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Abstract 7 

The discipline of land change science has been evolving rapidly in the past decades. Remote sensing 8 

played a major role in one of the most critical components of land change science, which includes 9 

observation, monitoring, and characterization of land change. In this paper, we proposed a new 10 

framework of the multifaceted view of land change through the lens of remote sensing and 11 

recommended five facets of land change including change location, time, target, process, and agent. 12 

We also evaluated the impact of spatial, spectral, temporal, and angular dimensions of the remotely 13 

sensed data on observing, monitoring, and characterization of different facets of land change, as well 14 

as discussed some of the current land change products. We recommend clarifying the specific land 15 

change facet being studied in all remote sensing of land change efforts, reporting multiple or full 16 

facets of land change in remote sensing products, shifting the focus from land cover change to 17 

identify the specific change process and agent, integrating socioeconomic data as well as new social-18 

environment framework for a deeper and fuller understanding of land change, and recognizing the 19 

limitations and weaknesses of remote sensing platforms in land change studies.  20 
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1 Introduction 21 

With the increasing contemporary concerns on climate change, global environmental change, and 22 

sustainability, land change science emerged as a unique science direction for addressing these knotty 23 

issues (Gutman et al., 2004; Rindfuss et al., 2004; Turner et al., 2007). Land change science, defined 24 

as “the interdisciplinary field seeks to understand the dynamics of land cover and land use as a 25 

coupled human-environment system to address theory, concepts, models, and applications relevant to 26 

environmental and societal problems, including the intersection of the two” (Turner et al., 2007), has 27 

many components, in which one of the most fundamental and critical components is the observation, 28 

monitoring, and characterization of land change.   29 

 30 

The terrestrial surface of the Earth has been modified or transformed by humans at an unprecedented 31 

rate. More than half of the Earth’s ice-free land surface has been affected by humans (Ellis et al., 32 

2010), and almost all land surfaces have been influenced by climate change and various kinds of land 33 

disturbances (Dale, 1997; Potter et al., 2003). Remote sensing, particularly satellite remote sensing, 34 

that can provide synoptic and repeated measurements of the global land surface at different spectral, 35 

spatial, and temporal resolutions are of great importance for studying global land change (Justice et 36 

al., 1998; Roy et al., 2014; Sellers et al., 1995). In the past decades, big advancements have been 37 

made in large-scale mapping of land change based on remote sensing data, due to the rapidly growing 38 

amounts of earth observation satellites (Belward and Skøien, 2015; Ustin and Middleton, 2021), the 39 

free and open data policy (Woodcock et al., 2008; Wulder et al., 2012; Zhu et al., 2019), the analysis-40 

ready data format (Dwyer et al., 2018; Frantz, 2019; Zhu, 2019), the increasing computing 41 

capabilities (Gorelick et al., 2017; Ma et al., 2015), and the availability of new algorithms for change 42 

detection (Banskota et al., 2014; Kennedy et al., 2014; Zhu, 2017). Recently, a paradigm shift from 43 

change detection of two points in time to monitoring and tracking change continuously in time is 44 

observed in remote sensing community, where the use of dense time-series observations is more 45 
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common and new land change information, such as subtle changes in ecosystem health and condition 46 

and long-term trend of the vegetation productivity, is more reachable (Woodcock et al., 2020). 47 

Moreover, land change information can now be monitored in near real-time (Verbesselt et al., 2012; 48 

Xin et al., 2013; Ye et al., 2021a), which greatly improves its value to resource managers and 49 

policymakers. We have also witnessed a proliferation of land change characterization algorithms 50 

(Zhu, 2017), with majority of them focusing on the “from-to” information, that is, land cover and/or 51 

land use information before and after the change (Hansen and Loveland, 2012; Pricope et al., 2019). 52 

It should be noted that though land cover (the physical properties at the Earth’s surface) and land use 53 

(the social, economic, and cultural utility of land) are quite distinct (Turner, 1997), they are often 54 

grouped together in remote sensing products, and land cover is usually used as a surrogate for 55 

understanding land use, such as including cropland and developed in the categories of land cover 56 

(Anderson et al., 1976). Considering remote sensing data provide information on land cover, rather 57 

than on land use, we will mainly focus on land cover change here. 58 

 59 

In this paper, we propose the framework of multifaceted perspective in remote sensing of land 60 

change, in which the change in land cover is only one of the components viewed from one of the five 61 

facets of land change -- the target of change or what is changing (Fig. 1). Basically, if we detect 62 

change in satellite spectral bands, we can extract land change information to answer five different 63 

questions, that are, when (change time), where (change location), what (change target), how (change 64 

process), and why (change agent) the change happened. Each of the questions will occupy one facet 65 

of the change cube that contains the spectral change information derived from remotely sensed data. 66 

The facet on the top of the change cube is left empty on purpose (Fig. 1), as there may be other facets 67 

of land change that are not discussed here. The two facets on “Time” and “Location” provide 68 

information on observation and monitoring of land change, and the other three facets on “Target”, 69 

“Process”, and “Agent” are related to the characterization of land change. In this paper, we will first 70 
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discuss all five facets of land change as well as their relationship through the lens of remote sensing. 71 

Next, we will discuss the remote sensing issues in spectral, spatial, temporal, and angular domains in 72 

observing, monitoring, and characterization of different facets of land change. Finally, we will 73 

discuss some of the current land change products derived from remote sensing data and conclude 74 

with future recommendations. 75 

 76 

 77 

Fig. 1. The five facets proposed for observation, monitoring, and characterization of land change 78 

using remotely sensed data. It is worth noting that not all land change agent will lead to a change in 79 

change target or land cover in this case, and some of the change patches shown in the other four 80 

facets are not shown (e.g., stress, hydrology, agriculture practice) or only partially shown (e.g., wind, 81 

urban development, and regrowth) in the facet of land change target.  82 

 83 

2 The five facets of land change 84 
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If the remote sensing system is well designed for capturing the specific land change type, it is 85 

possible to extract land change information for five different facets based on the remotely sensed 86 

observations collected before, during, and/or after the land change (Fig. 2). 87 

 88 

 89 
Fig. 2.  Hierarchical classification system for the five facets of land change. 90 

 91 

2.1 Where - Change Location 92 

The first facet of land change is to answer the question of where the change has occurred or 93 

determine the change location. Theoretically, by differencing two georeferenced remotely sensed 94 

images collected at a different time from the same spectral band and same location, any kind of land 95 

surface change that occurred between the two dates would have larger difference values than places 96 

that have not changed. By using a simple threshold, the location of change could be identified easily. 97 

The land change detected in this way is sometimes called “spectral change”, as clearly there is a 98 

spectral value change between the two dates of the remotely sensed images, but this does not always 99 

correspond to the changes on the land surface. Other factors, such as image registration, atmospheric 100 
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condition, natural soil wetness fluctuation, vegetation phenology, sensor-solar-geometry, topography 101 

illumination, will all contribute to the spectral change (Kennedy et al., 2014; Zhu, 2017). Therefore, 102 

one of the most critical steps before the remotely sensed images are used for detecting land change is 103 

removing or at least reducing changes in spectral values that are not caused by land surface change. 104 

Advanced algorithms have been developed to provide more accurate image registration results (Gao 105 

et al., 2009; Yan et al., 2016), perform atmospheric correction and cloud/cloud shadow detection 106 

(Masek et al., 2006; Qiu et al., 2019b; Zhu and Woodcock, 2012), include precipitation information 107 

(Tollerud et al., 2020), model and exclude seasonality (mostly driven by phenology) (Verbesselt et 108 

al., 2010; Zhu et al., 2020; Zhu and Woodcock, 2014), apply Bidirectional Reflectance Distribution 109 

Function (BRDF) to correct sensor-solar-geometry (Roy et al., 2016; Schaaf et al., 2002), remove 110 

bandpass difference (Claverie et al., 2018; Shang and Zhu, 2019), and perform topographic 111 

corrections (Buchner et al., 2020; Tan et al., 2013). It is worth noting that though these algorithms 112 

have the potential to reduce spectral changes that are not related to changes on land surface, they may 113 

also introduce artifacts, and it is not always necessary to apply all these algorithms before conducting 114 

change detection (Qiu et al., 2019a; Song et al., 2001).   115 

2.2 When - Change Time 116 

The second facet of land change is to answer the question of when the change occurred or determine 117 

the change time. Basically, the closer the two images are selected for detecting change, the more 118 

accurate the change time can be determined. Compared to detecting change based on real images, 119 

there are also new change detection methods that difference the model predicted values with actual 120 

remote sensing observations to identify land change (Verbesselt et al., 2012; Zhu and Woodcock, 121 

2014) and the detected change time is determined based on how soon the new clear observations are 122 

collected for each pixel location. These time-series based approaches do not need to wait for two 123 

clear remote sensing images and can provide more rapid change detection results. The remote sensing 124 
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community has shifted from using images collected from decades apart, to annual, and is currently 125 

shifting all the way to near-real-time change detection (Tang et al., 2019; Verbesselt et al., 2012; 126 

Woodcock et al., 2020; Ye et al., 2021a). This is particularly true with the successful launch of 127 

Sentinel-2 A/B (Drusch et al., 2012), Landsat 9 (Masek et al., 2020), and the hundreds of orbiting 128 

CubeSats (Huang and Roy, 2021) that could provide subweekly or even daily land surface 129 

observations at medium to high spatial resolutions (Li and Roy, 2017; Roy et al., 2021).   130 

2.3 What - Change Target 131 

The third and probably the most studied facet of land change is to answer the question of what is 132 

changing or determine the change target. The change target is sometimes defined as changes in 133 

categorical classes such as land cover type (e.g., forest, urban, water, grass, shrub, snow/ice, 134 

agriculture, etc.), or defined as changes in continuous variables of biophysical/biochemical 135 

parameters, such as Impervious Surface Area (ISA), land surface temperature, Leaf Area Index 136 

(LAI), vegetation height, biomass, leaf moisture content, leaf chlorophyll content, etc. Remotely 137 

sensed data contains rich information on the characteristics of the land surface. Feature space of more 138 

than a few dozens to even hundreds of dimensions could be created from the electromagnetic 139 

radiation (EMR) that is recorded at different wavelengths, the texture of the spectral bands, and the 140 

intra-annual/inter-annual temporal trajectory from the time series observations, to determine the land 141 

cover based on image classification (Gómez et al., 2016) or to estimate the biophysical/biochemical 142 

parameters based on machine learning or regression from empirical models (Garbulsky et al., 2011; 143 

Lin et al., 2020; Verrelst et al., 2015). 144 

 145 

Theoretically, if we can create land cover or biophysical/biochemical parameter maps accurately at 146 

different time points, we can compare their maps to identify changes in different land cover or a 147 

specific biophysical/biochemical parameter. However, as land changes are usually very small in size 148 
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(e.g., 1-5% of the land surface) (Hansen et al., 2013; Song et al., 2018), and all image classification 149 

and biophysical/biochemical parameter retrieval algorithms contain errors, comparing maps of land 150 

cover or biophysical/biochemical parameters at different time points to detect land change will lead 151 

to compounded errors in the final change map at a magnitude way larger than the total change area 152 

(Olofsson et al., 2013). For example, if we assume the classification error is randomly distributed and 153 

the overall accuracy is 90%, the compounded error of change map by differencing the two land cover 154 

maps is 100%− 90%× 90% = 19% of the image, which is approximately four times of the land 155 

change area (if it is 5% of the total area). Therefore, land change is usually detected based on the 156 

magnitude of spectral change, and if a spectral change is detected, we can then estimate land cover or 157 

biophysical/biochemical parameters before and after the spectral change (Deng and Zhu, 2020; Jin et 158 

al., 2019; Zhu and Woodcock, 2014). It is worth noting that even if there is a spectral change 159 

detected, the classified categorical land cover type may still be the same, as the land change that 160 

occurred on this land cover may not be dramatic enough to change the land cover types, and we 161 

usually call this land cover modification or land cover condition change. For example, if forest cover 162 

is defined as trees covering more than 10% of the pixel following the U.S. Forest Service definition 163 

(Riemann et al., 2010), and if selective logging is reducing forest cover from 90% to 30%, we are 164 

very likely to detect a spectral change, but based on the definition, the land cover is still forest before 165 

and after the spectral change. However, if the forest harvest is reducing forest cover from 90% to 5%, 166 

then the land cover will be likely changed from forest to barren or grass, and we usually call this land 167 

cover conversion, which are corresponding to more substantial land changes that cause land cover 168 

transitions from one to another. In the remote sensing community, huge efforts have been given to 169 

land cover conversions, but fewer studies have addressed the land cover modification issues, which 170 

may be at a scale similar to or even larger than land cover conversion (Asner et al., 2005; Qin et al., 171 

2021). Detecting land cover modification is inherently difficult in remote sensing, as the subtle 172 

spectral change signal may be at a change magnitude similar to other background noise. Subpixel 173 
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analyzing methods, such as spectral mixture analysis (Asner et al., 2009), continuous fields (Hansen 174 

and DeFries, 2004), fuzzy (or soft) classification (Foody and Doan, 2007), and the continuous 175 

subpixel monitoring approach (Deng and Zhu, 2020), have shown their capability in detection of land 176 

cover modification at subpixel scales. 177 

2.4 How - Change Process 178 

The fourth facet of land change is to answer the question of how it is changing or determine the 179 

change process (Kennedy et al., 2014; Petit et al., 2001). As remotely sensed data measure land 180 

surface reflected or emitted EMR, changes occurred on the land surface will also likely cause 181 

changes in the spectral band at the corresponding time, making remote sensing data particularly 182 

useful for tracking the land surface change trajectories and studying the specific change process 183 

(Kennedy et al., 2014). The most important remote sensing observations for studying change process 184 

are the ones that are collected during the land change events, and we can describe the change process 185 

based on the duration and magnitude of land change.  186 

 187 

According to the change duration, change process can be divided into abrupt change and gradual 188 

change. Most of the remote sensing change detection algorithms are developed to detect abrupt 189 

changes that occur within a short time in response to a punctuated event, as these changes can be 190 

detected directly by comparing two remotely sensed images collected at different time points before 191 

and after the change event (Coppin and Bauer, 1996; Woodcock et al., 2020). On the hand other, 192 

gradual changes usually last for a much longer time as a result from a variety of causes such as 193 

damage to vegetation from disease and insects, ecological succession, and climate change 194 

(Vogelmann et al., 2016, 2012). There are also remote sensing methods developed to quantify 195 

gradual changes based on long-term time series observations (e.g., > 10 years), and algorithms that 196 

could address gradual and abrupt changes simultaneously are appearing and could provide more 197 
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accurate estimation of gradual changes (De Jong et al., 2012; Vogelmann et al., 2016; Zhe Zhu et al., 198 

2016). 199 

 200 

Based on the change magnitude, change process can be divided into subtle change and dramatic 201 

change. Subtle change modifies the land cover and the impact could be either ephemeral in time, 202 

which is sometimes called ephemeral change (e.g., gypsy moth infestation and flooding) or persistent 203 

at a much longer time (e.g., > 1 year), which is also called gradual change. Dramatic change is 204 

mainly caused by severe disturbance events, which usually lead to land cover conversion. Dramatic 205 

change is relatively easy to identify as large differences will be observed in remotely sensed imagery, 206 

but subtle change detection is much more difficult and requires change agent- or land cover-specific 207 

algorithms that are carefully calibrated against the kind of subtle change to be identified (Ye et al., 208 

2021b). It is worth noting that other variables could also provide information on the temporal 209 

trajectories of land change for studying change process, such as time since last change, spectral 210 

stability period, and occurrence change intensity (Brown et al., 2020; Pekel et al., 2016). 211 

 212 

2.5 Why - Change Agent 213 

The fifth facet of land change is to answer the question of why it is changing or determine the change 214 

agent. Climate, land disturbance, and succession are the three major change agents that occur at quite 215 

different timescales (Fig. 3). Though the three change agents are quite different conceptually, they 216 

actually interplay with various kinds of positive and negative feedbacks (Dale et al., 2001; Guo et al., 217 

2018; Johnson and Miyanishi, 2021; Laflower et al., 2016; Seidl et al., 2017).  218 

 219 
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 220 

Fig. 3. Timescales applicable to weather, climate variability, climate change, land disturbance, and 221 

succession. 222 

 223 

Land disturbance has been defined in various ways (Clements, 1916; Grime, 1977; Sousa, 1984; 224 

Turner, 2010; White and Pickett, 1985), and one of the most commonly used definitions by 225 

ecologists is “any relatively discrete event in time that disrupts ecosystems, community or population 226 

structure and changes resources, substrate availability, or the physical environment” (White and 227 

Pickett, 1985). Zhu et al. (2020) modified and simplified this definition for detecting land disturbance 228 

based on satellite time series, in which land disturbance is defined as “any discrete event that occurs 229 

outside the range of natural variability of land surface”. Most of the time, land disturbance occurs in a 230 

very short time ranging from hours to years and can be anthropogenic or natural. Anthropogenic 231 

disturbance, sometimes called mechanical change or land use change, refers to human activity-related 232 

land change, such as forest harvest, agriculture practice, urban development, and prescribed fire. 233 

Natural disturbance can be further divided into abiotic disturbance, such as wildfire, flooding, wind, 234 

drought, snow/ice, earthquake, tsunamis, landslide, and biotic disturbance, such as insect infestation, 235 

pathogens, and invasive species. It is worth noting that there is a long debate on whether drought 236 

should be included as one type of land disturbance, and it has only started to be considered as a 237 

disturbance over the past decade (Peters et al., 2011). Fire can be both natural (wildfires) and 238 

anthropogenic (prescribed fires) (Bowman et al., 2011), and remote sensing can detect both burning 239 
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fires and fire burned areas (Justice et al., 2002; Lentile et al., 2006). Most remote sensing algorithms 240 

developed for detecting disturbance are only limited to a single change target, such as forest 241 

disturbance (Healey et al., 2018; Huang et al., 2010; Jin and Sader, 2005; Kennedy et al., 2007; Zhu 242 

et al., 2012), and only a few algorithms can provide more general disturbance results, such as the 243 

MODIS Global Disturbance Index (MGDI) algorithm (Mildrexler et al., 2009), the LandTrendr 244 

Landsat time-series-based algorithms (Kennedy et al., 2015), and the COntinuous monitoring of 245 

Land Disturbance (COLD) algorithm (Zhu et al., 2020). As disturbance will create a spectral change 246 

signal that is outside the range of natural variability of land surface, it can be captured after the range 247 

of natural variability is well defined. However, for certain disturbance types, such as selective 248 

logging and insect infestation, they may only change a small fraction of the pixel or slightly change 249 

the health condition of the ecosystem, which makes these kinds of disturbance agents extremely hard 250 

to detect and distinguish in remote sensing data (Asner et al., 2005; Senf et al., 2017; Ye et al., 251 

2021b).  252 

 253 

Unlike weather that describes current atmospheric condition (e.g., rainstorms and tropical cyclones) 254 

that changes every hour, day, and maybe months, climate measures the mean and variability of 255 

temperature, precipitation, or wind for a much longer time, ranging from months to centuries, in 256 

which climate variability refers to the short-term (e.g., months, seasons, or years) variation in climate 257 

patterns such as El-Niño Southern Oscillation, and climate change refers to the long-term changes 258 

(e.g., decades or centuries) in climates such as global warming and sea-level rise. Climate variability 259 

can be detected using remotely sensed vegetation indices by comparing a certain year with a baseline 260 

computed from a longer satellite time series (Saleska et al., 2007; Samanta et al., 2010), and climate 261 

change can be also evaluated based on the long-term trend of remotely sensed vegetation indices 262 

(Myneni et al., 1997; Zaichun Zhu et al., 2016). As both climate variability and disturbance will 263 

cause remote sensing observations to deviate abruptly from past trajectories with a spectral change 264 
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magnitude larger than the natural variability, climate variability is sometimes identified as one kind 265 

of disturbance type in remote sensing (Huete, 2016), and will be particularly noticeable in semiarid 266 

areas where the amount of precipitation will have a large impact on the local ecosystems.  267 

 268 

Climate change and land disturbance initiate succession (e.g. primary succession and secondary 269 

succession), which is defined as the process the structure of a biological community changes over 270 

time (Huston and Smith, 1987). Primary succession is the process that plants and animals colonize a 271 

barren habitat for the first time, which could take hundreds of years. On the other hand, secondary 272 

succession begins after a major disturbance that transformed the original landscape, and if this land is 273 

undisturbed for some time, the evolving biological community will reach a stable ecological structure 274 

again. As remote sensing has a relatively short history, and the longest earth observation satellite, 275 

such as Landsat, only has a half-century record, it is not ideal to quantify primary succession, and 276 

there are only limited studies on this topic (e.g., Knoflach et al., 2021 and Lawrence, 2005). 277 

However, remote sensing data have been frequently used for quantifying secondary succession after 278 

disturbance, which is usually called post-disturbance recovery or vegetation regrowth (Bartels et al., 279 

2016; Zhao et al., 2016). Basically, we can quantify the rate of recovery using the slope of the 280 

vegetation index calculated based on remotely sensed time-series observations, and the larger the 281 

positive slope in a vegetation index the quicker the recovery.  282 

 283 

Observing and monitoring places where disturbance, climate, and succession occurred is important, 284 

but what is more critical is to identify the specific change agent, and this effort is sometimes called 285 

change agent characterization (or attribution) in remote sensing. Among the variety of possible land 286 

change agents, we can divide them into direct or proximate causes (e.g., agriculture practice, urban 287 

development, fire, harvest, etc.) and distal or underlying driving forces (e.g., human population 288 

dynamics, human attitudes and behavior, economic transformation, climate change, etc.) (Geist and 289 
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Lambin, 2002; Lambin et al., 2001). Majority of the remote sensing studies are only focusing on 290 

creating change agents maps of the proximate causes, in which some of them are more focused on 291 

anthropogenic agents (Kennedy et al., 2015; Shimizu et al., 2019) and others are more of a natural 292 

agent focus (Oeser et al., 2017; Schroeder et al., 2017). Most of the remotely sensed change agent 293 

types are quite broad, and some of the typical categories include agriculture practice, forest harvest, 294 

urban development, inset, wind, fire, hydrology, and vegetation stress. Satellite time series 295 

observation collected before, during, and/or after the disturbance events and supervised machine 296 

learning classifiers are usually used together for change agent classification (Shimizu et al., 2019), 297 

and the inclusion of spatial domain of remote sensing data are frequently found helpful in improving 298 

separation of different change agents (Kennedy et al., 2015; Sebald et al., 2021; Shimizu et al., 299 

2019). It should be noted that remote sensing of change agent is never an easy task. Changes of 300 

different agents can happen simultaneously or in close proximity to each other, which makes 301 

untangling these agents extremely hard sometimes (e.g., understory fire following by a pest 302 

infestation in forests). Moreover, different disturbance agents may result in the same or similar 303 

mechanism (for example, windstorms, wildfire, insect infestation, and drought will all lead to 304 

defoliation), which makes the spectral change signature very similar among the different agents. 305 

Additionally, high-quality change agent training data is extremely hard to collect consistently at 306 

large-scales. Unlike land cover training data that can be interpreted from any high-resolution remote 307 

sensing image, it is much hard to find training data of land change, and it is even more difficult to 308 

interpret the causality of the change based on the remotely sensed data alone (Pengra et al., 2020). 309 

Synthesizing all the land change agent related open data, such as the Land Change Monitoring, 310 

Assessment, and Projection (LCMAP) reference sample (Pengra et al., 2020), LANDFIRE reference 311 

data (Rollins, 2009), USGS Land Cover Trends data (Loveland et al., 2002), USFA National Insect 312 

and Disease Survey database (Johnson and Wittwer, 2008), NASA Cooperative Open Online 313 

Landslide Repository (COOLR) Landslide data (Kirschbaum et al., 2010), NOAA Severe Weather 314 
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Data Inventory (SWDI) (NOAA, 2022), and Monitoring Trends in Burn Severity (MTBS) data 315 

(Eidenshink et al., 2007), and refining training data based on prior knowledge of change agent 316 

characteristics could be a potential solution. Remote sensing can also help better understanding the 317 

underlying driving forces behind global land change based on qualifying and quantifying human-318 

environment interaction at multitude of spatial and temporal scales (Pricope et al., 2019). By 319 

integrating socioeconomic data with remotely sensed data and incorporating models (e.g., fixed-320 

effects statistical) that are widely used by social scientists, it is possible to provide deeper 321 

understanding of the complex land change transitions and teleconnection/telecoupling (Friis et al., 322 

2016; Lambin et al., 2001; NRC, 1999, 1998; Pricope et al., 2019; Seto et al., 2012) 323 

 324 

3 Relationship of various kinds of change terminologies 325 

A variety of change terminologies have been introduced for remote sensing of land change. Though 326 

they are all related to land change, their relationship is rather complicated and confusing. Fig. 4 327 

illustrates the relationship of some widely used land change terminologies, including spectral change, 328 

land surface change, land cover change, land cover modification, land cover conversion, land 329 

disturbance, climate variability, climate change, and succession, and biophysical/biochemical 330 

parameter change. Spectral change (the grey rectangle in Fig. 4), defined as the temporal changes in 331 

remote sensing spectral value, has been widely used in many remote sensing change detection studies 332 

(Cohen and Goward, 2004; Coppin and Bauer, 1996; Verstraete and Pinty, 1996). Spectral change is 333 

the broadest of all land change terminologies that could include all kinds of land changes (e.g., 334 

changes caused by vegetation phenology and abrupt/gradual land surface changes), as well as 335 

spectral changes that have nothing to do with land change on the ground, such as atmospheric 336 

influences and data noises. On the other hand, land surface change (the region within red dashed line 337 

rectangle in Fig 4 that is also shared with land cover change) has also gained a lot of visibility in 338 
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remote sensing studies of land change (Brown et al., 2020; de Beurs et al., 2015; Sohl et al., 2004; 339 

Woodcock et al., 2020; Zhu and Woodcock, 2014), which usually includes all land change (e.g., all 340 

kinds of land cover conversions and modifications) that occurs on the Earth’s surface, except for 341 

cyclic changes that are caused by vegetation phenology. As cyclic changes from vegetation 342 

phenology can also lead to biophysical/biochemical parameter changes, biophysical/biochemical 343 

parameter change (the purple rectangle in Fig. 4) includes land surface change (or land cover 344 

change), that will inevitably lead to changes in certain biophysical/biochemical parameters), as well 345 

as cyclic seasonal changes that cause changes in LAI and leaf chlorophyll contents. Land disturbance 346 

(the light red rectangle in Fig. 4), defined as any discrete event that occurs outside the range of 347 

natural variability of the land surface, if severe enough, can lead to land cover conversion, and is 348 

sometimes overlapped with climate variability (e.g., drought). Climate variability (the light yellow 349 

rectangle in Fig. 4) and climate change (the dark yellow rectangle in Fig. 4) are driven by the mean 350 

and variability of temperature, precipitation, or wind, and climate variability refers to the short-term 351 

variations in climate patterns (e.g., months, seasons, or years) and climate change refers to the long-352 

term changes (e.g., decades or centuries). Both can lead to land cover conversion when it is persistent 353 

or have a significant impact on the land surface. Succession (the green rectangle in Fig. 4), defined as 354 

the process of the structure of a biological community changing over time can also change the land 355 

cover categories (e.g., transitioned from grass to shrub, and all the way to forest) with enough time 356 

and adequate recovery speed (Brown et al., 2020). Note that land disturbance, climate variability, 357 

climate change, and succession may all lead to categorical land cover change -- land cover 358 

conversion (the rectangles filled with stripes in Fig. 4), but most of the time they will only lead to 359 

within-state modifications or condition change -- land cover modifications (the rectangles filled with 360 

dots in Fig. 4), such as changes in the value of a certain biophysical/biochemical parameter.  361 
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 362 

Fig. 4. Relationship of some widely used land change terminologies, including spectral change, land 363 

surface change, land cover change, land cover conversion, land cover modification, land disturbance, 364 

climate variability, climate change, succession, and biophysical/biochemical parameter change.  365 

 366 

4 The spectral, spatial, temporal, and angular issues in detecting land change 367 

If the remote sensor is designed perfectly at the right spectral, spatial, temporal resolutions and 368 

viewing angles, all land changes should show up with large magnitudes of spectral change. However, 369 

this is never the case in reality, and issues from spectral, spatial, temporal, and angular domains will 370 

all greatly impact the remote sensing platform’s capability of detecting land change. 371 

4.1 The spectral issues 372 

The spectral values record the amount of electromagnetic energy in specific wavelengths, such as 373 

visible, Near Infrared (NIR), Short-Wave Infrared (SWIR), thermal, and microwave bands. Remote 374 

sensing of land change assumes that different land surfaces will have different spectral values, and if 375 

we difference the spectral values collected at different time points, we can identify the change. In 376 

practice, the different land surfaces may share the same or similar spectral values for certain spectral 377 
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bands, and if the spectral bands that can separate the two different kinds of land surface do not exist 378 

in the remote sensing bands, there will be no way to detect changes occurred between the two land 379 

surface types. For example, when forests are burned, the changes in visible bands, such as Blue, 380 

Green, and Red, and certain microwave bands (e.g., C-Band) are usually very subtle (Fig. 5) and if 381 

those bands are used for detecting burned areas, it would be extremely hard for any kind of change 382 

detection algorithms. However, large differences will usually show in NIR, SWIR1, SWIR2 bands 383 

(reduced vegetation and water content), and thermal band (higher temperature) after forest fire (Fig. 384 

5), and the burned areas can be easily detected if spectral bands within these four spectral ranges 385 

exist. Note that there are remote sensors that can provide many narrow spectral bands, and some of 386 

the bands, such as red edge bands (in the NIR band range), can provide new change information (e.g., 387 

forest structure and health change) that the broadband cannot provide (Cho et al., 2012; Eitel et al., 388 

2011).  389 
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 390 

Fig. 5. Spectral change before and after the land change caused by fire. The changes in visible bands 391 

and microwave band are very subtle, but substantial in NIR, SWIR, and thermal bands. Blue, Green, 392 

Red, NIR, SWIR1, SWIR2, and thermal bands are derived from Landsat 8 surface reflectance and 393 

brightness temperature data, and microwave C-Band is from Sentinel-1 C-Band Synthetic Aperture 394 

Radar data with dual-band cross-polarization (Vertical transmit/Horizontal receive) at descending 395 

orbit. All the remotely sensed images were acquired at central latitude/longitude (40.100 /-120.607) 396 

in June 2019 and 2020 and clipped to same extent of 1001 pixels by 401 pixels at 30 m spatial 397 

resolution.  398 

 399 

Additionally, the selection of the right spectral bands is particularly critical to identify the change 400 

agent, change target, as well as determine the specific change process. The spectral change values in 401 

different bands, sometimes called spectral change vector, are the key variables for separate different 402 

change agents, as both the change vector angle and change vector magnitude contain rich information 403 

on the kind of change that is occurring (Lambin and Strahlers, 1994). On the other hand, the spectral 404 
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values before and after the change are the most important input variables for characterizing the 405 

change target. While given cover types may have similar and indistinguishable spectral responses at 406 

specific points in time, in most cases, the spectral behavior of different cover types varies over time, 407 

and the combined ability to look both multi-spectrally and multi-temporally should introduce 408 

evidence that can be used to discriminate different cover types. For land change process 409 

characterization, as the change vector magnitude is used directly to separate dramatic and subtle 410 

changes, the selection of the right spectral bands with the best capability to quantify the severity of 411 

change is extremely important.  412 

 413 

4.2 The spatial issues 414 

The spatial resolution, defined as the dimension in meters of the ground-projected Instantaneous-415 

Field-of-View (IFOV), determines the minimum mapping unit on the ground (e.g., a Landsat 8 pixel 416 

covers 30x30 m2 land area). Remotely sensed images from various kinds of platforms can provide a 417 

wide range of spatial resolutions from sub-meters to tens of kilometers (Belward and Skøien, 2015). 418 

Remote sensing data with the higher spatial resolution are generally preferred as the input for change 419 

detection, as the higher the spatial resolution, the better the capability in detecting small-scale land 420 

changes (Coppin et al., 2004). However, when the spatial resolution is too high (e.g., < 1 meter), the 421 

shadow from the land surface objects will start to show up (Bruzzone and Vovolo, 2012), and the 422 

trade-off between spatial and temporal resolutions will make it extremely hard to find another revisit 423 

image unless it is pointed to the same location after changing its view angle, which will cause artifact 424 

again due to the large view angle difference in the image. On the other hand, if the spatial resolution 425 

is too coarse, not only small-scale changes will not be able to show up in satellite signals (see the 426 

MODIS images in Fig. 6), but also the large difference in point-spread-function and BRDF impact 427 

will make change signals easily buried in the data noise (Xin et al., 2013). Therefore, most of the 428 
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remotely sensed data used for land change studies are based on medium resolution satellites with 429 

resolution between 10–100 meters, such as SPOT, Sentinel-2, and Landsat (Martin and Howarth, 430 

1989; Szostak et al., 2018; Zhu, 2017), and the coarse resolution data, such as MODIS and AVHRR 431 

are mostly used to extract gradual change based on long time series data (Myneni et al., 1997; Zhu et 432 

al., 2016).  433 

 434 

Fig. 6. The impact of spatial resolution on maps of change location and change target between 2014 435 

and 2018. All the remotely sensed images were acquired at central latitude/longitude (41.781/-436 

72.234) in summer 2014 and 2018 and reprojected into the WGS84 UTM Zone 19N. The MODIS, 437 

Landsat, and PlanetScope satellites provide remote sensing images at coarse resolution (500 m), 438 

medium resolution (30 m), and high resolution (5 m), respectively. The National Agriculture Imagery 439 

Program (NAIP) data are aerial photos, that can be considered as a reference of the land changes at 440 

0.6 m resolution. The change location and change target maps are derived from MODIS, Landsat, 441 

PlanetScope, and NAIP images, respectively. Changes are detectable when >10% of the pixel 442 

changed. Forest is defined as pixels with >10% coverage of trees, and urban is defined as pixels 443 

with >10% coverage of built areas. None of the changes are detectable from MODIS images (500 m), 444 

but detectable at the other remote sensing images at 0.6-30 m spatial resolutions. Note that due to the 445 
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difference in spatial resolution, the change location and change target maps are all different, 446 

particularly when the pixel size is larger than 30 m.  447 

 448 

Land changes are usually occurring at small scales. When the pixel size is relatively large, pixels 449 

mixed with multiple land cover types happen frequently, and changed areas smaller than the pixel 450 

size are also seen very often. Therefore, a lot of time, land change may only occur on a small fraction 451 

of a pixel (the fraction is a continuous variable), which may not match well with categorical change 452 

maps, such as change/stable (change location) and land cover change (change target) maps (Fig. 6). 453 

Usually, a threshold is introduced to determine whether a pixel has changed or not. For example, in 454 

Hansen et al. (2013), forest change is defined as a pixel with more than 50% change in forest cover 455 

within a pixel. On the other hand, the definition of land cover also plays a major role in determining 456 

whether there is a land cover conversion or not after the change event.  For example, if a forest pixel 457 

is defined as a pixel with more than 10% of tree cover, and grass land is defined as a pixel with more 458 

than 10% of grass cover, land cover conversion from forest to grass will happen only if more than 459 

90% of the trees are removed for a fully forested pixel (Fig. 6). The situation could be different if 460 

some proportion of forest is converted to built-up lands. This is because land cover definition is 461 

usually resources driven, and certain classes will have a higher priority than the other classes in the 462 

classification system (e.g., urban > forest > grass), and when there are multiple cover types present in 463 

the same pixel, it will be labeled as urban or developed even if it covers a small proportion of the 464 

pixel (e.g., > 10%) (Pengra et al., 2020). In this case, if within a fully forested pixel, more than 10% 465 

of trees have been removed, and a new house is established to cover that area, even with the 466 

remaining forest cover slightly less than 90%, this pixel is still considered to have gone land cover 467 

conversion (from forest to urban) (Fig. 6).  468 

 469 

4.3 The temporal issues 470 
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The temporal resolution of a remote sensing system refers to how often the remote sensor records 471 

imagery of a particular area (e.g., Landsat 8 visits the same location every 16 days), and there are 472 

remote sensing systems that can collect observations every minute, hours, daily, weekly, monthly, 473 

and a few years (Jensen, 2009). The temporal resolution of the remote sensing data plays a major role 474 

in determining the change time, improving detection of change location, and at the same time 475 

providing rich information in detection of change process, agent, and target.  476 

 477 

Essentially, more accurate detection of change time could be achieved based on observations of 478 

higher temporal resolutions, as change time can be contained within a narrower time interval, and this 479 

has been echoed by the fact that remote sensing change detection algorithms are using denser time 480 

series (Zhu, 2017). The revisit time of remote sensing data should be shorter than the lasting time of 481 

the change event to be able to detect the change we are interested in, otherwise, these change events 482 

may already be fully recovered before the next visit of remote sensors. For example, with two sensors 483 

working simultaneously, Landsat time series can provide 8 days revisit observations for the same 484 

location if we do not consider observations blocked by cloud, cloud shadow, and snow/ice. For 485 

ephemeral change such as floods that only last a few days, it is less likely to be observed based on 486 

Landsat time series alone (Fig. 7a). In Fig. 7a, we are lucky enough to have one clear Landsat image 487 

located during the flooding, but if it is blocked by clouds, there is no way to detect this kind of 488 

ephemeral changes, even if we used all available Landsat time series. For grassland change (i.e., 489 

abrupt greenness change) caused by climatic variability and forest change caused by beetle 490 

infestation, they can last for a year or multiple years, respectively, and are usually detectable if 491 

annual Landsat observations are used (Fig. 7b-c). Another extreme is that for urban development 492 

related changes (Fig. 7d), they are usually more permanent, and Landsat data that are 5 or 10 years 493 

apart are still able to capture them. Therefore, the minimum temporal resolution required for different 494 
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land change applications is usually quite different, and the denser the time series observations used, 495 

the more accurate in detection of the time and location of change.  496 

 497 

 498 

 499 
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 500 

501 
Fig. 7. The impact of temporal resolution on land change detection. (a) A flood event that lasted for a 502 

few days at central latitude/longitude (41.103/-95.906). Of all the available Landsat observations, 503 

only a single observation can observe this ephemeral event. (b) Climatic variability over grassland 504 

that lasted almost a year at central latitude/longitude (34.838/-117.460). (c) Beetle infestation related 505 

land change that lasted for several years at central latitude/longitude (40.226/-106.064). (d) 506 

Urbanization over forested areas located at latitude/longitude (41.70/-71.57). In each figure, the time 507 

series plot in the upper panel is derived from all available Landsat observations at the center of the 508 

smaller red square of the false color composited images at the lower panel. The change period is 509 

highlighted by the red rectangles in the upper panel and the larger red rectangle surrounding the false 510 

color composited images in the lower panel. The false color composited images are shown in Landsat 511 

SWIR1, NIR, and Red bands, and they are directly comparable because of the same stretch display. 512 

Some of the images have black stripes which are due to the Landsat 7 Scan Line Corrector-off issue. 513 

 514 

 515 
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The use of dense time-series observations could also introduce issues in change detection, as for 516 

ephemeral changes that last for a short time, only observations with temporal resolutions higher than 517 

the time interval of ephemeral changes can capture this kind of land change. Therefore, changes 518 

detected based on the dense time series will be different when remote sensing data of different 519 

temporal resolutions are used, and usually, the denser the time series, the more changes will be 520 

detected. Even if a single remote sensing system is used (e.g., Landsat), the time series may have 521 

different temporal resolutions at different places and at different times due to the overlap of adjacent 522 

swaths, the presence of cloud or snow/ice, and the data acquisition strategies (Brown et al., 2020; 523 

Zhu et al., 2018). For example, Gypsy Moth infestation usually only lasts for one or two months, and 524 

if all available Landsat data is used, we can have around four clear observations (without using 525 

observations from the neighboring path) in two months for most places (assume cloud cover is 50%). 526 

In certain places where two Landsat paths overlap with each other (the overlap areas), we could have 527 

around eight clear observations, and if we use more than four consecutive observations to confirm a 528 

change, this land change can only be detected in the overlap areas (Fig. 8a). The use of overlap path 529 

observations brings new science capability for Landsat data, but also brings inconsistency to the final 530 

land change maps (between the overlap and non-overlap areas). This is particularly problematic for 531 

large-scale remote sensing change products, as large differences in land change patterns will show up 532 

both spatially and temporally. Methods that select data from the same path or adjust the number of 533 

observations to confirm change based on data density could be possible solutions to alleviate this 534 

issue, but it is at the sacrifice of losing the temporal density for certain places, which may lead to 535 

omission errors (Fig. 8b). Moreover, the time-series observations collected at different temporal 536 

density and irregularity can also impact the accuracies of change detection algorithms that reply on 537 

dense time-series observations, making detection accuracy differ for different locations and dates 538 

(Zhang et al., 2021). 539 

 540 
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Additionally, the use of dense time series can create new information or more accurate change 541 

information that the traditional two-date image difference method cannot provide. For example, we 542 

can get to know how this change is occurring or the change process based on the trend of the time 543 

series, the change magnitude, and the duration of the change. The information embedded in the time 544 

series data provides important spectral-temporal information of the pixel and we can extract this 545 

information based on estimated time series model coefficients and statistical metrics to provide a 546 

more accurate classification of change target (Zhu, 2017). These derived spectral-temporal metrics 547 

could even revolutionize the current land cover classification system and bring in new land cover 548 

categories that are continuous in time and embedded with changing conditions, such as greening 549 

urban, young forest, mature forest, declining forest (Zhu and Woodcock, 2014).  Finally, the time 550 

series before, during, and after land change all contain rich spectral-temporal information on the 551 

change agent and could be used as major input for change agent classification.  552 
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 553 

 554 

 Fig. 8. A comparison of change detection results caused by Gypsy Moth damage using two Landsat 555 

paths (or swaths) data and a single path data. (a) Landsat NIR surface reflectance observations at the 556 

center of the red square of the false color composited images on the right (c) at central 557 

latitude/longitude (41.996/-71.669). The blue dots are from the Landsat path #12 and green dots are 558 

from the path #13. The red line is the estimated time series model, and the red circle is the land 559 

surface change captured by the COLD algorithm with six consecutive observations to confirm a 560 

change (Zhu et al., 2020). (b) Land disturbance map created based on the COLD algorithm using 561 

Landsat observations from two paths and a single path (#12). The darker the color, the more recent 562 

the land disturbance detection. (c) The false color composited Landsat images from the path #12 (in 563 

blue outlines) and the path #13 (in green outlines) were shown in SWIR1, NIR, and Red bands, and 564 

they are directly comparable because of the same stretch display. This figure demonstrated that for 565 

places with two Landsat paths coverage, Gypsy Moth damage is possible with the COLD algorithm, 566 

but not possible for places with only a single Landsat path coverage. COLD: COntinuous monitoring 567 

of Land Disturbance. 568 

 569 

In addition to the repeating frequency, the time of day the remote sensing observations are collected 570 

is also helpful for better understanding different facets of land change. For example, most of the time 571 

series we discussed are remotely sensed data collected during the daytime (e.g., around 10 am), 572 
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which relies on the reflected electromagnetic radiation from the sun. There is also satellite data with a 573 

high signal-to-noise ratio that can take images at nighttime, which can provide unique information on 574 

human activities, as most of the nighttime lights are from artificial lights. Time-series nighttime light 575 

data have been widely used to monitor anthropogenic-related land change and usually at a large 576 

scale. However, as there are also other sources of light at night, such as moonlight, aurora, lighting, 577 

the use of dense time series of nighttime light data are still very rare (Wang et al., 2021), and the 578 

densest time series data ever used is still the average monthly or yearly nighttime light observations 579 

(Elvidge et al., 2021; Levin and Noam, 2017). Recently, NASA has created a Black Marble product 580 

that has corrected most of these nonhuman-activity-related light sources and has provided the 581 

potential of using daily nighttime light observations for land change studies (Román et al., 2018).  582 

4.4 The angular issues 583 

The energy recorded by the remote sensing systems contains very specific angular characteristics, 584 

which is a function of illumination source (e.g., Sun for a passive system or the sensor itself for 585 

active systems) angles and the sensor viewing angles, known as the Bidirectional Reflectance 586 

Distribution Function (BRDF) (Schaaf et al., 2002). This bi-directional nature of remote sensing 587 

systems will cause differences in the sensor collected radiance, as well as influence the calculation of 588 

surface reflectance, which are some of the major “noise” sources in detecting change locations (Xin 589 

et al., 2013). Even for some of the sensors that only collect near nadir observations, such as Landsat, 590 

the changes in the solar angles and view zenith angles (mostly for observations collected in overlap 591 

swaths) will still cause large reflectance differences (Qiu et al., 2019a; Zhang et al., 2018), and 592 

potentially lead to omission or commission errors in change detection (Fig. 9a). Fortunately, with 593 

enough remote sensing observations collected at the different view and solar angles within a short 594 

time, this BRDF function can be modeled, and local-noon nadir observation can be estimated for 595 

some coarse resolution satellites, such as MODIS and VIIRS (Liu et al., 2017; Schaaf et al., 2002), 596 
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and these BRDF parameters can help reduce BRDF effect in medium resolution satellites, such as 597 

Landsat and Sentinel-2 (Claverie et al., 2018; Roy et al., 2016). Other solutions such as selecting 598 

observations within the same swath and creating time series models that estimate the solar angle 599 

difference along with vegetation phenology changes can also remove or reduce the BRDF differences 600 

embedded in the satellite data, and in this way, the change pixel can be correctly identified (Fig. 9b) 601 

using a time-series based change detection algorithm (Zhu et al., 2020). It is worth noting that the 602 

angular information can be useful for identifying the target and location of land change, such as 603 

improving land cover classification (Jiao et al., 2011), detecting moving objects such as cloud (Frantz 604 

et al., 2018), aircraft (Liu et al., 2020), and detection of newly built houses (Huang et al., 2020), due 605 

to the inclusion of 3D information.  606 

 607 

Fig. 9. The impact of BRDF on land change detection. (a) Change detection using all observations 608 

collected in overlap paths. The BRDF effect, dominated by the different sensor view angles from two 609 

adjacent paths, results in an omission error. (b) Change detection using all observations in a single 610 

path with minimum view zenith angle. The change caused by climate variability can be successfully 611 

detected when the BRDF effect is reduced in time series observations collected from a single swath. 612 

(c) Landsat Path/Row tiles. The blue and green polygons indicate the Landsat path #41 and #42, 613 

respectively. The center of the red square indicates the location of the time series plots (a) and (b) at 614 

latitude/longitude (38.737/-117.880). This change detection example is generated from all available 615 

Landsat time series and a time-series-based change detection method called COLD (Zhu et al., 2020). 616 

COLD: COntinuous monitoring of Land Disturbance.  617 

 618 

5 Current land change products 619 
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Lots of remote sensing-based land change products have been created, and some of them have been 620 

widely used for a variety of fields, such as environmental sustainability, land management, 621 

biodiversity conservation, and ecosystem health assessment. However, most of these land change 622 

products are only focusing on three facets of land change – the location, time, and target of change 623 

(mostly land cover), and very few products are trying to provide some of the other facets of land 624 

change, such as change agent or change process (Table 1). Most of these products are replying on 625 

medium resolution images (<30 m) and dense time-series observations (e.g., yearly, or monthly, or 626 

even weekly observations).  627 

 628 

Most of the current large-scale land change products are only focusing on a single change target, such 629 

as changes in forest, urban, or water (Table 1). For instance, Hansen et al. (2013) created the 2000-630 

2012 global 30-m forest cover and forest cover change (i.e., forest loss and forest grain) products 631 

based on time series spectral metrics of Landsat data, and a supervised classification approach. The 632 

North American Forest Dynamics (NAFD) project implemented the Vegetation Change Tracker 633 

(VCT) algorithm (Huang et al., 2010) to produce annual forest disturbance maps for the 634 

conterminous United States (CONUS) from 1986 to 2010 based on annual Landsat time series data 635 

(Zhao et al., 2018). Liu et al. (2020) created 30-m Global Annual Urban Dynamics (GAUD) dataset 636 

for providing information on urban expansion and green recovery from 1985 to 2015 based on 637 

existing global urban extent maps and Landsat time series data. European Space Agency (ESA) 638 

produced the Global Human Settlement Layer (GHSL) for multiple years, which can provide new 639 

global spatial information, evidence-based analytics and knowledge describing the human presence 640 

such as built-up area and population distribution on the Earth (Pesaresi et al., 2016). The ESA Global 641 

Surface Water (GSW) dataset provides different facets of the spatial and temporal distribution of 642 

surface water over long time periods at a 30-meter resolution based on 30+year Landsat data, such as 643 

water occurrence for presenting overall water dynamics, water recurrence for describing how 644 
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frequently water returned from one year to another, and water seasonality for capturing the intra-645 

annual dynamics of water surfaces (Pekel et al., 2016). This dataset also includes water occurrence 646 

change intensity maps between two epochs (1984 to 1999, and 2000 to 2020), which can provide 647 

information on where surface water occurrence increased, decreased, or remained the same. In 648 

addition, products of single change agent are available as well, particularly for fire. For example, 649 

Giglio et al. (2018) applied dynamic thresholds of a burn sensitive vegetation index composite data 650 

(derived from daily 500 m MODIS time series) to generate global burned area product, in which the 651 

date of burn area will be provided within each individual MODIS tile with 10 degrees by 10 degrees. 652 

Only a few products can provide information on land change on different kinds of land surfaces. The 653 

National Land Cover Database (NLCD) provides multi-temporal land cover and land cover change 654 

products for CONUS, Hawaii, Alaska and Puerto Rico between 2001 and 2019 for every 2-3 year 655 

interval, based on decadal Landsat data as well as other ancillary datasets (Jin et al., 2019). Using 656 

daily seamless data cubes generated from multi-source remote sensing data, Liu et al. (2021) 657 

generated 30 m resolution global land cover map data for 36 years by combining strategies of sample 658 

migration, machine learning, and spatio-temporal adjustment, which can be used to study global land 659 

change. Among all these products, the newly released Land Change Monitoring, Assessment, and 660 

Projection (LCMAP) product is one of the few land change products that not only can provide 661 

change location and time (e.g., Time of Spectral Change product), change target (e.g., Annual Land 662 

Cover Change product), but also has products on land change process information (e.g., Change 663 

Magnitude, Time Since Last Change, and Spectral Stability Period products), through a suite of ten 664 

LCMAP science products (Fig. 10) (Brown et al., 2020). The list of products also demonstrated the 665 

difficulty of providing information on change agent at large-scales.  666 
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 667 

 668 
 669 

Fig 10. LCMAP Ten Individual Products. This example is derived from LCMAP product version 1.2 670 

in 2010 at Washington state, U.S. LCMAP: Land Change Monitoring, Assessment, and Projection.671 



  

Table 1. A list of current large-scale land change products. Only the most recent literatures are listed here. 672 

Product 

Name 

Coverage Change 

Location 

Change Time 

(Period) 

Change Target Change Process Change 

Agent 

Satellite 

Data 

Citation 

Hansen forest 

change map 

Global 30-meter Annual 

(2000- 2019) 

Forest gain 

Forest loss 

N/A N/A Landsat (Hansen et 

al., 2013) 

Global 

Surface 

Water 

Global 30-meter Intra-annual 

Annual 

(1984-2020) 

Water seasonality 

Water transitions 

Annual water recurrence 

Water occurrence change intensity 

 

N/A Landsat (Pekel et 

al., 2016) 

MODIS 

burned area 

Global 500-

meter 

Day of Year 

(2000-Present) 

Burned area N/A Fire MODIS (Giglio et 

al., 2018) 

NAFD-NEX  CONUS 30-meter Annual 

(1986-2010) 

Forest disturbance N/A N/A Landsat (Zhao et 

al., 2018) 

GHSL Global 30-, 

250-, and 

1000-

meter 

Multiple years  

(1975, 1990, 

2000, and 2014) 

Built-up area N/A N/A Landsat (Pesaresi 

et al., 

2016) 

NLCD United 

States 

30-meter 2-3 years 

(2001-2019) 

Land cover change 

Forest disturbance 

N/A N/A Landsat (Jin et al., 

2019) 

GAUD Global 30-meter Annual 

(1985-2015) 

Urban expansion 

Green recovery 

N/A N/A Landsat (Liu et al., 

2020) 

LCMAP CONUS 30-meter Annual 

Day of Year 

(1985-2019) 

Land cover change 

Land spectral change 

Change magnitude 

Spectral stability period 

Time since last change 

N/A Landsat (Brown et 

al., 2020) 

iMap Global 30-meter Annual 

Seasonal 

(1985-2010) 

Land cover change 

 

N/A N/A Landsat, 

MODIS, and 

AVHRR 

(Liu et al., 

2021) 

Notes: CONUS: COnterminous United States; NLCD: National Land Cover Database; LCMAP: Land Change Monitoring, Assessment, and Projection; GHSL: Global 673 
Human Settlement Layer; GAUD: Global Annual Urban Dynamics; NAFD-NEX: North American Forest Dynamics - NASA Earth Exchange.  674 



  

6 Conclusion and future recommendations 675 

Land change science has made big advancements with the development of remote sensing 676 

technology, and questions of where, when, what, why, and how this change takes place can be fully 677 

evaluated and mapped. We proposed a new concept of the multifaceted view of land change through 678 

the lens of remote sensing and recommended five facets including change location, time, target, 679 

process, and agent. We also discussed the relationship of various kinds of land change terminologies 680 

including spectral change, land surface change, biophysical/biochemical parameter change, land 681 

disturbance, climate change, climate variability, succession, land cover change, land cover 682 

conversion, and land cover modifications, in which large differences were identified among these 683 

terminologies. The impact of spatial, spectral, temporal, and angular domains of the remotely sensed 684 

data on observation, monitoring, and characterization of land change was also evaluated. We 685 

emphasized the importance of selecting the “right” spectral bands and spatial resolution of remote 686 

sensing data for the specific land change problem. We discussed the benefits and challenges when 687 

dense time-series and multi-angle satellite observations are used for observing and characterizing 688 

land change. We also reviewed some of the current land change products, and observed the lack of 689 

products that provide multiple or full land change facets, particularly for the facets of land change 690 

agent and process.  691 

 692 

Therefore, we have a few future recommendations on remote sensing of land change as follows. 693 

First, it is important to recognize the multifaceted nature of land change, and when remote sensing 694 

data are used to study land change, specifying which land change facet is being studied, is usually the 695 

first step. Second, remote sensing-derived land change products reported with all five facets are 696 

highly recommended, as land change can only be fully understood if they are viewed from all 697 

different angles. Third, we think a major shift on the focus from land target change to land process 698 
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and agent change detection are expected in future remote sensing studies, as these two facets are far 699 

less studied in remote sensing community, and why and how global land is changing are some of the 700 

most difficult and important science questions. Fourth, land change science has transitioned into 701 

more complex systems such as land system science (Turner et al., 2021), which requires deeper and 702 

more comprehensive land change information. For example, most of the current remote sensing 703 

change agent products are not detailed enough for social sciences to answer the question of “why”, 704 

and the combined use of socioeconomic data and more integrated social-environment theory could 705 

provide new and deeper insights (Tellman et al., 2020). Finally, we need to recognize that every 706 

remote sensing system has limitations and weaknesses in land change studies, and a thorough 707 

evaluation of all spectral, spatial, temporal, and angular issues is highly recommended.  708 

 709 
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