, including the bench, and the515

floodplain in the upper left corner. Intermediate values of ∼ 0.2 were most conspicuous516

along the margins of the drained lake basin.517

At the Tatchim Isua rocky bench (transect T1, Fig. 12e), the InSAR-derived ex-518

cess ice contents at ∼60 cm increased sharply up and downslope. The contrast in ice con-519

tent agrees with the 2005 cores (Fig. 12c), whose sparsity precluded an assessment of520

the sharpness of the transition. Upslope of the bench (550–750m distance in T1), where521
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Figure 11. Happy Valley, Brooks Foothills: InSAR-derived excess ice profiles for 2022 (cool)

and 2019 (warm). Same arrangement as Fig. 10.
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field and high-resolution imagery observations did not detect conspicuous manifestations522

of ice-rich permafrost (Shannon & Wilson, Inc., 2006), the InSAR-derived e profiles in-523

dicate ice contents comparable to below the bench and further up the hillslope, where524

ice wedge troughs are recognizable.525

The estimated ice contents of the upper and central active layer are generally lower.526

In particular, posterior means in the central active layer at 25–35 cm were close to zero527

in many areas (e.g., T1). Exceptions with elevated e(y) ≳ 0.2 above 30 cm were clus-528

tered in locations disposed to fine-grained soils and abundant water supply. For instance,529

the mature inactive floodplain at the start of transect T2 (Fig. 12f) had large reconstructed530

ice contents near ∼20 cm but not at depth.531

6 Discussion532

6.1 Performance assessment533

The inversion method provides spatially resolved estimates of near-surface excess534

ice profiles from satellite InSAR subsidence observations. It exploits the close physical535

connection between the ice content at the thaw front and the subsidence triggered by536

the melt of this ice. Its applicability to broad spatial scales is an advantage over coring537

or surface geophysical methods. The method largely yielded plausible excess ice profiles538

across landscape units. For instance, during the warm summer of 2019 it captured the539

desiccated central active layer underlain by ice-rich materials at our coring sites (Fig.540

9), while nearby ice-poor units such as rocky outcrops or (in)active floodplains had low541

estimated excess ice contents (Fig. 11).542

Our quantitative assessment revealed consistent estimates near the surface and greater543

deviations at depth. In the upper 40 cm, the inferred profiles largely overlapped with the544

coring-derived profiles from 2022. One shortcoming is the limited ability to capture the545

moderate ice contents in the upper mineral soil, but the InSAR and coring-derived ex-546

cess ice profiles are consistent with each because each has non-negligible uncertainty. The547

uncertainty intervals were wide (∼0.5) near the surface and narrow (≲0.1) at 30 cm, sim-548

ilar to the simulations (see Fig. 5). Below 40 cm, the inversion did not reproduce the in-549

crease in ice content at the base of the active layer and upper permafrost in the cool sum-550

mer of 2022, owing to limited late-season subsidence from InSAR. As the internally es-551

timated depth of probing appeared reasonable (Fig. 9), the inconsistency may partially552

be due to unresolved spatial variability. For instance, the ice-rich layer below 40 cm in553

core IC-D4 (Fig. 8c) may be closer to the surface than on average partially because thaw554

tends to be shallow, potentially confounding the comparison. Conversely, elevated late-555

season subsidence in 2019, interpreted to indicate penetration of ice-rich materials at the556

end of this warm summer, allowed the inversion to capture the high excess ice contents557

of ∼0.4 at depth.558

In warm years, the method identified ice-rich materials in the (previous years’) up-559

per permafrost in Northwestern Alaska and the Brooks Foothills. At the Tatchim Issua560

bench in Northwestern Alaska, estimated e ≈ 0.4 at 60 cm corresponded to ice-rich per-561

mafrost and e ≈ 0.0 to ice-poor materials. While the comparison to (old) cores was only562

qualitative, the inferred landscape-scale variability was plausible. Similarly, in the two563

Brooks Foothills locations, large excess ice contents at 50 cm were inferred in 2019 across564

units known to be ice-rich (e.g., visible ice wedge troughs), and low excess ice contents565

at ice-poor locations such as recent floodplains.566

6.2 Limitations and future improvements567

Inferring excess ice contents from subsidence is intrinsically limited to the depth568

of thaw. The materials below yf at the last observation remain “unprobed”. To infer how569
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ice-rich the (long-term) upper permafrost is, a year with deep thaw is needed. It may570

also happen that even in a warm year, deeper ice-rich materials remain “unprobed” be-571

cause they are too deep (for instance, due to previous disturbance). Conversely, when572

the thaw front sufficiently penetrates ice-rich materials at depth, simulated and InSAR573

inversions can detect these materials, albeit with reduced depth resolution (Fig. 12).574

The subresolution variability in subsidence and stratigraphies within the ∼80m In-575

SAR pixel is a major challenge for the method. The forward model is purely one-dimensional,576

and the ensemble of forward model runs does not directly account for the spatial vari-577

ability. Potential remedies would be ensembles of three-dimensional model runs or an578

ensemble of subresolution tiles, but at substantial computational cost (Abolt et al., 2018;579

Martin et al., 2021). Ideally, the parameterization would account for the spatial asso-580

ciation between ice content profiles, thaw depths and such factors as organic layer thick-581

ness.582

Extending the method to regional scales requires improvements to the prior strati-583

graphies and the InSAR error modeling. Improved stratigraphies should account for spa-584

tially variable soil characteristics, especially the organic layer thickness. For instance,585

our default ensemble assumed too thick an organic layer on the rocky bench in Fig. 12e,586

thus presumably underestimating the thaw depth; the impacts on the estimated ice pro-587

files were minor because the bench did not subside notably. Regional analyses further588

require spatially variable, data-driven estimates of the atmospheric errors.589

7 Conclusion590

Based on synthetic and Sentinel-1 subsidence observations, we showed how satel-591

lite InSAR can map near-surface profiles of excess ice in favorable conditions. The In-592

SAR estimates’ variability across the landscape aligned with the surficial geology, with593

soils unconducive to excess ice formation generally exhibiting low ice contents. The es-594

timated profiles predominantly had low ice contents in the central active layer and, to595

a lesser extent, the upper active layer. Elevated ice contents near the surface were largely596

restricted to floodplains. Inversion of InSAR observations from the very warm summer597

of 2019 yielded large ice contents ≳ 0.3 at the base of the active layer and the previous598

years’ upper permafrost across geological units known to host ice-rich permafrost.599

The accuracy and posterior uncertainty varied with depth. In simulations, they were600

best (≲ 0.1) in the central active layer, deteriorating (≳ 0.2) toward the surface and601

permafrost. In the Brooks Foothills, the estimates compared favorably to coring-derived602

excess ice profiles down to 35 cm, while the increase in excess ice contents near the base603

of the (average) active layer were reproduced in a warm but not a cool summer. In North-604

western Alaska, the extreme summer of 2019 with deep thaw facilitated detection of ice-605

rich materials in what previously had been the upper permafrost, as the retrievals matched606

qualitative coring observations.607

The pan-Arctic availability of suitable InSAR data enables novel insights into wa-608

ter fluxes and ground ice storage changes. The rates, controls and drivers of ground ice609

loss and formation are poorly constrained but of critical importance to the stability, hy-610

drology and biogeochemical functioning of permafrost landscapes. Empirical constraints611

from our InSAR method and complementary observations portend improved monitor-612

ing and predictive capabilities across the rapidly changing Arctic.613
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The Python/Cython code is available from (Zwieback, 2023b), the ground ice pro-615

files from (Zwieback, 2023a). The Sentinel-1 data are available from https://search616

.asf.alaska.edu/ (registration required). The MERRA-2 (Gelaro et al., 2017) tem-617
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