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Abstract

Phytoplankton stoichiometry modulates the interaction between carbon, nitrogen

and phosphorus cycles, yet most biogeochemical models represent phytoplankton C:N:P

as constants. This simplification has been linked to Earth System Model (ESM) biases

and potential misrepresentation of biogeochemical responses to climate change. Here we

integrate key elements of the Adaptive Trait Optimization Model (ATOM) for phyto-

plankton stoichiometry with the Carbon, Ocean Biogeochemistry and Lower Trophics

(COBALT) ocean biogeochemical model. Within a series of global ocean-ice-ecosystem

retrospective simulations, ATOM-COBALT reproduced observations of particulate or-

ganic matter N:P, and compared to static N:P, exhibited reduced phytoplankton P-limitation,

enhanced N-fixation, and increased low-latitude export, leading to improved consistency

with observations. Two mechanisms together drove these patterns: the growth hypoth-

esis and frugal P-utilization during scarcity. The addition of translation compensation-

differential temperature dependencies of photosynthetic relative to biosynthetic processes-

led to relatively modest strengthening of N:P variations and biogeochemical responses

relative to growth-plus-frugality. Comparison of the multi-mechanism model herein against

frugality-only models suggest that both can capture observed N:P patterns and produce

qualitatively similar biogeochemical effects. There are, however, quantitative response

differences and different responses across N:P mechanisms are expected under climate

change- with the growth rate mechanism adding a distinct biogeochemical footprint in

highly-productive low-latitude regions. These results suggest that variable phytoplank-

ton N:P makes some biogeochemical processes resilient to environmental changes, and

support using dynamic N:P formulations with the ocean biogeochemical component of

next generation of ESMs.

Plain Language Summary

Marine phytoplankton are single-celled photosynthetic organisms that live near the

ocean’s surface, where they absorb carbon dioxide and other nutrients. This exerts a large

influence on ocean chemistry and, through the ocean’s capacity to absorb carbon diox-

ide from the atmosphere, the Earth’s climate. We explored how phytoplankton vary their

requirements (also known as stoichiometry) for two essential nutrients, nitrogen and phos-

phorus, based on environmental conditions, and how that variation affects the export

of carbon from the surface ocean to depth. We found that flexibility in phytoplankton
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stoichiometry makes them use phosphorus more efficiently, driving an increase in car-

bon export. It also stimulates nitrogen fixation, causing an increase in nitrogen avail-

able to phytoplankton. As a result, our simulations predicted significantly less phospho-

rus limitation and more export from low-latitude parts of the ocean, increasing agree-

ment with observations. Flexible phytoplankton stoichiometry changes how marine ecosys-

tems respond to the environment, and understanding how stoichiometry varies is key to

predicting how the ocean will respond to future changes.

1 Introduction1

Marine phytoplankton facilitate carbon (C) sequestration from the atmosphere to2

the deep ocean, forming a crucial part of the biological carbon pump and regulating ocean3

chemistry and global climate. Primary productivity and C-export tightly couple to the4

biogeochemical cycles of nitrogen (N), phosphorus (P), and iron (Fe), because the avail-5

ability of these resources can limit the growth of phytoplankton. The elemental stoichiom-6

etry of phytoplankton, defined as the ratio of C:N:P in the organic matter of their cells,7

helps determine how strongly the C, N, and P cycles interact.8

A prominent and useful paradigm in biological oceanography holds that C:N:P ra-9

tios can be approximated as constants that reflect global means, known as the Redfield10

Ratios (Redfield, 1958), (typically 106:16:1). However, recent observations reveal sys-11

tematic variations of the C:N:P of organic matter, exceeding Redfield in subtropical gyres12

and the tropics and falling below Redfield in high-latitudes (Martiny, Pham, et al., 2013).13

This has consequences for the C-cycle and the response of the oceans to global change,14

impacting relationships between nutrient availability and export, as well as feedbacks that15

depend on physiological mechanisms that regulate C:N:P (Deutsch & Weber, 2012; Gal-16

braith & Martiny, 2015; Moreno et al., 2018).17

Despite recent observations of variations in phytoplankton elemental stoichiome-18

try, Earth System Models (ESMs) rarely capture dynamic C:N:P, with most opting to19

use Redfield ratios or fixed stoichiometry for different phytoplankton size classes (Danabasoglu20

et al., 2020; Séférian et al., 2020). While these models capture many large-scale observed21

biogeochemical patterns, static stoichiometry has been linked to a number of significant22

biases. For example, the relatively comprehensive Carbon Ocean Biogeochemistry and23

Lower Trophic (COBALT) ocean biogeochemical model used in Earth System simula-24
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tions contributed by the Geophysical Fluid Dynamics Laboratory to the 6th Coupled25

Model Intercomparison Project (CMIP6) (J. Dunne et al., 2020; Stock et al., 2020) im-26

posed static characteristic C:N:P ratios for each of three phytoplankton types. This led27

to muted N:P variations and was linked to an over-expression of P-limitation and a sup-28

pression of nitrogen fixation (Stock et al., 2020). Similar issues arose in other ESMs us-29

ing fixed or highly simplified C:N:P ratios (Martiny et al., 2019), leading to a growing30

number of efforts to address this limitation in ESMs (Kwiatkowski et al., 2018; Tanioka31

& Matsumoto, 2017; Long et al., 2021).32

Several mechanisms have been proposed to explain the observed C:N:P patterns33

(Moreno & Martiny, 2018): the growth rate hypothesis holds that rapidly growing cells34

require more P-rich ribosomes (Elser et al., 2000), leading to lower C:N:P in eutrophic35

ecosystems and higher in oligotrophic ones. The translation compensation hypothesis sug-36

gests that the increased efficiency of protein synthesis in warmer waters relative to pho-37

tosynthesis (Devault, 1980) leads to fewer ribosomes and higher C:N:P in warm waters.38

Lastly, the frugality hypothesis postulates that cells decrease their quota of scarce resources,39

causing C:N:P to anti-correlate with phosphate (Galbraith & Martiny, 2015) due to higher40

plasticity of P-quotas compared with C and N. Covariation between observed temper-41

ature, nutrients, and food web structure had previously hindered attempts to disentan-42

gle these mechanisms, discouraging the use of dynamic C:N:P in ESMs. Observational43

advances, however, have facilitated recent papers (Moreno et al., 2018; Kwiatkowski et44

al., 2018; Matsumoto et al., 2020; Pahlow et al., 2020; Bopp et al., 2022; Kwon et al.,45

2022; Chien et al., 2023), which study the centrality of these mechanisms for the cur-46

rent and future controls on carbon export and nitrogen fixation, through both direct changes47

in nutrient utilization and novel interactions driven by differences in C:N:P between ocean48

regions and lateral nutrient transport.49

Future ocean warming may cause an expansion of oligotrophic gyres, with projected50

negative impacts on primary productivity, carbon export, and biomass available for higher51

trophic levels (Bopp et al., 2013; Moore et al., 2018). However, high phytoplankton di-52

versity could enable them to rapidly adapt to warmer, lower nutrient conditions, pos-53

sibly mitigating these expected changes (G. I. Hagstrom & Levin, 2017; Martiny, Hagstrom,54

et al., 2022). Dynamic phytoplankton N:P provides one mechanism whereby plankton55

can buffer against these environmental shifts, however in order to study the potential56
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for this to occur, biogeochemical models need to better capture the adaptive capacity57

of phytoplankton.58

To answer these questions, we integrated elements of ATOM (Adaptive Trait Op-59

timization Model), a trait-based model (Litchman & Klausmeier, 2008) of phytoplank-60

ton C:N:P (C. A. Garcia et al., 2020; Moreno et al., 2018), with the Carbon, Ocean, Bio-61

geochemistry, and Lower Trophics (COBALT) marine ecosystem model (Stock et al., 2014,62

2020). ATOM predicts phytoplankton biomass investments in photosynthesis, biosyn-63

thesis, structure, and storage, using traits to efficiently represent substantial phytoplank-64

ton diversity and to simulate their adaptation to changing conditions. Here, we recast65

ATOM to fit the fixed size classes present in COBALT. We ask the following questions:66

(1) how does a trait-based (or optimality based) model predict both optimal and real-67

ized phytoplankton stoichiometric ratios in the global oceans, (2) how do these stochio-68

metric ratios impact marine ecosystem function and biogeochemical cycling, (3) what69

role do each of the following three mechanisms (growth rate, translation compensation,70

and frugality) play in determining biogeochemical patterns?71

2 Methods72

2.1 COBALT73

The base configuration of COBALT simulates global scale cycles of carbon, nitro-74

gen, phosphorus, iron, silica, calcite, aragonite, and lithogenic materials using 33 trac-75

ers (Stock et al., 2014, 2020). The most pertinent aspect for integration with ATOM is76

the formulation for phytoplankton growth and nutrient uptake, which we describe here.77

COBALT represents three size classes of phytoplankton, a small phytoplankton param-78

eterized to emulate cyanobacteria like Synechococcus and Prochlorococcus, a large phy-79

toplankton parameterized to emulate diatoms, and a diazotroph parameterized to em-80

ulate Trichodesmium (see Fig. 1, upper left). We will denote the differences between phy-81

toplankton types by the subscripts (sp, lp, diazo) for small, large, and diazotroph, in ex-82

pressions where the types have different functional responses. Following Geider (Geider83

et al., 1997), COBALT modeled the growth rate of a phytoplankton population using84

the following expression:85

µ =
Pcm
1 + ζ

(
1 − exp

(
−αPIθIrr
Pcm

))
(1)
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where Pcm is the maximum photosynthesis rate allowed by a given temperature and nu-86

trient concentration, ζ is the cost of biosynthesis, αPI is the Chl-specific initial slope of87

the photosynthesis-irradiance curve, θ is the Chl:carbon ratio, and Irr is the instanta-88

neous irradiance.89

The Chl:carbon ratio depends on the past history of irradiance Irrmem:

θ =
(θmax − θmin)(

1 + θmaxαPI Irrmem

2Pcm

) + θmin. (2)

The Irrmem is calculated based on the past history of irradiance (averaged over the ac-90

tively mixed layer), updated at each time step to provide an estimate of the mean day-91

time irradiance, which is more important for the optimization than the mean 24 hour92

irradiance. Cells also estimate the length of the fraction of the day where irradiance is93

above a low threshold, which is called D.94

In COBALT we assume that Pcm depends on nutrient limitation and temperature

according to:

Pcm = Pcmax exp(κeppleyT )nutlim, (3)

where κeppley is the temperature scaling factor following Eppley (1972), T is measured95

in degrees Celsius, and nutlim is a number between 0 and 1 that depends on nutrient96

concentrations and the internal iron quota via Liebig’s law of the minimum.97

Inorganic nitrogen or phosphorus concentrations, or the internal iron quota, can

limit the growth of the small or large phytoplankton, with modeled competition between

nitrate and ammonium uptake following O’Neill et al. (1989). COBALT chooses a for-

mulation based on Liebig’s Law of the Minimum (von Liebig, 1840), whereby phytoplank-

ton growth rates depend only on the concentration of the most limiting of several dif-

ferent nutrients:

nutlimsp,lp = min
(

(N)lim,(sp,lp) , (PO4)lim,(sp,lp) , (Fe)lim,(sp,lp)

)
, (4)
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Figure 1: COBALT food web model and modifications to incorporate dynamic stoichiom-

etry and ATOM. The diagram on the left hand-side of the figure shows the COBALT

food web model (Stock et al., 2020), illustrating the different tracer pools and the fluxes

between them due to food web interactions and biogeochemical dynamics. The pie-charts

in the COBALT figure qualitatively indicate the different elements that comprise each

pool. A rectangle marks the three phytoplankton pools, which are modeled differently in

ATOM-COBALT. The modifications to the large, small, and diazotrophic phytoplankton

are described in the far right hand side column, which shows the functional response of

large and small phytoplankton to nutrient concentrations (with the x-axis indicating in-

creasing nitrate, ammonium, and phosphate), the response of N:P ratios, and the optimal

trait values for low, medium, and high levels of nutrients. The optimal trait-values are

shown quantitatively using pie-charts, not to be confused with the pie-charts from the

original COBALT figure.
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where (suppressing the subscript for now):

(PO4)lim =
[PO4]

KPO4 + [PO4]
(5)

(Fe)lim =
(QFe:N)2

(QFe:N)2 + (KQFe:N
)2

(6)

(N)lim = (NO3)lim + (NH4)lim (7)

(NO3)lim =
[NO3]

[NO3] +KNO3
+ [NH4]

KNO3

KNH4

(8)

(NH4)lim =
[NH4]

[NH4] +KNH4
+ [NO3]

KNH4

KNO3

(9)

(10)

Diazotrophs fix nitrogen and thus their growth does not depend on nitrogen lim-

itation:

nutlimdiazo = min
(

(PO4)lim,diazo , (Fe)lim,diazo

)
, (11)

however, COBALT allows diazotrophs to take up nitrate and ammonium if at sufficiently

high concentrations, reducing the contribution of nitrogen fixation to their growth. COBALT

defines (N)lim,di using the same mathematical expression as for other phytoplankton types,

and uses it to determine the rate of nitrate and ammonimum uptake:

Jup,NH4,diazo = µdiazo (NH4)lim,diazo (12)

Jup,NO3,diazo = µdiazo (NO3)lim,diazo . (13)

2.2 ATOM98

ATOM (Moreno et al., 2018; C. A. Garcia et al., 2020) is a trait-based (Litchman99

& Klausmeier, 2008) phytoplankton model that uses the principle of optimal resource100

allocation (Shuter, 1979; Smith et al., 2011) to calculate phytoplankton traits- includ-101

ing cell radius, biomass allocations to photosynthesis, biosynthesis, structure, and lux-102

ury phosphorus storage (Fig. 1, right side and bottom). These trait values determine103

modeled phytoplankton cells’ functional response to environmental conditions and C:N:P104

ratio. ATOM models phytoplankton growth rates as limited by the slowest of several dif-105

ferent physiological processes: carbon acquisition, nitrogen acquisition, phosphorus ac-106

quisition, and biosynthesis. Carbon acquisition depends on the level of light and the biomass107

allocation to photosynthesis according to the model published in (Talmy et al., 2013),108

with the exact adaptation to ATOM published in (Moreno et al., 2018) and (C. A. Gar-109
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cia et al., 2020). Nutrient affinity depends linearly on cell radius according to laws gov-110

erning diffusion limited uptake (Purcell, 1977), which determines uptake rates of phos-111

phate and nitrate/ammonium. Luxury phosphorus storage increases hyperbolically as112

a function of environmental concentrations of phosphate. Together, these investments113

and the level of luxury storage determine the macromolecular (proteins, lipids, RNA, car-114

bohydrates, etc) composition of the phytoplankton cell and therefore its elemental sto-115

ichiometry through the ratios of each type of macromolecule.116

ATOM calculates the trait values by assuming that all phytoplankton cells have117

trait values that optimize their growth rate (Shuter, 1979). This (unique) growth opti-118

mum occurs at the trait values which make specific biosynthetic, photosynthetic, and ei-119

ther nitrogen or phosphorus uptake rates equal. ATOM incorporates the growth rate hy-120

pothesis, translation compensation hypothesis, and frugality through the physiological121

mechanisms that give rise to these hypotheses (e.g. optimal radius, investment in P-rich122

biosynthetic apparatus varies across oligotrophic-eutrophic spectrum, different temper-123

ature dependence of physiological processes leads to translation compensation, and lux-124

ury storage captures frugality).125

2.3 Integration of ATOM Stoichiometry with COBALT126

The ATOM-COBALT dynamic stoichiometry model (also referred to herein as sim-127

ply the “dynamic model”) introduced here adds the subcellular resource compartments128

used in ATOM to each phytoplankton type in COBALT. Compared to COBALT-v2 (Stock129

et al., 2020), ATOM-COBALT also adds an additional tracer to each phytoplankton group,130

the phytoplankton phosphorus content. ATOM-COBALT models four trait values for131

each phytoplankton type, calculating each dynamically from environmental conditions132

every time step and using the result to predict the N:P uptake of each phytoplankton133

type. Here we model only dynamics of the N:P ratio due to its greater plasticity (Galbraith134

& Martiny, 2015) and due to the existence of physiological mechanisms which explain135

its variability (Moreno & Martiny, 2018). The traits are allocations of biomass to biosyn-136

thesis (E), carbon fixation (F1), electron transport and light harvesting (F2), and lux-137

ury phosphorus storage Pstor. Together, the carbon fixation and electron transport com-138

partments form the photosynthesis compartment, defined by L = F1 + F2.139
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The units of investments in E and L are specific biomass (Nitrogen per unit Nitro-

gen). The values thus represent a fraction of the overall biomass dedicated to each pur-

pose. We constrain the maximum total investment in E and L, which decreases with cell

radius (therefore different for small, large, and diazotroph) because the cell membrane

and associated structures are typically of fixed thickness and thus have a biomass pro-

portional to the surface area, rather than the volume, of the cell (Shuter, 1979; Toseland

et al., 2013):

Ssp,lp,diazo + E + L ≤ 1, E ≥ 0, L ≥ 0, (14)

where S is the structural investment, and we allow for cells with E + L + S ≤ 1. Here140

Ssp,lp,diazo are constant values characterizing each phytoplankton type, while E and L141

are dynamical variables updated in each grid cell at each time-step. Allowing this sum142

to be less than 1 enables the fixed size classes to exhibit similar responses to those in the143

original ATOM model where the radius trait is part of the optimization. This model fea-144

ture approximates several different aspects of phytoplankton physiology and ecology, in-145

cluding the fixed size classes representing organisms with a range of different cell radii146

or cells increasing their surface area to volume ratio.147

We derive the phytoplankton functional response as a function of the traits, and148

assume that phytoplankton make investments in traits that optimize their growth rate149

(Shuter, 1979). Because each compartment has a different elemental composition, the150

investment in traits will determine the relative uptake of nitrogen and phosphorus, and151

therefore the elemental stoichiometry of each phytoplankton type. This allows the trait-152

based model to encode the physiological and ecological mechanisms determining phy-153

toplankton N:P ratios.154

To derive the functional response in terms of traits, we assume that cells with a155

given set of traits (E,F1,F2) grow at the minimum rate implied by three biochemical156

processes: nutrient acquisition, macromolecule synthesis, and carbon acquisition.157

µ = min (µnut, µsynth, µlight) (15)

We assume that

µnut = Pcmaxnutlim, (16)

where we calculate nutlim using the same functional response in COBALT: a Michaelis-158

Menten function for nitrogen and phosphorus limitation (using (O’neill et al., 1989) to159
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Parameter and Variables Value Units Definition Source

E((sp,lp,diazo)) dynamic none Biosynthesis Investment Modeled

L((sp,lp,diazo)) dynamic none Photosynthesis Investment Modeled

Pstor,(sp,lp,diazo) dynamic gP/gDry P-content of Storage pool Modeled

κeppley 0.063 1/(deg Celsius) T-dependence of biosynthetic machinery (Eppley, 1972)

κphoto 0 to 0.063 1/(deg Celsius) T-dependence of photosynthetic machinery (Raven & Geider, 1988; Devault, 1980)

Pcmax,((sp,lp,diazo)) (1.25, 1.25, 0.5) 1/day Biosynthetic efficiency at 0 Celsius (Geider et al., 1997; Capone et al., 1997)

ζ(sp,lp,diazo) (0.25, 0.25, 0.75) none Carbon cost of synthesis Tuned (Shuter, 1979)

bresp(sp,lp,diazo) (0.03, 0.05, 0.05) 1/day Specific respiration rate at 0 Celsius Tuned (Stock et al., 2014)

k1,0 0.145 1/day Efficiency of carbon fixation machinery 0 Celsius (Talmy et al., 2013)

k2,0 0.333 1/day Efficiency of electron transport chain proteins 0 Celsius (Talmy et al., 2013)

αph,(sp,lp,diazo) (1.972, 0.6573, 0.6573) gC/m2 Carbon specific initial slope of PI curve (Talmy et al., 2013)

LFac 1.2 none Light harvesting investment adjusted factor Tuned

ΦM 1.0e6 gC/µmol photons Quantum Efficiency (Talmy et al., 2013)

PStorMax((sp,lp,diazo)) (0.01, 0.025, 0.01) gP/gDry Maximum luxury phosphorus storage Tuned

Sstruc,((sp,lp,diazo)) (0.4625, 0.2, 0.4625) none Structure Investment Tuned (Shuter, 1979; Toseland et al., 2013)

KNO3,((sp,lp,diazo)) (2.5e− 7, 2.5e− 7, 2.5e− 6) mmolNO3/m
3 Half saturation constant for nitrate (Stock et al., 2014)

KNH4,((sp,lp,diazo)) (5e− 8, 1e− 7, 5e− 7) mmolNH4/m
3 Half saturation constant for ammonium (Stock et al., 2014)

KPO4,((sp,lp,diazo)) (1e− 8, 1e− 7, 1e− 7) mmolPO4/m
3 Half saturation constant for phosphate (Stock et al., 2014)

KPStor,((sp,lp,diazo)) (2.5e− 8, 1e− 6, 1e− 6) mmolPO4/m
3 Half saturation constant for luxury storage Tuned

KQFe,((sp,lp,diazo)) (1.98e− 5, 3.97e− 5, 1.656e− 4) mol Fe/mol N Half saturation constant for internal iron quota (Stock et al., 2014)

NS,(sp,lp,diazo) 0.128 gN/gDry N-content of Structure pool Tuned based on (Sterner & Elser, 2017)

Nprot,(sp,lp,diazo) 0.16 gN/gDry N-content of protein (Sterner & Elser, 2017)

PS,(sp,lp,diazo) (3.5e− 3, 5e− 3, 2e− 3) gP/gDry P-content of Structure pool Tuned based on (Sterner & Elser, 2017)

PE,(sp,lp,diazo) 5e− 2 gP/gDry P-content of Biosynthesis pool Tuned based on (Sterner & Elser, 2017; Toseland et al., 2013)

Table 1: List of model parameters, their definitions, and values. Dynamically calculated

trait values appear in the initial rows.
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capture ammonium and nitrate limitation and uptake) and a functional form based on160

the internal iron quota for iron limitation (Eq. 10).161

Synthesis limitation depends on the investment in biosynthesis:

µsynth = PcmaxE, (17)

and light limitation on the investments in carbon fixation (F1) and electron transport

(F2):

µlight =
Pm

(
1 − exp

(
−αφMF2Irr

Pm

))
− bresp

1 + ζ
. (18)

Here, Pm, the maximum light-limited photosynthesis rate, depends on the investments

in F1 and F2 (see Tab. 1 for parameter definitions and values):

Pm = min (k1F1, k2F2) . (19)

The investment in electron transport proteins F2 is analogous to the Chl:C ratio that162

determines the growth rates in COBALT and in the original Geider formulation(Talmy163

et al., 2013), allowing Chl:C to be calculated from F2 through multiplication by 0.075164

and normalization by the total cellular investment S + E + L.165

For given environmental conditions, we model phytoplankton allocations by assum-166

ing growth rate maximization, which occurs when µnut = µlight = µsynth. We show167

the full details of this solution procedure in Section S2. It involves solving a nonlinear168

equation for the balance between carbon fixation and electron transport proteins (F1 and169

F2) at fixed total photosynthesis investment L, which leads to a linear equation for the170

balance between the overall photosynthesis investment L and the biosynthesis investment171

E. We use an offline routine to solve the non-linear equation and approximate it using172

a Fourier-Chebyshev series, enabling us to efficiently calculate optimal solutions. To ac-173

commodate the diel cycle of irradiance, we adopt an irradiance memory formulation sim-174

ilar to that of COBALT where the cell determines the optimal investment in L based175

on the history of past irradiance (averaged over the actively mixed layer) and an esti-176

mate of the length of the light period, where the optimization assumes constant irradi-177

ance during the light period.178

To calculate phytoplankton N:P we specify the specific N and P content of each179

subcellular compartment and add a luxury P-storage compartment to the model. We180

denote the nitrogen and phosphorus contents of each compartment with parameters (see181
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Tab. 1). NS and PS represent the N and P content of the structure pool in g/g dryWeight.182

Nprot is the average N-content of proteins, which is equal to the N-content of the pho-183

tosynthesis pool because that pool is modeled as containing only proteins. The biosyn-184

thesis pool contains a mixture of proteins and RNA, but the N-content of RNA is nearly185

equal to that of proteins so that one constant (Nprot) is sufficient to describe the N-content186

of both pools. The photosynthesis pool does not contain any P . PE represents the P con-187

tent of the biosynthetic pool, and Pstor is the content of the storage pool with units of188

g/gDryWeight (and hence a dynamic model variable rather than a parameter). Using189

these terms, we can calculate the stoichiometry of a cell using the strategy (E,L) and190

with luxury storage Pstor, by summing the N and P contents of each compartment and191

taking the quotient of the result:192

N:P =
(SNS + (E + L)Nprot) MolP
(EPE + SPS + Pstor) MolN

(20)

Here MolN and MolP are the mass in grams of 1 mole of nitrogen and phosphorus,193

repsectively. The values of the N and P content parameters and the allocation to the struc-194

tural pool S can be derived from cell radius and the macromolecular composition of each195

pool, though these compositions are also uncertain. Here we treat the N and P content196

parameters of each subcellular compartment as fundamental, tunable parameters in the197

model, however, we constrained the choice for these parameters using our knowledge of198

their macromolecular composition (which is quantified more explicitly in several papers199

(Shuter, 1979; Daines et al., 2014; C. A. Garcia et al., 2020; Sterner & Elser, 2017)). Rel-200

ative to the Redfield ratio, the biosynthesis pool is rich in P and the structural and pho-201

tosynthesis pool are poor in P.202

The structure pool S consists of a fraction corresponding to the cell wall; membrane;203

and periplasmic space, and also static components of the cytoplasm (such as DNA, RNA,204

lipids, carbohydrates, and housekeeping proteins). The cell wall and membrane space205

have a fixed thickness, and thus the value of S is inversely proportional to cell radius,206

so that Ssm = Sdi > Slg. The N content of the structure pool is modeled as the same207

for each type, but PS,di < PS,sm < PS,lg to capture the capacity for small phytoplank-208

ton to utilize sulfolipids instead of phospholipids in their cell membranes, and the ten-209

dency for diazotrophs to be highly efficient at P-utilization, enabling them to reach higher210

N:P ratios than other phytoplankton. Phospholipids in small phytoplankton and dia-211

zotrophs are modeled as luxury storage of P.212
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Luxury P storage has slightly different parameterizations in large phytoplankton213

than in diazotrophs and small phytoplankton. In both cases luxury storage increases hy-214

perbolically as a function of phosphate concentrations, but for large phytoplankton the215

overall level of storage is scaled by the total investment so that it is proportional to cy-216

toplasmic volume:217

Pstor,lp =
Pstor,max[P]

KP,stor + [P]
(Slp + Elp + Llp) (21)

Here [P] refers to the ambient concentration of phosphate in the environment.218

For small phytoplankton and diazotrophs, luxury P-storage is parameterized to re-219

flect the P-content in phospholipid membranes, which can be substituted for sulfoquinovo-220

syl diacylglycerol (SQDG) at low phosphorus concentrations (Van Mooy et al., 2006).221

SQDG contains sulfur instead of phosphorus and SQDG substitution reduces phytoplank-222

ton P-quotas. We therefore scale the luxury storage term to be proportional to the size223

of the structure pool, which is the pool in the cell that contains lipid membranes:224

Pstor,sp,di =
Pstor,max[P]

KP,stor + [P]
Ssp,di

The half-saturation constants for luxury storage, KP,stor, are greater than the cor-225

responding half-saturation constant for phosphorus limitation of each type, and the pa-226

rameter Pstor,max, which is the maximum possible level of P-storage, varies between the227

small and large phytoplankton and diazotrophs (see Table 1). In small phytoplankton228

and diazotrophs, these constants correspond to a storage pool represented by membrane229

phospholipids and therefore are smaller than the constant in large phytoplankton, which230

are known to store much greater quantities of phosphorus and reach much lower N:P ra-231

tios in P-rich conditions (Rhee, 1974). The scaling to the level of total investment mod-232

erates the level of luxury storage in environments where iron or nitrogen are highly lim-233

iting.234

The N-content of the biosynthesis and photosynthesis pool are assumed to be the235

same as that of proteins, reflecting the fact that these pools are primarily proteins and236

RNA which have nearly identical N-content. The P-content of biosynthesis pool depends237

on the ratio of ribosomes to proteins in the biosynthetic apparatus, which is a free pa-238

rameter that controls how strongly N:P ratios change with growth rate. The parame-239

ter choice represents an approximate 50% split between ribosomes and other proteins240
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in the biosynthesis apparatus, consistent with other parameterizations (Toseland et al.,241

2013) and with fits of the ATOM model to data (C. A. Garcia et al., 2020). Section S2242

and Figures 3 and S1 show how the optimal strategies vary globally in numerical sim-243

ulations, and how these shifts lead the emergence of model N:P ratios.244

The optimal strategy determines the N:P ratio of nutrient uptake, which causes the

N:P ratio of phytoplankton to approach that of the optimal strategy:

JNO3
= µ

NO3lim

(NO3)lim + (NH4)lim
(22)

JNH4 = µ
(NH4)lim

(NO3)lim + (NH4)lim
(23)

JPO4
=
JNO3

+ JNH4

(N:Popt)
(24)

The Pcmax and bresp parameters depend on temperature exponentially through the

constant κeppley, but a new temperature dependence is introduced through κphoto, al-

lowing for exploration of the translation compensation hypothesis:

k1 = k1,0 exp(κphotoT ), k2 = k2,0 exp(κphotoT ) (25)

Here k1,0 and k2,0 refer to the specific efficiency of the carbon fixation and light245

harvesting proteins at 0 degrees Celsius (Table 1). Irradiance has a substantial impact246

on the temperature dependence of growth rates because κphoto cancels from the right hand247

side of Eq. 18 for small Irr. We illustrate the impact of both irradiance and κphoto on248

modeled growth rates and allocations in Section S3.249

2.4 Alternative Models250

Considerable uncertainty still exists about the relative contribution of the growth251

rate hypothesis, translation compensation, and frugality to phytoplankton elemental sto-252

ichiometry. In order to explore the potential impacts of each of these mechanisms on bio-253

geochemical cycles, we developed a series of alternative models each emphasizing one of254

the physiological mechanisms, as well as a static control model used to understand the255

magnitude of the effects of using dynamic stoichiometry.256

Static Control Model:257
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We developed a static control model which uses the functional response of the ATOM-

COBALT dynamic model but maintains the static ratios used by COBALT:

(N:P)sm = 22, (N:P)lg = 12, (N:P)di = 40

This ensures that the differences between the static control and the fully dynamic ATOM-258

COBALT model arise because of dynamic stoichiometry rather than differences in other259

aspects of the functional response, such as growth rates. Because the functional response260

has changed from the standard COBALT implementation (Stock et al., 2020), simula-261

tions using the static control model may differ from those using standard COBALT.262

Frugal Model: The second alternative is the frugal model, again using the same

functional response as the ATOM-COBALT model but modeling N:P based on the con-

centration of phosphate, following (Galbraith & Martiny, 2015):

(N:P) =
1

3.1 × 10−2 + 4.818 × 104[PO4]

In this model small and large phytoplankton and diazotrophs have the same N:P. Fig-263

ure 1 illustrates this mechanism through the increase in stored P with phosphate.264

Growth Rate Model: The third alternative model is called the growth rate model

and focuses on the growth rate hypothesis, excluding frugality by setting to a constant

the level of luxury-P storage in each of the small, large, and diazotroph types. We mod-

ified the models by setting the stored-P equal to a fraction of the maximum in each type:

Pstor = 0.3Pstor,max

Thus the N:P of each type only varies according to the growth rate. In Figure 1, this mech-265

anism corresponds to the increase in biosynthetic allocation with increased nutrients and266

light.267

Dynamic Plus Translation Compensation Model: The final alternative is

called the dynamic plus translation compensation model (or Dynamic plus Trans. Comp.).

Translation compensation occurs when the temperature dependence of photosynthetic

and biosynthetic processes differ. In the fully dynamic model we assume these depen-

dencies are the same, but in the translation compensation model we make photosynthetic

proteins and pigments temperature independent by setting the exponential constant equal

to 0:

κphoto = 0.0
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We also shift the value of the parameters k1,0 and k2,0 so that they have the same val-

ues as they would in the dynamic model at T = 15 Celsius, which maintains roughly

the same average value of k1 and k2 across the two simulations. After this shift, we have:

k1,0 = 0.37332, k2,0 = 0.8568

This changes both the optimal balance between photosynthetic and biosynthetic invest-268

ments (E and L) and the overall functional response of growth rates to temperature. In269

the translation compensation model, growth rates will be lower in warm waters and higher270

in cold waters compared to the fully dynamic model, assuming identical environmental271

conditions. However, due to the form of Eq. 18 for the photosynthetic functional response,272

the impact of temperature on growth rates becomes irradiance dependent, so that even273

in the dynamic model there is a translation compensation effect under low irradiance con-274

ditions. Section S3 explores thee issues in more detail.275

Observational Data276

We gathered datasets from 36 different cruises and long-term time series sites that277

contained measurements of the N:P of particulate organic matter in the surface ocean278

(Table S1). To avoid biases induced by highly variable sampling frequencies between dif-279

ferent cruises, we binned samples from the top 100m sampled on the same day. Selected280

cruises provide coverage of most ocean regions and biomes, and the majority of data comes281

from recent, intensive GO-SHIP expeditions (Tanioka, Larkin, et al., 2022).282

Numerical Experiments283

We embedded the static control model, the dynamic model, and each alternative284

model within a series of ocean-ice-ecosystem retrospective simulations using the GFDL285

Modular Ocean Model 6 (MOM6) and Sea Ice Simulator 2 (SIS2), using a nominal 0.5◦286

horizontal grid spacing (OM4p5 (Adcroft et al., 2019)). The vertical grid uses 75 ver-287

tical layers in hybrid z?-isopycnal coordinates implemented through an Arbitrary Langrangian-288

Eulerian method that applies the z∗ coordinate near the surface and the isopycnal co-289

ordinates in the ocean interior. The ocean and ice model configurations match those within290

the fully-coupled ESM4.1 model (J. Dunne et al., 2020). Model simulations were forced291

using the Common Ocean-Ice Reference Experiment II (Large & Yeager, 2009), a 60-year292

dataset representing atmospheric forcings from 1948 to 2007. Initial conditions were cho-293

–17–



manuscript submitted to Global Biogeochemical Cycles

sen similar to the fully coupled model (Stock et al., 2020): from World Ocean Atlas 2013294

(WOA13) data for temperature, salinity, oxygen, and dissolved inorganic nutrients (H. E. Gar-295

cia et al., 2013; H. Garcia et al., 2014), and from the Global Ocean Data Analysis Project296

(GLODAPv2) for dissolved inogranic carbon and alkalinity (Lauvset et al., 2016). Ini-297

tial conditions for other tracers were derived from outputs of a previous version of COBALT298

(Stock et al., 2014), and initial conditions for additional tracers corresponding to small,299

large, and diazotroph phosphorus were derived based on assumed constant ratios in each300

pool. We specify external nutrient fluxes including atmospheric NH4 and NO3 deposi-301

tion (Horowitz et al., 2003), Fe deposition from dust (Zhao et al., 2018) using Baker and302

Croot to calculate Fe solubility. Coastal Fe and river nutrients derive from the Global-303

NEWS dataset (Seitzinger et al., 2005), following the prescription in Stock et al.. Five304

model simulations captured 60 years of ocean dynamics, the reported results come from305

climatology computed from the last 20 years of each simulation.306

Biogeographic Analysis307

We defined ocean biomes for biogeographic analyses by dividing the surface grid308

points from numerical simulations into four bins based on latitude and chlorophyll con-309

centrations. The biomes correspond to the subpolar ocean (above 45N/S), mid-latitude310

(between 23.5N/S and 45N/S) high chlorophyll, tropical (between 23.5S and 23.5N) high311

chlorophyll, and oligotrophic (below 45N/S and low chlorophyll), and are calculated sep-312

arately for each simulation. For observational data, we set the boundary between high313

and low chlorophyll to a surface concentration of 0.125mg/m3, following the definition314

in (Polovina et al., 2011). Due to variations in the food web structure in the static and315

dynamic models, we selected distinct chlorophyll thresholds for each model so that the316

total area of high and low chlorophyll areas match the biome definitions in (Polovina et317

al., 2011).318

We classify nutrient limitation by comparing the Liebig factors (see Eq. 10) for N,319

P, and Fe limitation in small phytoplankton (and P and Fe for diazotrophs), weighted320

by productivity to de-emphasize winter periods in polar regions where nutrient limita-321

tion isn’t meaningful. Strong limitation implies that one of the nutrients is substantially322

more limiting than the other two (a difference of Liebig factors of more than 0.2), and323

weak limitation means either that two or more nutrients are very close to equally lim-324

iting, or that the Liebig factor is quite close to 1.325
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Figure 2: Histograms of N:P of exported particulate organic carbon from the ATOM-

COBALT dynamic model, static control model, and observational data at grid points

binned by latitude and chlorophyll, with bins chosen to sort grid points and observational

data according to ocean biome.

3 Results326

3.1 Overall Model Results and Latitudinal Patterns of N:P327

The ATOM-COBALT simulation with dynamic stoichiometry produced a mean328

global N:P value of 21 (spatial average of N:P of export), with a middle 66th percentile329

range of 16.8 to 26.4, consistent with observations (Martiny et al., 2014; Tanioka, Larkin,330

et al., 2022), see Table 2 and Fig. 2. N:P ratios exhibited a strong spatial pattern, with331

low ratios in high-export regions and high ratios in low-export regions, so that the ra-332

tio of total N-Export to total P-Export was 16.4 in the dynamic stoichiometry simula-333

tions, consistent with the Redfield ratio (Fig. 5). Global NPP and total export out of334

the top 100m were also within range, at 53.0PgC/yr and 8.2PgC/yr, respectively, con-335

sistent with observational constraints (Behrenfeld et al., 2005; Kulk et al., 2020; J. P. Dunne336

et al., 2007).337

ATOM-COBALT simulations with dynamic stoichiometry produce N:P ratios with338

more variability than the static control (Figs. 2 and 4A), exhibiting greater consistency339

with observed stoichiometric variations across ocean biomes. Simulations with dynamic340

stoichiometry produced geometric mean N:P ratios that were on average over 30% higher341

than static controls in the subtropical gyres (25.0 versus 18.9, observations are 24.4) and342
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Figure 3: Biomass and productivity weighted average of biosynthesis, photosynthesis, and

total investment trait values in small and large phytoplankton.

20% higher in the high-chlorophyll tropics (20.7 versus 17.4, observations are 20.4), and343

21% higher in the mid-latitude high-chlorophyll regions (19.5 versus 16.1, observations344

are 19.0), with nearly equal values in the high-latitudes (13.8 versus 14.2, observations345

14.2). Outside of the subpolar oceans, where both models had similar mean N:P, the dy-346

namic model was closer to observational data. The dynamic model produced a much larger347

range of values than the static model, both within and across biomes, though neither model348

had as variable a distribution as the observations.349

The strong latitudinal gradients in N:P ratios in the dynamic model reflect the global350

patterns of traits (Figure 3), which show increasing investments in E, L, and S+E+L mov-351

ing from the center of oligotrophic gyres outwards towards more eutrophic areas (Fig.352

3). In low nutrient ecosystems, the structure pool dominates the P-quota, with greater353

contributions from biosynthesis and storage in eutrophic and high latitude regions. Both354

the growth rate hypothesis and the frugality hypothesis thus drive the observed N:P ra-355

tios in the dynamic model.356
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Figure 4: Last 5 years of simulation results from the static and dynamic models, com-

paring N:P of exported particulate organic matter, total exported particulate organic

carbon, water column nitrogen fixation, and nutrient limitation of small phytoplankton

and diazotrophs.
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Measure Static Control Dynamic Obs.

NPP PgC/yr 46.9 53.0 38.8-52.1 (Behrenfeld et al., 2005; Kulk et

al., 2020)

Export PgC/yr 7.5 8.2 5.8-12.9 (J. P. Dunne et al., 2007)

Export N:P 17.3 (15.0, 19.5) 21.0 (16.8,26.1) 20.9 (13.9, 31.4) (Martiny et al., 2014)

(Tanioka, Larkin, et al., 2022)

Plankton Nut. Lim. (0.41 N, 0.23 Fe, 0.36 P) (0.68 N, 0.24 Fe, 0.08 P)

Diazotroph Nut. Lim. (0.37 Fe, 0.63 P) (0.49 Fe, 0.51 P)

Table 2: Global Net Primary Productivity, Carbon Export, and N:P of exported organic

matter (geometric mean of annually averaged N:P at each grid-cell).

3.2 Biogeographic Comparison Between Dynamic and Static Simulations357

Considering patterns of nutrient limitation, the introduction of dynamic N:P sto-358

ichiometry substantially reduced large areas of phosphorus limitation that arose in the359

static-control (see Figure 4B and C, and the ESM4.1 simulation with similar settings (Stock360

et al., 2020)). In the dynamic simulations, N-limitation occurs throughout the North and361

South Pacific subtropical gyres and the eastern half of the tropics, in the entire Indian362

Ocean, and most of the Atlantic Ocean, with the exception of the boundary between the363

North Atlantic subtropical gyre and the high-latitude North Atlantic, which is weakly364

P-limited. Fe-limitation occurs in the traditional High-Nutrient Low-Chlorophyll (HNLC)365

regions. On the other hand, static simulations show large areas of P-limitation, partic-366

ularly near anthropogenic N-inputs or other regions where nutrient supply is enriched367

with N relative to P, such as the entire North Atlantic subtropical gyre and transition368

zones between the Indian and South Pacific subtropical gyres and the Southern Ocean.369

Overall, there is an 79% decrease in the areal extent of P-limitation from 36% in the static370

control to 8% in the dynamic ATOM simulation. A smaller decrease of P-limited areas371

occurred for diazotrophs, by 20% from 75% in the static controls to 61% in the dynamic372

simulations, restricting to latitudes lower than 40◦ where most N-fixation occurs. In the373

static simulations, very little Fe-limitation occurs in the subtropical gyres, in contrast374

to the dynamic simulations where parts of the North and South Pacific subtropical gyres375

have Fe-limited diazotrophs. The greater range of N:P ratios in the fully dynamic sim-376
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ulations increases the N:P supply threshold at which phytoplankton switch from N to377

P limitation.378

The reduction in P-limited areas evident in Fig. 4B and C is accompanied by an379

enhancement in nitrogen fixation (Fig. 4D) in the dynamic simulations. Nitrogen fix-380

ation can occur in ecosystems where the phytoplankton in the surface primarily expe-381

rience N-limitation. N-limitation usually implies that P and Fe are sufficiently replete382

to support a niche for diazotrophs. A portion of the fixed nitrogen is recycled and makes383

further contributions to the productivity of the ecosystem. This surface source allows384

the N:P ratio of export to exceed the N:P ratio in the nutrient supply from deep waters.385

Consistent with the observation that the fully dynamic model had reductions in areas386

of P-limitation, overall nitrogen fixation in this simulation was approximately 100% higher387

than in the static controls, 171 Tg N/yr compared with 90 Tg N/yr. This increase brings388

predictions more closely in line with observations (Table 3). We observed this broadly389

across low-latitude regions, including the tropical and subtropical Atlantic, the Indian390

Ocean, and the Western Pacific. In total, the overall increases in N-fixation in subtrop-391

ical gyres was 170% and in tropical and low-latitude coastal ecosystems was 70%. A de-392

crease in N-fixation compared with the static simulations occurred in the HNLC East-393

ern Equatorial Pacific (see also Fig. 7A).394

Dynamic stoichiometry caused an increase in export, driven primarily by the re-395

laxation of P-limitation of diazotrophs and phytoplankton in the subtropics and trop-396

ics (Fig. 4E). The change in export roughly parallels the changes in both N:P ratios and397

nitrogen fixation, suggesting that a shift to higher N:P and the resulting increase in ni-398

trogen availability from diazotrophs explains increases in export. Overall, export increased399

by 10% in the dynamic simulations compared to control, driven by a 14% increase in the400

tropical and low-latitude coastal ecosystems and a 30% increase in subtropical gyres, bring-401

ing estimates from ATOM-COBALT more in line with observations (Emerson, 2014).402

3.3 Biogeochemical Fingerprints of Stoichiometry Drivers403

Comparison between the dynamic simulation and the alternative stoichiometry model404

simulations revealed the biogeochemical imprint of each modeled physiological mecha-405

nism influencing N:P ratios (Figs. 5-8). Three fundamental patterns emerged: (1) fru-406

gality decreases P-limitation more strongly than the growth rate hypothesis mechanism,407
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Source Global N-fixation (TgN/yr)

Luo et al., 2012 (Luo et al., 2012) 137

Großkopf et al., 2012 (Großkopf et al., 2012) 177

Tang et al., 2019 (Tang et al., 2019) 197.1

Wang et al., 2019 (Wang et al., 2019) 163.2

Dynamic Model (this work) 184

Static Model (this work) 92

Dynamic w. Trans. Comp. (this work) 194

Growth Rate (this work) 171

Frugal Model (this work) 233

Table 3: Observationally derived estimates of global N-fixation compared to model simu-

lations.

Figure 5: Difference of N:P ratios of exported organic matter between all dynamic stoi-

chiometry models and static model (red means dynamic model had greater N:P) over the

last 5 years of model simulations.
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Model Global Oligotrophic Low-Lat HC Mic-Lat HC High Lat

Static Control 14.9 18.3 16.4 15.9 13.6

ATOM-COBALT 16.4 (+1.5) 24.2 (+5.9) 19.2 (+2.8) 19.9 (+4.0) 13.1 (-0.5)

Growth Rate 16.2 (+1.3) 22.8 (+4.5) 18.6 (+2.2) 18.7 (+2.8) 14.3 (+0.7)

Frugal 17.6 (+2.7) 23.9 (+5.6) 20.2 (+3.8) 20.8 (+4.9) 14.1 (+0.5)

Dynamic w. Trans. Comp. 16.7 (+1.8) 24.5 (+6.2) 20.1 (+3.7) 19.9 (+4.0) 12.7 (-0.9)

Table 4: Mean Export N:P of alternative models in different ocean biomes and discrep-

ancy from static control model.

Model N-Lim P-Lim Fe-Lim

Static Control Phyto. 0.41 0.23 0.36

Dynamic Phyto. 0.68 0.24 0.08

Growth Rate Phyto. 0.62 0.25 0.13

Frugal Phyto. 0.73 0.25 0.02

Dynamic w. Trans. Comp. Pyto. 0.65 0.25 0.10

Static Control Diazo. 0.37 0.63

Dynamic Diazo. 0.49 0.51

Growth Rate Diazo. 0.49 0.51

Frugal Diazo. 0.61 0.39

Dynamic w. Trans. Comp. Diazo. 0.51 0.49

Table 5: Global fractions of nutrient limitation of phytoplankton and diazotrophs in the

static control model, dynamic model, and all alternative models.

driving comparatively higher N-fixation and export; (2) the Growth Rate Hypothesis mech-408

anism produces stronger gradients in N:P between eutrophic coastal and tropical regions409

and oligotrophic subtropical regions, which has a large impact on nitrogen fixation pat-410

terns; and (3) the dynamic model with translation compensation causes little change in411

the N:P ratio and other large scale biogeochemical patterns compared to the dynamic412

model.413
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Figure 6: Nutrient limitation of primary productivity in small phytoplankton (top half)

and diazotrophs (bottom half), across all dynamic model simulations. Right hand column

shows global areal extent of different types of nutrient limitation.
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All dynamic stoichiometry models produced qualitatively similar “first order” bio-414

geographic patterns, with elevated N:P in oligotrophic gyres and reduced N:P in high-415

latitude and productive mid- and low-latitude regions (Figure 5 and Table 4). The growth416

rate model and frugal model, however, exhibited distinct second order patterns (Figure417

5B and D). The frugal model shows weaker gradients in N:P across low and mid latitude418

ecosystems, but has the largest shift from the mid to high latitudes, reflecting patterns419

of phosphate concentrations. In the growth rate model (and also the dynamic and dy-420

namic with translation compensation models, which incorporate the growth rate hypoth-421

esis), the growth rate mechanism enhances N:P contrast between oligotrophic and eu-422

trophic ecosystems, but has a weaker impact in high-latitude ecosystems. Figure S4 di-423

rectly shows the difference in N:P ratios between the frugality and growth rate models.424

The frugal model produces higher N:P in oligotrophic gyres and in productive regions425

without excessive P, primarily productive regions that are not HNLC. The growth rate426

model has higher N:P ratios in HNLC areas, where luxury-P storage is at it’s greatest.427

The dynamic model and the dynamic model with translation compensation implement428

both the growth rate and frugality mechanisms and show both greater and more con-429

sistent N:P gradients between biomes than either the growth rate or frugal model. All430

models produce higher N:P ratios than the static control in low- and mid-latitude biomes,431

but in the high-latitudes biome the N:P ratios of all alternative models are closer to the432

controls and the static and translation-compensation model have lower N:P.433

These shifts in N:P ratios across models drive divergent biogeochemical outcomes:434

N-fixation (Fig. 7) and export (Fig. 8) increase in all alternative models, with the largest435

increase in the frugal model and the smallest in the growth rate model. Nitrogen fixa-436

tion increased by 100% in the dynamic model, 85% in the growth rate model, 153% in437

the frugal model, and 110% in the translation compensation model (Table 3). Carbon438

export followed trends in nitrogen fixation, increasing by 0.74 PgC/yr in the dynamic439

and growth-rate models, 1.13 PgC/yr in the frugal model, and 1.05 PgC/yr in the trans-440

lation compensation model (Table 6). The magnitude of nitrogen fixation in each sim-441

ulation corresponds to the magnitude of N:P ratios, and in particular the frugal model442

generated both high N:P ratios and high nitrogen fixation rates in low- and mid-latitude443

productive regions, suggesting that P-sparing caused in ecosystems where P is low but444

non-limiting increases the niche size for diazotrophs. Conversely, less efficient P-utilization445
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Figure 7: Differences between water column nitrogen fixation rates in dynamic model

simulations and the static model averaged over the last five years of simulations. Right

hand column shows globally integrated anomalies.

in the growth-rate model decreases nitrogen fixation in the low-P Atlantic and Indian446

oceans as well as the western Pacific subtropical gyre.447

Higher N:P ratios (partially mitigated by increases in N-fixation) manifested in de-448

clines in the areal extent of P-limitation across the simulations for bulk phytoplankton449

where the area declined from 30% in the static model to 8% in the dynamic model, 12%450

in the growth rate model, 2% in the frugal model, and 10% in the dynamic with trans-451

lation compensation model (Fig. 6). Diazotroph nutrient limitation patterns also shifted,452

declining from 63% P-limited in the static control to 51% in the dynamic model, 51%453

in the growth rate model, 39% in the frugal model and 49% in the dynamic with trans-454

lation compensation model. N:P dynamics due to both growth rate and frugal P utiliza-455

tion drove large declines in P-limitation, but the suppression of P-limitation in the fru-456

gality model was strongest, due to decreased P-export in ecosystems with low but non-457

limiting P in those simulations.458

The dynamic model with translation compensation caused quantitatively similar459

biogeographic patterns to the dynamic model, despite the two models predicting strongly460

different N:P ratios across a temperature gradient in otherwise static environmental con-461

ditions (Fig. S3). Translation compensation causes the optimal ratio of biosynthetic to462
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Figure 8: Differences between carbon export between dynamical model simulations and

the static model averaged over the last five years of simulations. Right hand column

shows globally integrated anomalies.

Model Global Export (PgC/yr)

Static Control 7.5

Dynamic 8.2 (0.7)

Growth Rate 8.2 (0.7)

Frugal 8.6 (1.1)

Dynamic w. Trans. Comp. 8.5 (1.0)

Table 6: Globally Integrated Carbon export in the Static Control model, the Dynamic

model, and all alternative models. Anomaly from Static Control reported in parentheses.
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photosynthetic machinery (E:L) to decrease with temperature (Eqns. S2 and S4), mak-463

ing N:P increase with temperature. However, translation compensation also reduces the464

temperature dependence of phytoplankton maximum growth rates due to the decreased465

E:L at higher temperatures, which leads to smaller investments in E at maximum growth466

rates. This resulted in interactive effects which decreased the impact of temperature on467

realized N:P, N-fixation, and export. We explore this effect in greater detail in Section468

S3 and revisit in the Discussion.469

4 Discussion470

Here we showed that nutrient cycles and biogeochemical processes depend sensi-471

tively on phytoplankton elemental stoichiometry. Phytoplankton N:P determines how472

strongly phytoplankton couple elemental cycles, influencing nutrient controls on phyto-473

plankton growth, N-fixation, and ultimately export. The ATOM-COBALT dynamic model474

simulations exhibited reduced P-limitation and increased N-fixation rates, supporting475

the potential for more widespread implementation of dynamic stoichiometry to improve476

the representation of these processes in ESMs. The dynamic model allowed for greater477

variation of N:P, decreasing P-utilization across low-latitude regions, and in particular478

P-deplete regions such as the subtropical North Atlantic or coastal regions near high an-479

thropogenic N-inputs, leading to a decline in P-limitation and greater availability of P480

for diazotrophs. Resource ratio theory and the Redfield paradigm suggest that when the481

N:P of inorganic nutrient supply is lower than the N:P of phytoplankton, there is a niche482

for diazotrophs which add new N and deplete available P (Lenton & Watson, 2000). Higher483

N:P in oligotrophic ecosystems therefore increases the size of the niche for diazotrophs,484

causing increased N-fixation and ultimately export compared to static models.485

Phytoplankton frugality, the growth rate hypothesis, and translation compensa-486

tion each provide a physiological mechanism that quantitatively explains observed N:P487

ratios (Galbraith & Martiny, 2015; Yvon-Durocher et al., 2015; Klausmeier et al., 2004),488

however, these mechanisms can also cause ecosystem functions to have different sensi-489

tivity to environmental drivers and lead to different biogeochemical outcomes. Our sim-490

ulations comparing the alternative models elucidated the specific impacts of each mech-491

anism. The frugality and growth rate models respond differently to concentrations of non-492

limiting nutrients. Non-limiting nutrient concentrations do not impact growth rate and493

thus have no effect on the contribution of the growth rate hypothesis to N:P in any model.494
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On the other hand, the frugality mechanism causes N:P to increase whenever P decreases,495

whether or not P limits phytoplankton. This resulted in more P-availability in the fru-496

gality model, and less in the growth rate model, decreasing P limitation and increasing497

both N-fixation and carbon export in the frugality model compared with all other mod-498

els.499

Although the growth rate and frugality hypotheses produced qualitatively similar500

biogeographic patterns, the enhanced N:P ratios that occur in productive ecosystems in501

the frugal model caused large differences in N-fixation patterns and both total N-fixation502

and C-export. N:P observations cannot yet fully disentangle these distinct mechanisms,503

and models using frugality (or other single factors) alone can reproduce the lowest or-504

der global distribution of N:P ratios when fit to data. Our simulations provide some ev-505

idence that the frugal model is partially aliasing stoichiometric patterns driven by vari-506

ations in N:P ratios driven by the growth hypothesis, and the high N:P produced by the507

frugal model in low- and mid-latitude eutrophic ecosystems and the sub-polar North At-508

lantic suggest that the growth rate hypothesis is needed to fully capture the dynamics509

of phytoplankton N:P and their implications for biogeochemistry. More observations of510

N:P and comparisons with simulation are needed to fully resolve this issue.511

Several studies have identified a positive relationship between temperature and phy-512

toplankton N:P (Martiny, Pham, et al., 2013; Yvon-Durocher et al., 2015), leading to513

suggestions that temperature driven changes in N:P will moderate expected declines in514

export in response to anthropogenic warming (Moreno et al., 2018; Martiny, Hagstrom,515

et al., 2022). Adding translation compensation to the dynamic model showed only very516

modest shifts in N:P and export. The deviation of the dynamic model with translation517

compensation simulation from our expectations based solely on N:P ratios may have been518

caused by shifts in the functional response of phytoplankton to temperature under trans-519

lation compensation.520

In the dynamic with translation compensation model, the kinetics of the photo-521

synthetic machinery does not change with temperature, (achieved by setting κphoto =522

0), which leads to cell growth rates exhibiting a flatter temperature dependence than in523

dynamic model (see Fig. S2), because the rate coefficients of both the biosynthetic and524

photosynthetic compartments contribute to the overall cell growth rate. This altered de-525

pendence increases the competitive abilities of phytoplankton in cold waters and decreases526
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them in warm waters, with the discrepancy between the two models greatest when light527

and nutrients are abundant. The increased growth rate of phytoplankton in cold waters528

caused the translation compensation model to generate higher export from high-latitude529

ecosystems despite the reduced N:P ratios there. Thus, the contrasting effect of trans-530

lation compensation on growth rates and N:P make it unclear what how this mechanism531

would affect biogeochemistry in a warmer or colder ocean (e.g. under anthropogenic warm-532

ing or a glacial/interglacial transition), which are important questions that requires fur-533

ther study. The outcome of the dynamic with translation compensation model also shows534

the importance of using mechanistic models within self-consistent, biogeochemical sim-535

ulations, as the result was dependent on how the temperature dependence of biochem-536

ical processes in the cell impact different organism level functional responses (for exam-537

ple comparing to the box-model based studies of translation-compensation in Moreno538

et al. (2018)).539

Our simulations are consistent with both field observations that show mean phy-540

toplankton N:P ratios (21:1 (Tanioka, Larkin, et al., 2022)) exceed the traditional Red-541

field ratio and global hydrographic observations which show that below the surface ni-542

trate and phosphate concentrations scatter around a 16:1 regression line (Sarmiento &543

Gruber, 2006). Although N:P ratios exceed Redfield throughout most of the ocean, ex-544

port in the ocean is skewed to regions with lower N:P ratios which causes the ratio of545

total exported PON to total exported POP to fall below the mean N:P of phytoplank-546

ton. It has been hypothesized (Redfield, 1958; Tyrrell, 1999) that the Redfield ratio is547

an optimal or even fundamental aspect of phytoplankton physiology, leading to home-548

ostatic control of marine nitrogen cycling, but observations showing a significant devi-549

ations away from this ratio (Martiny, Pham, et al., 2013; DeVries & Deutsch, 2014; Teng550

et al., 2014; Tanioka, Larkin, et al., 2022) suggests that the emergence of the Redfield551

ratio and the ultimate regulation of the nitrogen cycle is more complex.552

The qualitative distribution of macronutrients and nitrogen fixation of the dynamic553

N:P simulation are analogous to that of TOPAZ, the biogeochemical model part of GFDL’s554

ESM2M and ESM2G, which included a dynamic N:P formulation (J. P. Dunne et al.,555

2013). TOPAZ implemented aspects of the growth rate hypothesis through varying al-556

locations to ribosomes following Klausmeier et al. and elements of frugality through lux-557

ury phosphorus uptake, only in the large phytoplankton size class. Here, we have sig-558

nificantly advanced previous formulations by taking advantage of improved global data-559
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sets and understanding of the physiological mechanisms and quantitative allocations that560

contribute to cellular N:P ratios (Daines et al., 2014; Moreno et al., 2018; C. A. Garcia561

et al., 2020). While there are numerous differences between TOPAZ and ATOM-COBALT,562

TOPAZ simulations produced robust global nitrogen fixation levels similar to those seen563

in our dynamic model. As shown in our results, such a response can emerge from both564

growth and frugality dynamics, suggesting that the formulation differences do not fun-565

damentally shift this basic response. Similarly, several other dynamic N:P formulations566

which use empirical relationships to predict N:P from environmental conditions also achieve567

comparable large-scale macronutrient distributions, robust nitrogen fixation patterns,568

and resilience to excess P limitation (Kwiatkowski et al., 2020; Tagliabue et al., 2021;569

Bopp et al., 2022; Kwon et al., 2022).570

4.1 Model Limitations571

The ATOM-COBALT model framework has several key limitations. In order to har-572

monize ATOM and COBALT, we had to simplify ATOM and adapt it to the two size573

class structure of COBALT. The cell radius trait impacts ATOM’s predicted N:P ratios574

and also enables calculation of a single optimal strategy in all environmental conditions.575

Predicted N:P in ATOM-COBALT thus depends on both the food-web dynamics, which576

sets the balance between small and large phytoplankton, but also on the ATOM imple-577

mentation within each size class which includes an implicit assignment of a cell radius578

to each type. Model tuning used the original ATOM parameters as a starting point and579

was adjusted using idealized, zero-D food web simulations to ensure that each size class580

produced a range of N:P consistent with observations. ATOM-COBALT could be im-581

proved through a model-fitting procedure that used simulations and incorporated ad-582

ditional observations beyond N:P ratios, however this is a computationally and concep-583

tually challenging task that will be taken up in future work. ATOM-COBALT also as-584

sumes that phytoplankton C:N ratios are static. Greater plasticity of N:P compared with585

C:N (Sterner & Elser, 2017; Tanioka, Larkin, et al., 2022) and the existence of several586

mechanistic explanations for N:P variations (Klausmeier et al., 2004; Moreno & Mar-587

tiny, 2018) provided justification for this assumption. However, systematic C:N varia-588

tions increasingly appear in observations (Tanioka, Larkin, et al., 2022; Tanioka, Gar-589

cia, et al., 2022; Martiny, Vrugt, et al., 2013) and C:N variation may be an important590

biogeochemical driver (Inomura et al., 2022). Assuming static C:N could cause biases591
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compared with observations in certain ocean regions where C:N shows greater variation.592

For instance, the recent GO-SHIP P18 (Lee et al., 2021), IO9N (C. A. Garcia et al., 2018),593

and IO7N (Tanioka, Garcia, et al., 2022) expeditions all observed regions of relatively594

muted N:P variations combined with enhanced C:N variations. Incorporating dynamic595

phytoplankton C:N requires better understanding of the physiological and environmen-596

tal drivers behind its variation.597

4.2 Global Implications and Conclusions598

Our results have implications for our understanding of how the oceans will respond599

to anthropogenic perturbations such as global warming or eutrophication. Increasing strat-600

ification is expected to reduce nutrient supplies to the surface ocean, leading to declines601

in productivity, export, and phytoplankton biomass, which are also predicted to limit602

the carbon available for higher trophic levels (Bopp et al., 2013). Dynamic N:P provides603

a mechanism for phytoplankton productivity, biomass, and export to be more resilient604

to declines in nutrient supply, through the more efficient use of P in oligotrophic ecosys-605

tems increasing export. We saw this increased resilience in the dynamic N:P simulations606

where productivity and export were enhanced in the subtropical gyres compared to the607

static control. These results are consistent with estimates from inverse models (Teng et608

al., 2014; DeVries & Deutsch, 2014), oxygen utilization in the thermocline (Emerson, 2014),609

and an emerging perspective of phytoplankton resilience to oligotrophic conditions (Martiny,610

Hagstrom, et al., 2022). Some model simulations which incorporate greater phytoplank-611

ton flexibility show a muted (Kwiatkowski et al., 2020; Tagliabue et al., 2021; Bopp et612

al., 2022) or even reversed (Kwon et al., 2022) (increased NPP under warming) response613

of the carbon cycle to future conditions. Together, these results suggest that phytoplank-614

ton adaptation to changing environmental conditions influences ocean biogeochemical615

dynamics through changes in stoichiometry.616

The reduction of P-limitation in dynamic simulations could change the sensitiv-617

ity of the carbon cycle to nutrient additions. Anthropogenic N-inputs can increase pro-618

ductivity in coastal regions (Rabalais et al., 2002), but in static simulations, particularly619

with N:P ratios as chosen in ESM4.1, these areas rapidly transition to P-limitation, lim-620

iting the potential impact on productivity. In dynamic simulations, increases in the N:P621

ratio allows for N-limitation to persist at much higher resource supply ratios, which may622

cause more rapid uptake of externally supplied nutrients. Eutrophication of coastal wa-623
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ters and the subsequent expansion of hypoxic and anoxic regions have been a consequence624

of increased industrialization and are predicted to accelerate in a warming ocean, due625

to a combination of stratification, reduced oxygen saturation at the surface, and increased626

respiration in warmer waters (Penn & Deutsch, 2022; Rabalais et al., 2002). By better627

resolving nutrient limitation patterns, dynamic simulations can improve predictions of628

how phytoplankton mediate the interactions between eutrophication, deoxygenation, and629

warming. Declines in P-limitation also extended to diazotrophs in dynamic simulations,630

leading to a balance between areas of P- and Fe-limitation. Over long time scales, the631

supply rate of the nutrient limiting diazotrophs exerts strong controls on the nitrogen632

cycle and ultimately primary productivity (Redfield, 1958). Phytoplankton N:P helps633

determine these nutrient limitation patterns and thus is essential for modeling biogeo-634

chemistry at global scales. Capturing long-term N-cycle feedbacks has been a challenge635

in ESMs, and the large increase in N-fixation triggered by dynamic N:P confirms the-636

oretical work suggesting these ratios are critical for modeling the N-cycle.637

Our findings here reinforce the idea that variations of phytoplankton elemental sto-638

ichiometry are key drivers of marine biogeochemical cycles and that by incorporating these639

variations, we may be able to improve the fidelity of ESM simulations. We also showed640

that it is important to reduce uncertainty about the physiological mechanisms that lead641

to variations in phytoplankton N:P as these mechanisms lead to different responses on642

both regional and global scales. Going forward, we suggest tighter integration of labo-643

ratory and global studies of phytoplankton N:P with ESM development.644
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abue, A. (2022). Diazotrophy as a key driver of the response of marine net677

primary productivity to climate change. Biogeosciences, 19 (17), 4267–4285.678

Bopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P., Gehlen, M., . . . Se-679

ferian, R. (2013). Multiple stressors of ocean ecosystems in the 21st century:680

projections with CMIP5 models. Biogeosciences, 10 , 6225–6245.681

Capone, D. G., Zehr, J. P., Paerl, H. W., Bergman, B., & Carpenter, E. J. (1997).682

Trichodesmium, a globally significant marine cyanobacterium. Science,683

276 (5316), 1221–1229.684

Charpy, L., Dufour, P., & Garcia, N. (1997). Particulate organic matter in six-685

–36–



manuscript submitted to Global Biogeochemical Cycles

teen Tuamotu atoll lagoons (French Polynesia). Marine Ecology Progress Se-686

ries, 151 , 55–65.687

Chien, C.-T., Pahlow, M., Schartau, M., Li, N., & Oschlies, A. (2023). Effects of688

phytoplankton physiology on global ocean biogeochemistry and climate. Sci-689

ence Advances, 9 (30), eadg1725.690

Clemente, T. M., Ernst, J., Fong, A., Updyke, B., Viviani, D., Weersing, K., . . .691

Karl, D. (2010). SUPER HI-CAT: Survey of Underwater Plastic and Ecosys-692

tem Response between Hawaii and California. In Proceedings from the 2010693

AGU Ocean Sciences Meeting.694

Copin-Montegut, C., & Copin-Montegut, G. (1978). The chemistry of particu-695

late matter from the south Indian and Antarctic oceans. Deep Sea Research,696

25 (10), 911–931.697

Copin-Montegut, C., & Copin-Montegut, G. (1983). Stoichiometry of carbon, nitro-698

gen, and phosphorus in marine particulate matter. Deep Sea Research Part A.699

Oceanographic Research Papers, 30 (1), 31–46.700

Daines, S. J., Clark, J. R., & Lenton, T. M. (2014). Multiple environmental controls701

on phytoplankton growth strategies determine adaptive responses of the N:P702

ratio. Ecology letters, 17 (4), 414–425.703

Danabasoglu, G., Lamarque, J.-F., Bacmeister, J., Bailey, D., DuVivier, A., Ed-704

wards, J., . . . others (2020). The community earth system model ver-705

sion 2 (CESM2). Journal of Advances in Modeling Earth Systems, 12 (2),706

e2019MS001916.707

Deutsch, C., & Weber, T. (2012). Nutrient ratios as a tracer and driver of ocean bio-708

geochemistry. Annual Review of Marine Science, 4 (1), 113–141.709

Devault, D. (1980). Quantum mechanical tunnelling in biological systems. Quarterly710

reviews of biophysics, 13 (4), 387–564.711

DeVries, T., & Deutsch, C. (2014). Large-scale variations in the stoichiometry of712

marine organic matter respiration. Nature Geoscience, 7 (12), 890–894.713

Dietze, H., Oschlies, A., & Kähler, P. (2004). Internal-wave-induced and double-714

diffusive nutrient fluxes to the nutrient-consuming surface layer in the olig-715

otrophic subtropical North Atlantic. Ocean Dynamics, 54 , 1–7.716

Dunne, J., Horowitz, L., Adcroft, A., Ginoux, P., Held, I., John, J., . . . others717

(2020). The GFDL Earth System Model version 4.1 (GFDL-ESM 4.1): Overall718

–37–



manuscript submitted to Global Biogeochemical Cycles

coupled model description and simulation characteristics. Journal of Advances719

in Modeling Earth Systems, 12 (11), e2019MS002015.720

Dunne, J. P., John, J. G., Shevliakova, E., Stouffer, R. J., Krasting, J. P., Malyshev,721

S. L., . . . others (2013). GFDL’s ESM2 global coupled climate–carbon earth722

system models. Part II: carbon system formulation and baseline simulation723

characteristics. Journal of Climate, 26 (7), 2247–2267.724

Dunne, J. P., Sarmiento, J. L., & Gnanadesikan, A. (2007). A synthesis of global725

particle export from the surface ocean and cycling through the ocean interior726

and on the seafloor. Global Biogeochemical Cycles, 21 (4).727

Elser, J., Sterner, R. W., Gorokhova, E., Fagan, W., Markow, T., Cotner, J. B., . . .728

Weider, L. (2000). Biological stoichiometry from genes to ecosystems. Ecology729

Letters, 3 (6), 540–550.730

Emerson, S. (2014). Annual net community production and the biological carbon731

flux in the ocean. Global Biogeochemical Cycles, 28 (1), 14–28.732

Eppley, R. W. (1972). Temperature and phytoplankton growth in the sea. Fish.733

Bull., 70 (4), 1063–1085.734

Fichaut, M., Garcia, M., Giorgetti, A., Iona, A., Kuznetsov, A., Rixen, M., &735

Group, M. (2003). MEDAR/MEDATLAS 2002: A Mediterranean and Black736

Sea database for operational oceanography. In Elsevier oceanography series737

(Vol. 69, pp. 645–648). Elsevier.738

Galbraith, E. D., & Martiny, A. C. (2015). A simple nutrient-dependence mecha-739

nism for predicting the stoichiometry of marine ecosystems. Proceedings of the740

National Academy of Sciences, 112 (27), 8199–8204.741

Garcia, C. A., Baer, S. E., Garcia, N. S., Rauschenberg, S., Twining, B. S., Lomas,742

M. W., & Martiny, A. C. (2018). Nutrient supply controls particulate elemen-743

tal concentrations and ratios in the low latitude eastern Indian Ocean. Nature744

communications, 9 (1), 4868.745

Garcia, C. A., Hagstrom, G. I., Larkin, A. A., Ustick, L. J., Levin, S. A., Lomas,746

M. W., & Martiny, A. C. (2020). Linking regional shifts in microbial genome747

adaptation with surface ocean biogeochemistry. Philosophical Transactions of748

the Royal Society B , 375 (1798), 20190254.749

Garcia, H., Locarnini, R., Boyer, T., Antonov, J., Baranova, O., Zweng, M., . . .750

Johnson, D. (2014). World Ocean Atlas 2013, Volume 4: Dissolved Inorganic751

–38–



manuscript submitted to Global Biogeochemical Cycles

Nutrients (Phosphate, Nitrate, Silicate), NOAA Atlas NESDIS, vol. 76, edited752

by S. Levitus, 25 pp. US Gov. Print. Off., Washington, DC .753

Garcia, H. E., Locarnini, R. A., Boyer, T. P., Antonov, J. I., Baranova, O. K.,754

Zweng, M. M., . . . Levitus, S. (2013). World Ocean Atlas 2013: Dissolved755

Inorganic Nutrients (phosphate, Nitrate, Silicate). US Department of Com-756

merce, National Oceanic and Atmospheric Administration.757

Garcia, N. S., Talmy, D., Fu, W.-W., Larkin, A. A., Lee, J., & Martiny, A. C.758

(2022). The diel cycle of surface ocean elemental stoichiometry has im-759

plications for ocean productivity. Global Biogeochemical Cycles, 36 (3),760

e2021GB007092.761

Gasol, J. M., Vázquez-Domı́nguez, E., Vaqué, D., Agust́ı, S., & Duarte, C. M.762
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