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Abstract21

Fracture networks are abundant in many subsurface applications (e.g., geothermal22

energy, water resources). These networks often have a very complex structure which makes23

modeling of flow and transport in such networks slow and unstable. Consequently, this24

limits our ability to perform uncertainty quantification and leads to increased develop-25

ment and environmental risks. This study provides an advanced methodology for sim-26

ulation based on Discrete Fracture Model (DFM) approach. Changes to the topology27

of the fracture network reduce computational complexity while preserving the accuracy28

of the DFM approximation. The preprocessing framework results in a fully conformal,29

uniformly distributed grid for realistic fracture networks at a required level of precision.30

The simplified geometry and topology of the resulting network are compared with in-31

put (i.e., unchanged) data to evaluate the preprocessing influence. The resulting mesh-32

related parameters, such as volume distributions and orthogonality of control volume con-33

nections, are analyzed. Furthermore, fluid-flow-related changes introduced by prepro-34

cessing are evaluated using a high-enthalpy two-phase flow geothermal simulator. The35

simplified topology directly improves meshing results and, consequently, the accuracy36

and efficiency of numerical simulation. The main novelty of this work is the fully open-37

source framework based on graph theory that simplifies the topology of the fracture net-38

works and explicitly resolves the small-angle intersections within the fracture network.39

Augmenting the framework with a rigorous analysis of changes in the static and dynamic40

impact of the preprocessing algorithm, we demonstrate that explicit fracture represen-41

tation can be used together with maintaining computational efficiency enabling their use42

in large-scale uncertainty quantification studies.43

Plain Language Summary44

Fractured rocks occur naturally and are abundant in the earth’s subsurface, espe-45

cially in rocks that host a variety of resources, from geothermal energy to clean water.46

Such systems’ numerical fluid flow models are complex and time-consuming to solve, in-47

creasing environmental and development risks. We attempt to tackle this problem by48

introducing an advanced modeling technique that simplifies the fractures’ representa-49

tion while keeping the main characteristics intact. The method’s performance is analyzed50

based on changes in the geometry of the fractures and fluid flow patterns. The frame-51

work manages to significantly speed up the required time for fluid flow calculations while52

remaining close to the high fidelity solution (i.e., solution of unchanged fracture config-53

uration). Because most of the parameters in subsurface-related applications are uncer-54

tain, many simulations have to be carried out to quantify this uncertainty. Since our frame-55

work reduces the computational time, more simulations could be executed, thereby re-56

ducing the risks associated with the development of water and energy resources in the57

subsurface.58

1 Introduction59

Many subsurface energy applications (e.g., geothermal energy production) rely on60

accurate numerical simulations of fluid flow and mass or heat transport in fractured porous61

media. A large class of methods is available for numerical modeling of fracture networks.62

It may consist of various approaches to the homogenization of fractures network, includ-63

ing Dual Porosity (Barenblatt, 1960; Warren & Root, 1963) and various MINC models64

(Pruess & Narasimhan, 1982; Karimi-Fard et al., 2006), or different versions of Embed-65

ded Discrete Fracture Models (EDFM) starting from already classic approaches (Li &66

Lee, 2008; Hajibeygi et al., 2011) to projection-based technique (Ţene et al., 2017; Hos-67

seiniMehr et al., 2020). Some hybrid versions combining EDFM with homogenized frac-68

tured networks at two different scales are also exist (Li & Voskov, 2021).69
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However, Discrete Fracture Matrix (DFM) models, initially proposed by (Karimi-70

Fard et al., 2004), are often preferred in detailed geological studies due to their accuracy71

(Moinfar et al., 2011; Flemisch et al., 2018; Berre et al., 2019). DFM models typically72

require a high meshing accuracy to resolve the fracture networks’ complex geometry, thereby73

drastically increasing the computational complexity and rendering them unusable for un-74

certainty quantification purposes. Besides fluid-flow in porous media, DFM models are75

also coupled with geomechanics (Garipov et al., 2016) and even fracture propagation (Gallyamov76

et al., 2018). These complex physical processes typically require a fine modeling reso-77

lution to capture all the effects, further exposing the limitations of incorporating uncer-78

tainty quantification.79

These limitations severely constraint the necessary low-risk, sustainable and energy-80

efficient subsurface activities that are desired. One of the main factors of the large com-81

putational complexity of the DFM models is the meshing artifacts that result from us-82

ing conformal meshes. Fracture network input data is typically acquired from outcrop83

analysis or statistical models. In outcrop analysis, raw output, either by manual or au-84

tomatic interpretation, results in difficulties for the meshing software. These meshing85

artifacts are highlighted in Figure 1 and are well known in the existing literature (Mustapha86

& Mustapha, 2007; Mallison et al., 2010; Karimi-Fard & Durlofsky, 2016; Berre et al.,87

2019). These complexities imply that the interpretation of outcrop networks or the gen-88

erated statistical models cannot be directly used in the standard reservoir modeling work-89

flow.90

Several preprocessing strategies have been proposed in the literature to address the91

challenges of constructing a conformal mesh for complex natural fracture networks. How-92

ever, the investigation of a numerically convergent solution after applying the prepro-93

cessing procedure, a thorough investigation of the topology changes as a function of dis-94

cretization accuracy, and the application to uncertainty quantification have not been prop-95

erly studied. Furthermore, in most existing methods, the meshing challenges related to96

fracture segments intersecting at a small angle are only implicitly resolved. For exam-97

ple, in most studies, an algebraic constraint is used for merging nodes, but the angle at98

which they intersect is not explicitly checked. This means that some meshing issues are99

not actually resolved.100

Therefore, we have developed an open-source preprocessing framework that bor-101

rows concepts from early work in this area (Koudina et al., 1998; Maryška et al., 2005)102

and more recent approaches (Mustapha & Mustapha, 2007; Mallison et al., 2010; Karimi-103

Fard & Durlofsky, 2016). According to prescribed algebraic constraints, our preprocess-104

ing procedure merges nodes and resolves fractures that intersect at a significantly small105

angle that would otherwise introduce additional meshing challenges. Most of the oper-106

ations are formulated using graph theory, which results in simple bookkeeping of the in-107

cidence matrix operations (West et al., 2001). Using the developed framework, we can108

create a fully conformal uniformly distributed grid based on any realistic fracture net-109

work at the required level of accuracy.110

Most data obtained from outcrop studies is in planar 2D view (Bisdom et al., 2017).111

The available 3D data on fractures in the subsurface often consists of very coarse seis-112

mic cubes or borehole imaging logs. The attributes of the seismic cube are often too coarse113

to extract the exact fracture pattern, and the imaging logs only provide limited infor-114

mation at the well location (Boersma et al., 2020). Therefore, this paper focuses on 2D115

fracture characterization and the preprocessing technique, which improves the meshing116

and subsequent fluid-flow modeling. Notice that the main ingredients of the developed117

framework and flow modeling are not limited to 2D and can be effectively applied for118

a fully 3D fractured networks. We analyze the static and dynamic performance of the119

preprocessing on changes in geometry and topology of the fracture network and result-120

ing mesh and changes in flow response. Ultimately, this leads to a robust way of con-121

structing a hierarchy of DFMs for uncertainty quantification of natural fracture networks.122
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Figure 1. Fracture data aquisition, interpretation, and modelling steps. (A) and (E) Outcrop

images obtained from the Whitby and Brejoes fieldwork area respectively. (B) and (F) Manual

interpretation of the fracture networks. (C) and (G) Conformal meshing results based on the raw

interpretation. (D) and (H) are a zoom of the meshing artifacts that occur due to complex frac-

ture interaction. (A) and (B) Taken from Houben et al. (2017). (E) and (F) Taken from Boersma

et al. (2019).
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The paper is organized as follows. We start with the description of the input data123

used in this study followed up by the theory for pre-processing, topology analysis and124

fluid flow and energy transport modeling. Next, we describe all important ingredients125

of the proposed framework including intersection, node merging straitening and remov-126

ing acute angles. The results section contained the analysis of static and dynamic per-127

formance of the pre-processing framework. We finish the paper by detailed discussion128

and conclusion.129

2 Materials and Methods130

The accurate numerical representation of fracture networks in the subsurface is not131

the end goal of the modeling effort. Most often, the modeling objective is to make bet-132

ter predictions on subsurface activities and their associated risks. Therefore, it is essen-133

tial to test our preprocessing algorithm accordingly. This is done by investigating the134

static changes introduced by the algorithm on the dynamic behavior of the subsurface135

(i.e., fluid flow response). Particularly, geothermal energy production is chosen (i.e., in-136

jection of cold water and production of hot water via a well doublet) to examine this.137

The methodology is presented here. First, a brief description of the fracture networks138

used in this work is given; second is a brief introduction to graph theory; third, a con-139

cise theoretical background on the topology of fracture networks is presented; fourth, the140

relevant equations to model the physical processes are presented; and, finally, the nu-141

merical approximation of governing equations is introduced.142

2.1 Fracture network input data143

The performance of the preprocessing algorithm is examined according to two re-144

alistic fracture networks. The first fracture network is found in the Whitby Mudstone145

outcrop along the cliff coast North of Whitby (UK) (Houben et al., 2017). The second146

example is the fracture network observed in the carbonate outcrop in Brejões, Brazil (Boersma147

et al., 2019). Both networks are interpreted by hand; however, the developed method148

would also be very suitable for automatic fracture detection algorithms as presented in149

(Prabhakaran et al., 2019).150

The outcrop images and the manual interpretation of the fracture networks are dis-151

played in Figure 1. Both networks show good connectivity at first glance. The main dif-152

ference between the two networks is the angle at which the fractures intersect. In the153

Brejoes network, this angle is 60, while for the Whitby network, the angle is closer to154

90 degrees. In reality, the fracture networks have a significant difference in scale (Bre-155

joes 100-1000 m vs. Whitby 1-10 m scale). Both networks are scaled up to character-156

istic reservoir size (scalar multiplication to preserve relative lengths and angles) to sim-157

plify the static and dynamic analysis. The scalar is chosen for each network such that158

the resulting length (y-coordinate direction) is roughly 1000 [m] in both cases. Conve-159

niently, this is a common choice for the distance between two wells in a doublet system160

(Willems & Nick, 2019). This scaling with a scalar multiple can be safely done because161

of the fractal nature of fracture networks (i.e., the same pattern exists at several length162

scales) (Acuna & Yortsos, 1995). For the dynamic analysis, it is assumed that both mod-163

els have very low permeability (fracture-dominated flow) to ensure that the influence of164

changes to the fracture network on the flow response can be observed.165

Most fracture network data is represented through the use of shapefiles. Shapefiles166

are typically transformed into a data array of size m × 6, where the first column rep-167

resents the id of the main fracture, the second column represents the id of the subseg-168

ment, the remaining four columns represent the x- and y-coordinates of the two nodes169

associated with the subsegment, and m corresponds to the total number of fracture sub-170

segments. An important note is that not all manual interpretations record the intersec-171

tion between all fracture segments (i.e., only the end nodes of the fractures are registered).172
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This becomes important in the following section, where the graph is constructed based173

on the fracture network data. The two data arrays describing the fracture networks used174

in this study can be found here: link-to-data-sets.175

2.2 Graph theory176

As defined in Bollobás (2013), a graph G is an ordered pair of disjoint sets (V,E).177

The set of all vertices of graph G is denoted as V = V (G), while the set of all edges178

of the graph G is denoted as E = E(G). Edges of a graph join two vertices i and j such179

that (i, j) ∈ E(G) and i, j ∈ V (G). If (i, j) ∈ E(G), it implies that i and j are adja-180

cent vertices of G, and i and j are incident with the edge (i, j) .181

Important matrix representations of the graph G are the following four matrices:182

1. Incidence matrix: B(G), which is a n×m matrix, where n is the number of ver-183

tices and m the number of edges of the graph. As previously indicated, whenever184

a vertex i is on an edge (i, ·), the vertex i is in incident with edge (i, ·). Hence Bij =185

1 if vertex i is on the j-th edge otherwise Bij = 0;186

2. Degree matrix: D(G), which is a n × n matrix describing the number of edges187

attached to each vertex. The degree matrix can be obtained using the follow equa-188

tion D = diag
(
B1
)
, where diag(v) is a function that constructs a square ma-189

trix with vector v on its diagonal, and 1 is a vector of ones with size m×1. The190

degree matrix denotes the number of edges leaving a specific vertex.191

3. Adjacency matrix: A(G), which is a square n × n matrix, where n is the num-192

ber of vertices of the graph G. As previously mentioned, if the pair of vertices (i, j)is ∈193

E(G), they are said to be adjacent. Hence Aij = 1 if vertices i and j are on the194

edge (i, j). Furthermore, for our purposes, it is assumed that the main diagonal195

is zero (i.e., Aii = 0), which implies that no nodes are connected to itself. Note196

that A, B, and D are related through the following equation A = BBT −D.197

4. Discrete Laplacian matrix: L(G) which can be found via the following equation198

L = D − A = 2D − BBT . This matrix will be used for an alternative measure199

of connectivity in the static analysis.200

A typical input data array F that describes the fracture network contains the pair-201

wise x- and y-coordinates of each fracture segment in the network. The first step is to202

convert this array into two different forms: an array that contains all the unique vertices203

in the graph (i.e., V ) and the incidence matrix (B). This is done by using Algorithm 1204

which can be found in the Appendix. An important assumption of this construction of205

V and B is that no subsegments can intersect in other places than the vertices of the206

particular subsegments. As mentioned before, this is often not the case in the manual207

interpretation of fracture networks; hence we need to calculate all possible intersections208

before applying Algorithm 1 shown in the Appendix. A simple intersection calculation209

algorithm is provided in Section 3.1.210

2.3 The topology and geometry of fracture networks211

In this section, the required mathematical relations for performing the static anal-212

ysis on the effect of the preprocessing method on fracture networks are explained. Topol-213

ogy is used to understand how the connectivity and abutment-intersection relations of214

the fracture network are changing due to the preprocessing. Furthermore, it also essen-215

tial to look at how several geometrical properties of the fracture network are changing216

(e.g., angles and lengths) through the preprocessing.217

Several authors have thoroughly investigated the application of topology to frac-218

ture networks (Manzocchi, 2002; Sanderson & Nixon, 2015). Isolated nodes are typically219

denoted with an I, abutments are characterized by a Y-node, and X-nodes are used to220
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Figure 2. Illustration of topology in fracture networks. After Sanderson and Nixon (2015).

indicate intersecting fracture segments. This is illustrated in Figure 2. Translating the221

type of nodes to the graph notation, node I is of degree one, node Y is of degree three,222

and node X is degree four. In general, it is unusual that more than two lines intersect223

at exactly one point. However, our preprocessing method merges nodes and causes sev-224

eral nodes to have a degree > 4. This causes us to consider all intersections of node de-225

grees larger than four to be X type of nodes. This is used to plot the results in a ternary226

diagram (as shown in Figure 2). The implication is that a proxy for measuring connec-227

tivity, particularly the average number of intersections per line, changes slightly. Instead228

of229

CL = 4
NY +NX

NI +NY
, (1)230

where NI is the total number of I nodes, NY is the total number of Y nodes, and NX231

is the total number of X nodes, we use232

CL = 2

∑d
i wiNi

NI +NY
, (2)233

where wi are the weights, Ni the total number of i node types in the network, and i =234

{Y,X,X+, X++ . . .}. The weights are determined by the number of lines (but not edges)235

involved in the vertex type (e.g., NY involves two lines therefore wY = 2 while NX++236

involves six edges and hence three lines therefore wX++ = 3). Please also note that all237

vertices of degree two are not used nor important in this analysis (i.e., a curved or a straight238

line are topologically the same).239

An alternative connectivity measure is obtained by using the Discrete Laplacian240

of the graph. This matrix can be used for finding spanning trees of a given graph (i.e.,241

connected fracture sets in the fracture network). Notably, each element of the Laplacian’s242

null-space rational basis describes a connected component of the graph (Spielman, 2010).243

With this basis, we can find the number of connected fracture sets in our network and244

also each fracture that belongs to these components (i.e., sub-graphs). The connectiv-245

ity measure is then calculated as the ratio between the cumulative length of the fractures246

in the largest spanning cluster and the cumulative length of all the fractures in the full247

network.248

Geometrical properties such as angles and lengths of the fractures are obtained us-249

ing simple trigonometry rules. An easy and fast way to calculate the angles of a frac-250

ture w.r.t. the x-axis is to decompose the fracture in a horizontal (∆x = x2−x1) and251
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vertical (∆y = y2 − y1) components. Then, the angle can be obtained using the fol-252

lowing equation253

θ = arctan
( ∆y

∆x+ ε

)
, (3)254

where ε is a small perturbation in the case of ∆x = 0.255

2.4 Governing equations256

The conservation of mass, in general form, is written as257

∂

∂t

(
φ

np∑
p=1

xcpρpsp

)
+∇ ·

np∑
p=1

xcpρpvp +

np∑
p=1

xcpρpqp = 0, c = 1, . . . , nc (4)258

where φ represents the porosity, xcp is the molar mass fraction of component c in phase259

p, ρp is the density, sp is the saturation, and qp is the source term of the p-th phase re-260

spectively, and vp is the velocity of the p-th phase. The Darcy velocity of the p-th phase261

is given by262

vp = −kr,p
µp

K∇(pp − ρpg), p ∈ {o, w} (5)263

where kr,p is the relative permeability, µp is the viscosity and pp is the pressure of the264

p-th phase respectively, K is the permeability tensor, and g is the directional gravita-265

tional acceleration defined as g∇z.266

The following equation describes the conservation of energy required for the geother-267

mal simulations:268

∂

∂t

(
φ

np∑
p=1

ρpspUp + (1− φ)Ur

)
+∇

np∑
p=1

hpρpvp +∇(κ∇T ) +

np∑
p=1

hpρpqp = 0, (6)269

where Up is the internal energy of fluid phase p, Ur is the rock internal energy, hp is the270

enthalpy of phase p, κ is the thermal conduction, and T is the temperature. All govern-271

ing assumptions and properties can be found in (Wang et al., 2020, 2021).272

2.5 Numerical solution273

Finite-volume discretization is applied to a general unstructured grid (using a TPFA274

for the fluxes across interfaces with upstream weighting) and a backward (implicit) Eu-275

ler time discretization strategy to both the conservation equations and obtain the fol-276

lowing system of equations (assuming no gravity and capillarity)277

V

(φ np∑
p=1

xcpρpsp

)n+1

−

(
φ

np∑
p=1

xcpρpsp

)n]
−∆t

∑
l

(
np∑
p=1

xlcpρ
l
pΓl

p∆pl

)

+ ∆t

np∑
p=1

ρpxcpqp = 0, c = 1, . . . , nc

, (7)278

and279

V

(φ np∑
p=1

ρpspUp + (1− φ)Ur

)n+1

−

(
φ

np∑
p=1

ρpspUp + (1− φ)Ur

)n]

−∆t
∑
l

(
np∑
p=1

hlpρ
l
pΓl

p∆pl + Γl
c∆T

l

)
+ ∆t

np∑
p=1

hpρpqp = 0,

(8)280

where Γl
p is the convective and Γl

c is the thermal transmissibility of interface l and phase281

p respectively.282
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Operator-Based Linearization (OBL) is used to linearize the above system of non-283

linear equations (i.e., Equation 7 and 8). OBL is a novel way of performing the lineariza-284

tion step. The discrete form of the mathematical equations is grouped into state-dependent285

operators and space-depended relations. The parameter-space of the problem is discretized286

where each axis is split by the uniformly distributed set of supporting points. Any point287

in the parameter space belongs to a certain hypercube bounded by supporting points.288

Next, the nonlinear operators are subsequently calculated exactly in a set of support-289

ing points at a preprocessing stage or adaptively. At the simulation stage, the operators’290

values and their derivatives are evaluated using multi-linear interpolation inside a par-291

ticular hyper-cube in the parameter space where the specific simulation state belongs.292

The multi-linear interpolation of the most nonlinear part of the governing equations pro-293

vides simple, exact, and above all flexible Jacobian assemble for the nonlinear solution294

procedure. For details on the OBL framework, the reader is referred to (Voskov, 2017;295

Khait & Voskov, 2017, 2018).296

3 Preprocessing algorithm297

For an accurate and efficient graph-based approach, a correct graph representation298

of the fracture network is necessary. Since not all intersections are always given via the299

fracture network’s geological (or automatic) interpretation, we need to calculate all the300

intersections to construct the correct graph for a fracture network. After finding all the301

intersections, the large fractures are partitioned into smaller fracture segments with length302

lf . Then, any two nodes that are too close in proximity are merged. Subsequently, seg-303

ments that intersect at an angle below a certain threshold denoted as θa,min are merged304

as well. Finally, an optional straightening of the fractures can be applied to simplify the305

meshing procedure further if fractures intersect within [180−θs,min, 180+θs,min]. These306

steps are illustrated in Figure 3 and thoroughly explained in the following sections.307

3.1 Intersections308

Here the intersection detection method is described. The intersections are found309

by checking all combinations of any two edges. The combinations can be found via the310

binomial formula.All edges are parameterized, and a 2 × 2 linear system is solved for311

each pair of edges. Any intersection that occurs splits the two edges into four, and a ver-312

tex is added.313

Let X = V ∈ Rn×d be the set of coordinates in the physical space of all unique314

vertices in the graph, where n is the number of vertices and d is the dimension of the315

physical space associated with the graph (i.e., fracture network). Then, let P = E ∈316

Rm×2 be the set of all edges in the graph, where m is the number of edges and 2 rep-317

resents the number of vertices associated with each edge. In other words, the j-th ele-318

ment of P, pj ∈ N2×1, represents the set of two natural numbers associated with the319

two vertices of edge j. This means that X (p1j ) = V (p1j , ·) = x1
j and X (p2j ) = V (p2j , ·) =320

x2
j , where x1

j ,x
2
j ∈ Rd are the two vertices associated with edge j.321

Finding all the intersections between any two edges, without any assumption on322

the location or orientation of the edge, can be done as follows. First parametrize all seg-323

ments, using the following equation:324

rj(t) = x1
j + t

(
x2
j − x1

j

)
, j = 1, . . . ,m. (9)325

Find the pairs/combinations of edges, (i, j), that can possibly intersect,326 (
m

2

)
=

(m)2

2
, (10)327

and solve the following equation for each such combination328

rj(t) = ri(s). (11)329
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Figure 3. Illustration of the steps in the preprocessing workflow, from the raw data to a fully

processed fracture network. The partitioning and node merging steps are a function of lf while

the acute angle and straighten steps are a function of θa,min and θs,min respectively. The smaller

the lf , the more precise the preprocessed network represents the raw data. However, small lf

means that the subsequent steps in the algorithm take substantially more time.
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The two edges intersect directly whenever 0 < t, s < 1 is true (note: < instead330

of ≤ indicates that the intersections at the end-points of segments are excluded). This331

simplifies to solving a 2× d system of equations for each intersection, such as332

Ax = b, (12)333

where A = [x2
i − x1

i ,−
(
x2
j − x1

j

)
], x = [t, s]T , and b = [x1

i − x1
j ].334

The actual point of intersection is calculated by plugging the t that is obtained from335

Equation 12 into Equation 9. Every intersection involves exactly two segments, and336

the intersection id for those segments and x- and y-coordinate are stored in an array. Af-337

ter all the segments have been checked, a loop over this array allows us to manipulate338

intersections accordingly. For X , this amounts to nint new points, where nint refers the339

the total number of intersection points. And for P, each pj ∈ P that contains at least340

one intersection gets replaced by njint+1 new segments, where njint refers to the num-341

ber of intersections on the j-th segment.342

This naive way of finding the intersection has the downside of having a large com-343

putational complexity (as indicated above). To circumvent this, we applied a method344

that takes advantage of the fact that most time is spent solving the linear 2×2 system345

in Equation 12. A simple check is applied for each pair of fractures to indicate if there346

can exist an intersection or not. Assuming the vertices of each edge (i.e., fracture) are347

ordered from smallest x-coordinate to largest, two edges can only have a possible inter-348

section if the smallest x-coordinate of one of the two edges is smaller than the largest349

x-coordinate of the other edge (and vice versa for the y-coordinate). This significantly350

reduces the overall computational time of the algorithm. Further reduction in compu-351

tational time is achieved by parallelizing the algorithm, which is our ongoing develop-352

ment.353

3.2 Node merging354

The node merging algorithm, in essence, is sequential. Each vertex (i.e., node) is355

added to the domain that doesn’t violate the algebraic constraint. This means that the356

distance between the newly added node and any other node already in the domain must357

be larger than lf · h, the node is merged into the closest node already in the domain.358

Parameter lf refers to the accuracy at which the original fracture network will be pro-359

cessed and subsequently influences the optimal grid resolution, while h is a scaling pa-360

rameter on the closed interval [0.5, 0.86]. The larger h is, the more simplified the result-361

ing network becomes. The sequential nature of the algorithm implies that the order in362

which we add nodes to the domain affects the final result. Nodes that are added first are363

most likely placed in their exact location. Therefore, the fracture segments are ordered364

based on their length. The larger the segment, the more critical it is for fluid flow, hence365

the earlier it should be added to the domain.366

The length of each fracture segment, L ∈ Rm, can be calculated in the following367

way:368

L =

 ||x
1
1 − x2

1||
...

||x1
m − x2

m||

 . (13)369

Then we define the order of adding segments, Osegm, from largest to smallest:370

Osegm = {i ∈ N | ∀li ∈ L, li ≥ li+1}. (14)371

From now on, for simplicity, it is assumed that h = 1/2. This means that
lf
2 is the min-372

imum distance between each vertex in the simplified graph. To achieve this, a partition-373

ing algorithm that divides each fracture segment in mi = max(1, round(li/lf )) subseg-374

ments is executed. See Algorithm 2 for the detailed description.375
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Now we can construct the graph representation of the ordered and partitioned frac-376

ture network, using Algorithm 1 and substituting F with Fnew and m with mnew. Fur-377

thermore, the problem is that vertices are added to the domain and not necessarily edges.378

Therefore, we need to determine the order in which vertices should be added to the do-379

main. The order of the vertices, Overtices, can be found with Algorithm 3.380

After the order is determined and B and X are sorted, the main node merging al-381

gorithm can be applied. It simply consists of sequentially checking, from highest to low-382

est priority vertices, if a newly added node violates the algebraic constraint (i.e., is within383

lf
2 from any nodes already in the domain). This is thoroughly described in Algorithm 4.384

The main parameter in the partitioning and subsequent node merging algorithm385

is the preprocessing accuracy lf . This parameter essentially determines the minimum386

distance between any vertex in the simplified graph. The computational time of the al-387

gorithm scales proportionally to the lf and the number of fractures.388

3.3 Straightening and removing acute angles389

Another (optional) modification to the fracture network is the straightening of frac-390

ture segments. This amounts to checking each vertex with order two and calculating the391

angle between the two edges leaving this vertex. If this angle is within some threshold,392

particularly within [180−θs,min, 180+θs,min], the node can be removed since the frac-393

ture is considered straight. θs,min is typically chosen on the interval [0, 7.5], depending394

on how severely the user wants to straighten the fractures. The straightening of fractures395

can be beneficial when considering meshing tools such as GMSH (Geuzaine & Remacle,396

2009). The reason for this is that conformal meshing techniques require the fracture to397

be embedded into the domain. Less embedded fractures mean faster and easier mesh-398

ing.399

Simply merging the conflicting nodes doesn’t resolve all the artifacts associated with400

meshing DFMs. This is mainly caused by the fact that the algebraic constraint,
lf
2 , is401

constant. Whenever nodes are merged, the edge (i.e., fracture segment) that it belonged402

to might be stretched and have a length greater than lf . This might result in vertices403

being placed near existing edges and not flagged as problematic nodes by the node merg-404

ing algorithm. Therefore, an need an additional correction to the network is required to405

obtain the optimal representation for meshing purposes.406

The algorithm for removing the acute angles is very similar to Algorthm 5; how-407

ever, now the loop is over all nodes with a degree bigger than one. Instead of calculat-408

ing one angle,
(
di

2

)
angles are computed between all edges leaving the vertex i, where di409

is the degree of vertex i. The two edges corresponding to the smallest angle below a cer-410

tain threshold will be merged. The smaller segment will be merged in the larger segment,411

and the non-coinciding vertex will be merged in the closest vertex of the larger segment.412

This ensures minimal changes to the fracture network due to other possible edges leav-413

ing the merged vertex. The tolerance for the minimal angle θa,min is typically chosen414

on the interval [0, 18] degrees. Larger θa,min means a more simplified fracture network415

since potentially more fracture intersections are flagged as problematic.416

All the code related to the algorithms described above is implemented in Python417

(Van Rossum et al., 2007). They can be found at address-for-code-here. We have made418

use of the following packages: package1-packages2-packages3-etc.419

4 Results420

This chapter presents the investigation of the performance of the preprocessing method421

described in the previous section. The performance is assessed in terms of static and dy-422

namic qualities and is therefore subdivided accordingly. It is important to stress the dif-423
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ference between the preprocessing accuracy lf and the meshing accuracy lm. The pa-424

rameter lf refers to the minimum distance between any two vertices in the preprocessed425

fracture network while lm refers to the characteristic length of the control volumes af-426

ter applying a particular meshing strategy (i.e., Frontal-Delaunay as a 2D meshing al-427

gorithm in GMSH in this work) (Geuzaine & Remacle, 2009).428

Following the definition of those two parameters, there is a significant distinction429

between the two preprocessing strategies described below. The first approach is defined430

as the “clean” strategy. In this approach, the preprocessing algorithm is executed once431

with a lf = 1, θa,min = 18◦, and θs,min = 2.5◦. For subsequent coarser meshing re-432

sults, the lf remains unchanged in the clean strategy. The second strategy is denoted433

as the “optimal” strategy. In this strategy, for each subsequent coarser model, the pre-434

processing algorithm is executed with lf = lm. This means that the fracture network435

in the “clean” strategy remains unchanged when coarsening the mesh. In the “optimal”436

strategy, the fracture network is changing when constructing the coarser models.437

4.1 Static performance of preprocessing framework438

4.1.1 Changes in configuration439

Figure 4 illustrates several changes to the raw fracture network after applying suc-440

cessive coarsening. A clear reduction in the number of nodes (red dots) can be seen with441

increasing lf , which means a significant reduction in the number of fracture segments.442

Fewer fracture segments typically indicate a lower complexity of the network (simply by443

having fewer degrees of freedom). Multilinear segments become linear (i.e., straight) be-444

cause of the reduction in fracture segments, further reducing network complexity. Ul-445

timately, small and complex features of the fracture network start to disappear while the446

main pattern (backbone) remains visible. The average spacing of the North-South frac-447

tures (40-50 meters) remains unchanged up to lf = 32. Around lf = 64, which ex-448

ceeds this average spacing, the fracture configuration changes substantially (see Figure 5).449

4.1.2 Angle distribution450

One important characteristic in fracture networks is the angle distribution, par-451

ticularly weighted by the length of the fractures. This usually gives an insight into the452

potential flow response of the network while also providing possible information on the453

paleostress that caused the network formation. Since multiple nodes are merged in the454

preprocessing approach, it is expected that these angles can change substantially when455

using a large lf , where large is relative to the scale at which the raw data is collected.456

This can be clearly seen when looking at Figure 5. For small lf , the deviation in angles457

is almost unnoticeable, while around lf = 32, a small deviation of roughly 10% in the458

orientation is observed in the Whitby network. Around lf = 64, the deviation becomes459

significant (> 20%), but the dominant orientation (N-S) is still similar to that of the460

raw results. Finally, at lf = 128, the angle distribution is very different from the raw461

data (> 30%), even the dominant orientation, and doesn’t resemble the original network.462

Similar behavior but at earlier resolution is observed for the Brejoes network. At463

lm = 16 the deviation is roughly 20%. The dominant NNW-SSE orientation disappears464

already at lf = 64. The average spacing of the NNW-SSE fractures in the Brejoes net-465

work is roughly 12 meters. This shorter spacing correlates with the earlier deviation in466

the angle distribution in the Brejoes network when compared to Whitby.467

4.1.3 Topology468

Besides the angle distribution, it is also important to look at connectivity and in469

particular, the topology changes to the fracture network. Figure 6 shows the topology470
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of the raw and preprocessed fracture networks in the ternary topology diagram (as ex-471

plained in Figure 2). A large deviation between the raw and preprocessed data is observed,472

even with the small lf = 1 [m]. The raw network contains roughly 55% I-nodes, 20%473

Y-nodes, and 25% X-nodes. The finest preprocessed network (i.e., lf = 1 [m]) contains474

approximately 20% I-nodes, 75% Y-nodes, and 5% X-nodes. Furthermore, with increas-475

ing lf , the preprocessed networks increasingly deviates towards a large X-node percent-476

age (from 5% at lf = 1 to almost 70% at lf = 128 for Whitby and from 10% at lf =477

2 to 70% at lf = 64 for Brejoes).478

To illuminate the differences in topology between the fine lf = 1 and the raw data,479

the degree of the raw and cleaned network nodes is shown in Figure 7. Even after zoom-480

ing in at the nodes of the raw network, a significant amount remains misclassified as I-481

nodes while they would be more suitably classified as Y-nodes or X-nodes (at this scale482

of observation). This is the result of two fracture segments essentially intersecting, but483

not exactly due to inaccuracy in image interpretation. The same behavior arises for the484

X-nodes that are misclassified as Y-nodes. This happens when two fracture segments only485

intersect with a minimal extension of one of the segments across the point of intersec-486

tion.487
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Figure 4. Changes to fracture network as a function of preprocessing accuracy lf . The net-

work’s complexity is greatly reduced by the decrease in fracture segments with increasing lf . The

angles of the N-S fractures remain unchanged up to lf = 64 [m].
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Figure 5. Angle distribution as a function of fracture cleaning accuracy. The top row corre-

sponds to the Whitby network while the bottom row corresponds to the Brejoes network. The

cleaning shows no significant change between lf = 4 and lf = 16 for the Whitby network, that’s

why these steps are omitted in the figure. However, the Brejoes network does show significant

deviation at lf = 16. The preprocessed Whitby network is no longer representative of the raw

network at lf = 128, while this already happens at lf = 64 for the Brejoes case.
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Figure 6. In both fracture networks, a large deviation between the raw data and the pro-

cessed network’s topology is observed. The reason for this is explained in Figure 7. The Brejoes

network converges to the raw data for low lf < 1. The jump in the large lf = 128 for the Brejoes

case is expected due to the fracture network becoming extremely coarse. Only a few fractures

actually remain, meaning the relative proportion of end-nodes greatly increases.
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Figure 7. Detailed view of the fracture network topology of the Whitby network. The left

image displays the raw input topology, while the right image shows the topology after applying

the preprocessing algorithm with lf = 1. Due to the manual interpretation, it can be seen that a

lot of nodes are characterized as I-nodes (degree 1) or X-nodes (degree ≥4), while most seem to

be Y-nodes (degree 3) (when considering usual abutment relationships in fracture mechanics and

the resolution of the outcrop image).

4.1.4 Impact of changes on meshing488

Because the complexity of the fracture network decreases, the conformal meshing489

procedure becomes substantially easier. This is shown in Figure 8. A large reduction in490

the number of control volumes and a more homogeneous distribution is observed for the491

preprocessed meshing results when compared to the raw network. The dark blue areas492

in the raw meshing results indicate a concentration of small control volumes. Further-493

more, at some locations in the raw meshing results very flat triangular elements are ob-494

served. Therefore, it seems that the volume distribution and quality of the mesh elements495

are improved in the preprocessed results. This is quantified in Figure 9 and Figure 10496

respectively. Please note that the fluid flow simulations are carried out in the 3D domain497

and therefore the model is assigned a thickness (2.5D).498

Mesh quality here refers to a similar definition as used in Mustapha and Dimitrakopou-499

los (2011), particularly using the following equation500

q = 4
√

3
A

a+ b+ c
, (15)501

where A is the area of the triangle and a/b/c are the lengths of the three sides of the502

triangle, respectively. This means that when q = 1 we have a high mesh quality since503

the triangle is equilateral (i.e., the optimal shape for TPFA fluid-flow simulation), while504

a low-quality mesh element (i.e., q << 1) refers to a large deviation from an equilat-505

eral triangle. The mesh elements in the 2.5D model are triangular prisms which means506

that this mesh element quality indicator also works for this type of geometry. The rea-507

son for this is that the centroid of the triangular prism lies in the same xy-plane as the508

centroid of the triangle and is therefore not changing the orthogonality relationship be-509

tween neighboring control volumes.510

Ultimately, the purpose of using and generating fracture networks is to utilize them511

in specific applications. In this work, the application is subsurface energy extraction in512

the form of geothermal energy production. This usually requires numerical simulations.513

The accuracy and speed of convergence of these simulations are highly dependent on the514

orthogonality of the control volume intersections and the volume distribution. There-515
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Figure 8. Visual comparison between the meshing result of the raw (left) versus the cleaned

(right). Meshing and preprocessing accuracy are both 32 [m] (i.e., lm = lf = 32). The darker

blue spots in the image on the left represent clusters of small control volumes. These appear at

locations of complex fracture interactions on a scale way below the meshing resolution lm.

fore, we quantify the effect of the preprocessing method on these two properties, where516

mesh quality is a proxy for the orthogonality of the control volume intersections. Fig-517

ure 9 shows the volume distribution as a function of lf and lm, while Figure 10 shows518

the distribution of mesh element quality.519

The volume distribution obtained after meshing the raw fracture network input is520

not normally distributed. It has a peak around zero, which indicates a large number of521

small control volumes. This effect becomes more substantial with increasing lm. At lm =522

32 the volume distribution of the raw network input is entirely concentrated around zero.523

The volume distribution obtained after meshing the optimal preprocessed fracture net-524

work input does show a normal distribution. The distribution becomes wider and more525

skewed with increasing the lm. No small control volumes are observed for the optimal526

preprocessed results, even in lm = 128 [m]. The clean preprocessing strategy shows sim-527

ilar behavior to the optimal strategy for small lm, while converges to the behavior of the528

raw input network for lm ≥ 32.529

The mesh element quality obtained after meshing with a small lm behaves simi-530

larly for the raw and preprocessed input fracture data, except for a relatively small amount531

of flat triangles (i.e., q ≈ 0). An increase in the number of flat triangles (i.e., q ≤ 0.01)532

from 0.32% to 1.29% and a reduction of the overall quality is observed for the raw in-533

put data with increasing lm. However, the mesh quality for the preprocessed results re-534

mains above q = 0.40 even for lm = 128 [m]. Low mesh quality (i.e., q ≤ 0.01) can be535

seen as an indicator for poor simulation convergence since a few of these elements can536

ruin the nonlinear convergence behavior of the numerical simulation (more than the mean537

mesh element quality or the whole distribution).538
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Figure 9. Control volume size distribution as a function of preprocessing accuracy for the

Whitby network. Optimal refers to the preprocessing strategy where the fracture network is

cleaned at the same accuracy as the mesh is generated. Clean refers to preprocessing the fracture

network once at a small lf and then simply decreasing the meshing resolution lm wile keeping the

fracture network unchanged.

Figure 10. Mesh element quality distribution as a function of preprocessing accuracy for the

Whitby network.
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4.2 Dynamic performance of preprocessing framework539

The dynamic performance is analyzed by applying geothermal simulation to the540

different DFM models obtained after meshing (i.e., clean and optimal for different lm).541

Geothermal simulation typically consists of a doublet system: at one point, cold water542

is injected, and at another point, the hot water or steam is produced. Mathematically543

speaking, this amounts to solving Equation 4 and 6 presented in Section 2.4. The in-544

jection point is in the bottom left of the domain, while the production point is at the545

top right of the domain. First, the temperature fields of both networks are shown (Fig-546

ure 11 and 12), then the water saturation field is shown for the Brejoes network (Fig-547

ure 13), and finally the temperature at the production well over time (Figure 14).548

The boundary conditions and modeling parameters can be found in Tabel 1 and549

2. The simulation parameters model a situation that is investigated throughout the world550

for its geothermal energy potential (Moeck, 2014). Particularly, we study geothermal en-551

ergy production from a tight fractured reservoir with convective flow happend predom-552

inantly through the fracture network. It is important to observe how changes to the frac-553

ture network affect the simulation results in such setup. If the fracture permeability is554

much larger than the matrix permeability, the fractures will evidently play a dominant555

role in the fluid flow patterns. There are a particular set of parameters for each network.556

The first set of parameter simulates high-enthalpy super-critical water (single-phase) which557

is applied to the Whitby case. The second set simulates high-enthalpy steam flow con-558

ditions and it is applied to the Brejoes case.559

Table 1: Boundary conditions.

Parameter Whitby Brejoes

Rock heat conduction, κr [kJ/m/day/K] 165 150

Rock heat capacity, Cr [kJ/m3/K] 2500 2200

Initial pressure, p0 [bar] 500 100

Initial temperature, T0 [K] 423.15 583.15

Injection rate, Qinj [m3/day] 1000 300

Injection temperature, Tinj [K] 303.15 308.15

Production bottom hole pressure, pprod [bar] 475 100

Table 2: Reservoir and simulation parameters.

Parameter Whitby Brejoes

Matrix permeability, kmat [mD] 1e−3 1e−2

Matrix porosity, φmat [-] 0.3 0.04

Fracture permeability, kfrac [mD] 8.3e7 7.5e6

Fracture porosity, φfrac [-] 1 1

Length domain, Lx [m] 1050 700

Width domain, Ly [m] 1050 350

Simulation time, t [days] 10950 10950

The temperature field after 3150 [days] of simulation for the Whitby network is pre-560

sented in Figure 11. The temperature is reduced near the injection point from the ini-561

tial 423.15 [K] to the injection temperature of 303.15 [K]. Fluid flow primarily happens562

through the fractures, hence the largest temperature variations occur closer to the frac-563

tures. This is more apparent in the finer models (i.e., smaller lm). Larger diffusion of the564
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lf = lm = 4 [m] lf = lm = 8 [m] lf = lm = 16 [m]

lf = lm = 32 [m] lf = lm = 64 [m] lf = lm = 128 [m]

Producer

Injector

Figure 11. Temperature distribution as a function of preprocessing and meshing accuracy for

the optimal strategy after 3150 [days] (Whitby network).

temperature profile is observed for increasing lm. The main fracture pattern becomes565

invisible at lm = 64 [m]. The temperature distribution for the Brejoes network is shown566

in Figure 12. In terms of temperature distribution, a comparable trend was observed w.r.t.567

to the Whitby network. The water saturation field is shown in Figure 13 after 150 days568

of simulation. Accurate representation of the water saturation is more sensitive to the569

resolution than temperature.570
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lf = lm= 4 [m] lf = lm= 8 [m] lf = lm= 16 [m] lf = lm= 32 [m] lf = lm= 64 [m] lf = lm= 128 [m]

Producer

Injector

Figure 12. Temperature distribution as a function of preprocessing and meshing accuracy for

the optimal strategy after 3150 [days] (Brejoes network).

lf = lm= 4 [m] lf = lm= 8 [m] lf = lm= 16 [m] lf = lm= 32 [m] lf = lm= 64 [m] lf = lm= 128 [m]

Producer

Injector

Figure 13. Water saturation distribution as a function of preprocessing and meshing accuracy

for the optimal strategy after 150 [days] (Brejoes network).

–21–



manuscript submitted to Water Resources Research

The energy rate and temperature profile at the production well showed similar be-571

havior; therefore, only the temperature profiles are shown in Figure 14. A commonly used572

metric to analyze the flow behaviour of geothermal systems is the lifetime. The lifetime573

is typically reached when the water temperature at the production well has decreased574

with 10-20% of the difference between initial and injection temperature. The optimal575

strategy (i.e., lf = lm) in the Whitby network starts deviating from the finer scales at576

lf = 32 [m], particularly the lifetime is reduced by 670 [days]. From lf = 64 [m] the577

deviation becomes more significant, notably a 2700 [days] difference in lifetime due to578

early breakthrough of the cold water. At lf = 128 [m], the response does not resem-579

ble the finer scales, specifically the lifetime is reduced to 500 [days] due to almost instant580

cold water breakthrough.581

The clean strategy (i.e., lf = 1 and lm = lm) shows an analogous result to the582

optimal strategy for the small lm. For larger lm the result of the clean strategy is sig-583

nificantly closer to the finer scales; particularly, there is no deviation in breakthrough584

times between the scales. This is expected since the fracture network is not changing (i.e.,585

lf = 1 for all simulations) with increasing lm. Therefore, no changes in connectivity586

neither the path from injector to producer occur which is important in this tight frac-587

tured reservoir setting. Meshing artifacts in the clean strategy increase the number of588

control volumes for larger lm further contributing to the small changes across the scales589

(see Table 3). The difference between the clean and optimal strategy (i.e., lf = lm) for590

small lm (≤ 32) in terms of flow-response is negligible; however, the performance of the591

optimal strategy is significantly better.592

A larger deviation in Brejoes temperature profile for the optimal case is observed.593

This is in line with the other observations. This pattern is observed in the angle distri-594

bution in the previous section (see Figure 5). Furthermore, Brejoes fracture density is595

larger (i.e., spacing between fractures is shorter), which leads to a more diffused and less596

complex temperature distribution. The large connectivity also means a shorter and highly597

conductive path from injector to producer, resulting in an early cold-water breakthrough.598

4.3 Numerical performance599

The numerical performance of the two strategies can be found in Table 3 and Ta-600

ble 4 for Whitby and Brejoes, respectively. No timestep cuts are observed in both strate-601

gies for the Whitby simulations. However, several timestep cuts were observed in both602

strategies for the Brejoes simulations. This is reflected in the larger amount of newton603

and linear iterations. The convergence issues can be explained by the combination of com-604

plex two-phase physics (steam condensation) and DFM in the case of high-enthalpy two-605

phase flow. A more sophisticated nonlinear strategy can be utilized to limit the timestep606

cuts (Wang & Voskov, 2019), but the main goal of this study is having a fair compar-607

ison between the two preprocessing strategies.608

It is observed that the optimal strategy shows a better convergence in both net-609

works. A reduction in nonlinear iterations of roughly 20% for the coarse models in the610

Whitby simulations is observed. In the Brejoes simulations this reduction is almost 45%.611

The total CPU time for the optimal strategy in the Brejoes network increases slightly612

at the coarsest level due to a higher number of control volumes when coarsest strategy613

is applied since the meshing is mostly constrained by the scale of the cleaning. Besides,614

the simulation time at this scale is largely dominated by the linearization step (i.e., con-615

struction of the operators for the OBL method).616

The number of control volumes Nblocks in the clean strategy does not drop below617

48-50 thousand for Whitby and 22-26 thousand for Brejoes. This is because the fracture618

network, at the preprocessing accuracy of lf = 1, is too complex for the meshing soft-619

ware at large lm. The result is a substantial amount of elements with low mesh quality620

(see Figure 10) and no further reduction in Nblocks with increasing lm. This significantly621
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Figure 14. Temperature at the production well over time for optimal (left column) and clean

(right column) preprocessing strategies for both the Whitby (top row) and Brejoes (bottom row)

networks. Substantial deviation for large lf = lm in the optimal strategy was observed. This

does not happen in the clean strategy. The reason for this is that the fracture network is un-

changed while the mesh is coarsened. This also causes the number of control volumes to remain

considerable even for large lm thereby reducing the numerical diffusion (see Table 3 and Table 4).
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Table 3. Numerical performance Whitby simulations. Nblocks corresponds to the total num-

ber of control volumes, Nfracs to the number of fracture control volumes, Nnewt to the number

of Newton-iterations, Nlin to the number of linear-iterations, and TCPU to the total simulation

time. lf refers to the preprocessing accuracy, and lm refers to the meshing accuracy.

Nblocks Nfracs Nnewt Nlin TCPU [s]

Clean (lf = 1, lm = 4) 91,780 6,800 3,543 53,210 4,159
Clean (lf = 1, lm = 8) 41,119 4,311 3,277 46,830 1,290
Clean (lf = 1, lm = 16) 24,044 3,152 3,199 40,566 538
Clean (lf = 1, lm = 32) 22,879 2,841 3,112 39,667 364
Clean (lf = 1, lm = 64) 20,142 2,824 3,087 39,340 400
Clean (lf = 1, lm = 128) 20,222 2,824 3,085 38,903 422

Optimal (lf = lm = 4) 80,672 6,362 3,436 50,573 4,079
Optimal (lf = lm = 8) 26,553 3,363 2,890 37,988 813
Optimal (lf = lm = 16) 8,718 1,594 2,680 32,600 196
Optimal (lf = lm = 32) 2,417 563 2,533 27,434 53
Optimal (lf = lm = 64) 605 147 2,395 23,119 18
Optimal (lf = lm = 128) 166 32 2,403 17,147 6

increases the computational time for the clean strategy when compared with the opti-622

mal strategy. For example, at lf = lm = 32 the optimal strategy only takes 14.6% of623

the clean strategy simulation time. However, this comes at the cost of a less accurate624

simulation response (see Figure 14).625

5 Discussion626

The existing preprocessing strategies described in the literature only implicitly re-627

solve the fracture segments that intersect at a small angle via node merging. We aug-628

ment this with an extra step where all the low-angle intersections are explicitly resolved629

and improve the volume distribution, mesh quality, and the convergence of subsequent630

numerical simulation. Furthermore, we contribute a comprehensive investigation of the631

geometry and topology changes as a function of discretization accuracy and its effect on632

the dynamic reservoir behavior. Next, we discuss statistic and dynamic results of our633

study and give our recommendations.634

5.1 Topology635

The inherent bias of artificial connectivity in the coarser models is evident in the636

static analysis. Especially the topology is sensitive to subtle changes in the fracture net-637

work. The preprocessing method does seem to converge given that the distance in the638

ternary topology diagram seems to decrease with decreasing lf (except for two jumps639

in the Brejoes topology data for lf = 1 and lf = 128 [m]).640

The large deviation from the raw topology can be explained through several points.641

Manual interpretation is usually made in some software (e.g., QGIS) or on the image di-642

rectly. Every fracture is interpreted as a line, and two points are connected, particularly643

the beginning- and end-point of the fracture. Even if the interpreter meant for the two644

fractures to abut against each other, beginning- or end-points are rarely placed exactly645

on top of the existing line. The computer processing interprets the point as I- or X-node,646

while the interpreter meant the node to be a Y-node. This can be omitted if some snip-647
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Table 4. Numerical performance Brejoes simulations. Nblocks corresponds to the total num-

ber of control volumes, Nfracs to the number of fracture control volumes, Nnewt to the number

of Newton-iterations, Nlin to the number of linear-iterations, and TCPU to the total simulation

time, Tls the total linear-solver time, and Tlz the total lineraziation time (constructing opera-

tors). lf refers to the preprocessing accuracy, and lm refers to the meshing accuracy.

Nblocks Nfracs Nnewton Nlinear TCPU [s]

Clean (lf = 1, lm = 4) 157,105 8,079 6,970 163,388 6,803
Clean (lf = 1, lm = 8) 58,912 4,682 4,947 87,940 1,607
Clean (lf = 1, lm = 16) 30,739 3,035 5,129 80,568 856
Clean (lf = 1, lm = 32) 22,918 2,402 4,784 77,690 766
Clean (lf = 1, lm = 64) 24,955 2,233 5,038 78,795 618
Clean (lf = 1, lm = 128) 26,127 2,211 4,851 75,687 551

Optimal (lf = lm = 4) 150,566 7,852 4,354 108,073 3,909
Optimal (lf = lm = 8) 46,811 4,115 3,308 52,374 564
Optimal (lf = lm = 16) 15,139 2,093 2,979 38,458 167
Optimal (lf = lm = 32) 4,899 967 2,747 27,698 50
Optimal (lf = lm = 64) 1,471 371 2,632 20,254 32
Optimal (lf = lm = 128) 400 122 2,562 14,203 34

ping tool during the interpretation is used; however, this was not the case in the networks648

we picked in this study.649

The other problem is the scale of the image. The Brejoes data set has a huge res-650

olution (20 mm/pixel) (Prabhakaran et al., 2019). It can be argued that you would roughly651

need 15-25 pixels to be sure about the interaction of two or more fractures due to shad-652

ing, contrast, and other optical effects in the image. Considering this, it would mean that653

intersection and abutment relationships cannot be interpreted at a scale smaller than654

300-500 [mm] (for this particular image).655

Furthermore, the image shows a 2D representation of the fracture network. In 3D,656

fractures are represented by planes. Any deviation from perfectly vertical planes would657

increase the chance of nodes classified as I-nodes turning into Y-nodes. All of this leads658

to the argument that the raw network data should not be used in the topological assess-659

ment of fracture networks. However, a small cleaning should be applied for the analy-660

sis to provide meaningful results. This observation is similar to ? (?) (refer to Auke’s661

paper here with the image segmentation of grains).662

5.2 Fluid flow663

As shown in Figure 11 and 12, the predictions on flow response do not seem to be664

affected by small details in the fracture network. However, they are substantially differ-665

ent after successive coarsening (i.e., increasing lc). The main reason for the earlier wa-666

ter breakthrough observed in Figure 14 can be attributed to an increase in connectiv-667

ity of the fracture network (see also Figure 6). Furthermore, the shortest flow path through668

the fracture network from the injector to the producer is significantly reduced in the coarser669

models; hence the cold water arrives earlier. Finally, since the volume of the fractures670

is unchanged, even if two fracture segments are merged, the fluid velocity through a merged671

fracture is higher for the same injection rate. All of these things affect the time the wa-672

ter has to heat up (i.e., recharge) and reduce the breakthrough time of the cold water673

in the coarser models.674
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Even without using flow-based upscaling when coarsening the mesh (i.e., increas-675

ing lm), the flow-response for the coarser models remains accurate (up to lm = 32 for676

the Whitby simulation and up to lm = 16 for Brejoes). A possible addition to the pre-677

processing method is keeping track of the volume changes of the fractures. When two678

fracture segments are merged, the cumulative volume could be recorded. The main ben-679

efit is that the fracture volume is preserved. The downside is that the hydraulic conduc-680

tivity (permeability) of the fracture is dependent on the square of the aperture. This means681

that a cumulative volume (i.e., adding the aperture of the two segments that are merged)682

results in a doubled hydraulic conductivity.683

The networks differ mainly in terms of angles and CL. However, it is important to684

touch on the similarity between the two fracture networks used in this study: both are685

quite well connected. This, in combination with the observations on the earlier water break-686

through for coarser models, begs the question: how does the preprocessing algorithm work687

on networks that are poorly connected? This question is part of our future work. The688

ultimate goal is to use the presented approach for an efficient and robust uncertainty quan-689

tification procedure in fractured reservoirs of any connectivity.690

When you have a large number of disconnected clusters, as long as the lf is below691

the smallest distance between those clusters and below the average spacing of the frac-692

tures that predominantly affect the fluid flow, the preprocessing should be accurate even693

for very coarse models. Whenever disconnected clusters are within a small distance of694

each other, this becomes more difficult. A smaller lf should be used since clusters will695

become connected while, in reality, they are not. Another remedy for this problem would696

be disconnecting clusters that become connected after preprocessing. This can be achieved697

by accurate bookkeeping (i.e., recording before preprocessing to which cluster a certain698

node belongs and observing how this evolves when running the algorithm). The issue699

of not preserving average spacing for very coarse models and thereby greatly altering the700

fractures’ orientation is illustrated in Figure 4 and 5.701

The main idea is that adding a fracture to an already connected network is not a702

big problem. Connecting whole clusters that were not previously connected is a big prob-703

lem and significantly affects the flow response. In our future work, we have generated704

a large ensemble of varying connectivity for future work and observe how the flow-response705

accuracy w.r.t. fine-scale changes with increasing lf to shed light on this issue.706

5.3 Application and recommendations707

It seems from the study presented in this paper that the flow-response is less sen-708

sitive to changes in the fracture network than originally thought. The orientation of the709

fractures (i.e., angle distribution) is also less sensitive than the topology. This could serve710

as a recommendation to geologists and modelers that the scale and complexity at which711

the data is collected and the models are constructed is unnecessarily refined. It would712

save time and improve the ambiguity of our models to set a certain interpretation scale713

at which you can be certain of the intersection and abutment relationships before mak-714

ing the interpretation.715

The preprocessing method effectively extracts the backbone of a complex fracture716

network. Therefore, it can be used to extract the main pattern of the network and might717

be useful when generating training images for algorithms such as Bruna et al. (2019).718

The computational time of the preprocessing is insignificant to the simulation time719

of fine-scale (especially after parallelization, which is already implemented and will be720

described in our future work). Even more so if new functionality is utilized, such as the721

Numba Python package where functions are translated into machine code before exe-722

cuting the script to speed up computations. The significant speed-up in computational723

time for the coarser optimal preprocessing strategy allows for the utilization in uncer-724
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tainty quantification of fractured reservoirs. Since the main reason in uncertainty quan-725

tification is understanding the stochastic response instead of having a single very accu-726

rate simulation response.727

6 Conclusion728

In this study, we demonstrate a strategy to simplify complex fracture networks in729

terms of flow response based on an open-source preprocessing method using graph the-730

ory. We show that using raw fracture data for topological analysis and dynamic mod-731

eling is unwise and that some preprocessing should be applied to investigate the patterns732

that exist in the studied network. Our method simplifies the topology of the fracture net-733

work by merging fracture nodes (i.e., vertices) within a certain radius. Consequently, this734

amounts to taking the union of the incidence matrix’s rows of each vertex, thereby pre-735

serving all the connectivity within the fracture network. Furthermore, it explicitly re-736

moves problematic fracture intersections that occur at an angle below a certain thresh-737

old. Our preprocessing framework can create a fully conformal uniformly distributed grid738

for a given realistic fracture network at the required level of accuracy.739

The changes introduced by the method are analyzed in terms of geometry (i.e., an-740

gle distribution of the fracture network), meshing results (i.e., volume and quality of the741

elements), and dynamic response of the reservoir when subjected to geothermal high-742

enthalpy production conditions. Results are analysed for two realistic fracture networks743

based on outcrop studies. Topology is more affected by the preprocessing than the ge-744

ometry and flow response in these high connectivity networks. The performance of our745

method in low connectivity networks will be a part of future research.746

The presented method opens up avenues for using efficient DFM models with sim-747

ilar computational complexity as embedded-DFM (EDFM) and even Dual-Porosity mod-748

els while accurately capturing the discrete nature of fracture networks for uncertainty749

quantification and history matching purposes. This is especially true for the optimal pre-750

processing strategy where cleaning and optimizing the fracture network, including treat-751

ment of intersections, node merging, and straightening, are combined.752

The open-source computational framework performing all the preprocessing stages753

can be found at REPOSITORY-HERE.754
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7 Appendix: various algorithms for DFN preprocessing755

Algorithm 1 Construct graph

1: V = {}
2: n = 0
3: for (xi, yi, xj , yj) ∈ F do
4: if (xi, yi) /∈ V then
5: V = V ∪ (xi, yi)
6: n += 1

7:

8: if (xj , yj) /∈ V then
9: V = V ∪ (xj , yj)

10: n += 1

11:

12: B = zeros(n,m)
13: for (xi, yi) ∈ V do
14: ids = find(∀(xi, yi) ∈ F(·, [1, 2]) ∧ ∀(xi, yi) ∈ F(·, [3, 4]))
15: B(i, ids) = 1

16:

17: D = diag(B1m×1)
18: A = BBT −D
19: L = D −A

Algorithm 2 Partition segments

1: mnew =
∑m

i max(1, round(li/lf ))
2: Fnew = zeros(mnew, 4)
3: count = 1
4: for k ∈ Osegm do
5: mk = max(1, round(lk/lf ))
6: ids = [1, . . . ,mk]
7: Fnew(count : (count +mk), 1) = F(k, 1) + (ids − 1)/mk(F(k, 3)−F(k, 1))
8: Fnew(count : (count +mk), 2) = F(k, 2) + (ids − 1)/mk(F(k, 4)−F(k, 2))
9: Fnew(count : (count +mk), 3) = F(k, 1) + ids /mk(F(k, 3)−F(k, 1))

10: Fnew(count : (count +mk), 4) = F(k, 2) + ids /mk(F(k, 4)−F(k, 2))
11: count += mk

12:

13: Osegm, new = [1, . . . ,mnew] //since Fnew is already ordered now!
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Algorithm 3 Determine order vertices

1: B = B(·, Osegm) //order the columns of B
2: Overtices = zeros(n, 1)
3: count = 0
4: for k = 1 to m do
5: (i, j) = find(B(·, k) == 1)
6: if i /∈ Overtices then
7: count += 1
8: Overtices(count) = i

9:

10: if j /∈ Overtices then
11: count += 1
12: Overtices(count) = j

13:

14: X = X (Overtices, ·) //sort vertices
15: B = B(Overtices, ·) //sort rows of incidence matrix accordingly

Algorithm 4 Node merging

1: DX = pdist(X ) //pairwise symmetric n× n distance matrix for each vertex in X
2: mergelist = zeros(n, 1)
3: for k = 2 to n do
4: idmin = min({dk,i ∈ DX | ∀i ∈ N, i < k}) //closest vertex already in domain
5: if DX(k, idmin) < lf/2 then
6: mergelist(k) = idmin

7: B(idmin, ·) = B(idmin, ·) ∪B(k, ·) //record new connections from node merging
8: B(k, ·) = 0 //remove merged node from graph
9: DX(k, ·) =∞ //reset distance from removed node

10: DX(·, k) =∞ //reset distance from removed node

11:

12: mask = {i ∈ N | ∀i /∈ mergelist, i ≤ n}
13: X = X (mask)
14: n = card(X )
15: B = B(mask, ·)
16: B = B(·,11×nB > 1) //remove “collapsed” edges
17: B = unique(B, ’cols’) //remove overlapping edges
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Algorithm 5 Straighten fractures

1: nodelist = {di ∈ D(G) | di == 2}
2: mergelistnodes = zeros(n, 1)
3: mergelistsegms = zeros(m, 1)
4: for k ∈ nodelist do
5: idsegms = nonzero(B(k, ·))
6: v1 = F(idsegms(1), [1, 2])−F(idsegms(1), [3, 4])
7: v2 = F(idsegms(2), [1, 2])−F(idsegms(2), [3, 4])

8: dotproduct = min(1,max(−1,
vT
1 v2

||v1||||v2|| ))

9: θ = arccos(dotproduct)180/π
10: if θ < θtol then
11: mergelistnodes = k
12: B(k, ·) = 0
13: mergelistsegms = idsegms(2)
14: idnodes = nonzero(B(·, idsegms(1))) ∪ nonzero(B(·, idsegms(2)))
15: B(·, idsegms(2)) = 0
16: B(idnodes 6= k, idsegms(1)) = 1

17:

18: //B and X are updated similarly to Algorithm 4 using “mergelistnodes” and
“mergelistsegms” for the removed vertices and edges respectively
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