
WEAK RESPONSE OF VEGETATION PHOTOSYNTHESIS TO METEOROLOGICAL DROUGHTS 

IN SOUTHWEST CHINA:  INSIGHTS FROM GOME-2 SOLAR-INDUCED FLUORESCENCE 

 

Yangqian Qi1 and Zhao-Cheng Zeng2 

 

1. The University of British Columbia; 2. California Institute of Technology 
 

ABSTRACT 

 

Drought stress threatens vegetation dynamics across diverse 

ecosystems. Monitoring how vegetation responds to water 

stress is vital for ecological conservation. The response of 

vegetation photosynthesis to water availability variations in 

Southwest China from 2008 to 2018 is investigated in this 

study. The solar-induced fluorescence (SIF) derived from 

GOME-2 is used to characterize photosynthetic changes. We 

examined the sensitivity of SIF anomaly to standardized 

precipitation-evapotranspiration index (SPEI) at multiple 

time scales to evaluate the drought impacts on different 

ecosystems (i.e. forests, croplands, grasslands, and 

shrublands). We find that (1) SIF has significant yet weak 

correlations to SPEI across major ecosystems in Southwest 

China; (2) Forests are more sensitive to short-term droughts 

in comparison with other ecosystems. (3) Cropland, 

grassland, and shrubland are more subjected to long-term 

droughts compared to forests. Our findings indicate that, in 

Southwest China, satellite SIF may not be effective in 

monitoring the impact of drought on vegetation due to its 

weak response to SPEI. The robustness of using satellite-

observed SIF to assess drought’s effects still needs to be 

further tested with high-resolution SIF data. 

 

Index Terms— Drought monitoring, vegetation 

photosynthesis, solar-induced fluorescence, GOME-2 

 

1. INTRODUCTION 

 

Vegetation photosynthesis sustains the Earth with oxygen 

provision and food production. Among all factors that can 

impede the vegetation photosynthesis, water scarcity has 

become a concerning issue worldwide recently. China is one 

of the countries that has been suffering from drought stress 

for decades [1]. In 2009, an extreme drought hit Southwest 

China and inflected severe damages on vegetation [2]. Recent 

studies highlighted that the drought condition in Southwest 

China is going to become more frequent, intense, and long-

lasting in the near future [3]. Monitoring the influence of 

drought stress on vegetation, therefore, plays a vital role in 

helping us secure freshwater resources, manage the food 

production, and mitigate the negative effects of climate 

warming on diverse ecosystems. 

Frequent meteorological droughts, characterized by 

below-average precipitation and above-average temperature, 

can disrupt the vegetation photosynthesis with reduced 

carbon sequestration rates via the stomatal closure [4]. The 

weakened photosynthesis can thus limit the vegetation 

productivity over time. How to effectively monitor the 

response of vegetation photosynthesis to water stress, 

however, remains a crucial challenge. 

The advent of remote sensing technologies has advanced 

drought monitoring by enabling researchers to track 

vegetation dynamics with remotely sensed data. In recent 

years, the use of satellite solar-induced fluorescence (SIF) has 

gained popularity compared to conventional reflectance-

based indices (NDVI, EVI, etc.). Past research shows that SIF 

can outcompete reflectance-based indices as it is a spectral 

signal (650 – 800 nm) that directly reflects photosynthetic 

processes (e.g in situ carbon assimilation) [5]. SIF can 

therefore facilitate the monitoring of photosynthetic changes 

induced by droughts with increased efficacy [6]. 

Despite the potential that SIF has in drought monitoring, 

it has not been widely applied to investigate drought effects 

yet. Previous studies claim that how SIF responds to drought 

stress has not been fully understood [7]. To what extent can 

SIF indicate the drought stress is also poorly explored [7]. To 

understand the sensitivity of satellite SIF to drought stress, 

we analyze the relationship between SIF derived from Global 

Ozone Monitoring Experiment-2 (GOME-2) and water 

availability changes using standardized precipitation-

evapotranspiration index (SPEI). Overall, this study proposes 

to understand: (1) How sensitive is satellite SIF in response 

to meteorological droughts in Southwest China? (2) Will the 

SIF response differ across different ecosystems?  

 

2. METHODS AND DATA 

 

2.1 Study Area 

 

This study focuses on the meteorological drought stress in 

Southwest China (latitude: 97° – 110° E, longitude: 20° – 34° 

N; Fig. 1).  Covering an area of approximately 1.4 million 

square kilometers, the study area represents 14% of China’s 

total land territory [4]. The study area is classified as a semi-

humid region with uneven distributions of precipitation and 

temperature due to the joint effects of subtropical monsoon 

climate, alpine-cold climate, and hilly landforms [4]. The 

annual precipitation of Southwest China increases from 490 

mm in the west to over 2600 mm in the east [4]. The average 

monthly temperature ranges from -1 °C in the winter to 24 °C 

in the summer [4]. Major land cover types in the study area 

include forests (23.5%), grasslands (37.4%), croplands 

(11.3%), and shrublands (26.9%) based on the MODIS land 

cover product (MCD12C1 of 2017, Fig.1). 



 
Fig.  1 The land cover types of Southwest China in 2017 from 

MODIS 

 

2.2 Land Cover Data 

 

In this study, MODIS land cover product 

(https://e4ftl01.cr.usgs.gov/MOTA/MCD12C1.006/, 

MCD12C1 version 6 of 2017) was used to categorize the 

major land cover types in Southwest China. The spatial 

resolution of this product is 0.05° (5.6 km) in Climate 

Modelling Grid (CMG). The land cover types in the study 

area are based on the classification system of the International 

Geosphere Biosphere Program (IGBP). Four major groups of 

land cover types were aggregated according to the 17 IGBP 

biome types: (1) forests (including evergreen needle-

leaf/broadleaf forests, deciduous needle-leaf/broadleaf 

forests, and mixed forests), (2) croplands (including 

croplands and mosaics of croplands and natural vegetation), 

(3) grasslands (including grasslands and savannahs), and (4) 

shrubland (including closed/open shrublands and woody 

savannahs). 

 

2.3 Solar-Induced Fluorescence Data 

 

Level 3 SIF data (spatial resolution: 0.5°) of GOME-2 were 

obtained from January 2008 to December 2018 

(https://avdc.gsfc.nasa.gov/pub/data/satellite/MetOp/GOME

_F/; Fig. 2 (a)). The SIF index was calculated as follows [8]: 

 𝑆𝐼𝐹( 𝜆) = 𝑃𝐴𝑅 × 𝑓𝑃𝐴𝑅 ×  𝐿𝑈𝐸(𝜆) × 𝑓(𝜆)          (1) 

 𝑆𝐼𝐹(𝑃𝐴𝑅) =
𝑆𝐼𝐹(𝜆)

𝑓(𝜆)× 𝑃𝐴𝑅
                                              (2) 

 𝐿𝑈𝐸(𝜆) =
𝑆𝐼𝐹(𝜆)

𝑓(𝜆)× 𝐴𝑃𝐴𝑅
=

𝑆𝐼𝐹(𝑃𝐴𝑅)

𝑓𝑃𝐴𝑅
                               (3) 

where λ is the spectral wavelength (e.g. 740 nm) used in 

the retrieval method, PAR is the photosynthetically active 

radiation which can affect the SIF signals, APAR is the 

absorbed PAR photons, fPAR is the fraction of APAR, LUE 

represents the light-use efficiency (i.e. how much energy is 

absorbed and re-emitted as SIF signals), and f(λ) quantifies 

the amount of photons that escape from SIF signals, which 

might be re-absorbed by other leaves [8]. 

 

2.4 Drought Index 

 

Standardised precipitation-evapotranspiration index (SPEI) 

was used to examine the drought stress in Southwest China. 

SPEI determines meteorological droughts by considering the 

historical levels of precipitation as well as the potential 

evapotranspiration (PET). The involvement of these 

variables enables SPEI to become an advantageous drought 

index in recent years compared to previous drought indices, 

such as the Standardised precipitation index (SPI) and the 

palmer drought severity index (PDSI) [9]. The monthly SPEI 

data (spatial resolution = 1°) at time scales from 1 to 12 

months were acquired from the SPEI Global Drought 

Monitor (https://spei.csic.es/map/maps.html). The time 

scales of SPEI can inform the duration of drought conditions. 

In general, the time scale of 1 to 4 months implies short-term 

droughts; the time scale of 5 to 8 months represents medium-

term droughts; and the time scale of 9 to 12 months indicates 

long-term droughts (Fig. 2). This study also classified the 

dryness/wetness in the study area based on the ranges of SPEI 

values (Table 1).  

 

Table 1 The dryness/wetness categories for different ranges 

of SPEI values [9] 

Range of SPEI values Category of dryness/wetness 

SPEI ≥ 2.0 Extremely wet 

1.5 ≤ SPEI < 2.0  Severely wet 

1.0 ≤ SPEI < 1.5 Moderately set 

0.0 ≤ SPEI < 0.5 Mildly wet 

-1.0 ≤ SPEI < 0.0 Mild drought 

-1.5 ≤ SPEI < -1.0 Moderate drought 

-2.0 ≤ SPEI < -1.5 Severe drought 

SPEI < -2.0 Extreme drought 

 

2.5 Data Processing and Analysis 

 

This study extracted monthly mean SIF and SPEI values for 

forests, grassland, cropland, and shrubland in Southwest 

China based on the land cover data. To compare SIF with 

SPEI, this study calculated the anomaly of SIF as follows 

[10]: 

𝐴𝑆𝐼𝐹𝑖,𝑗 =
𝑆𝐼𝐹𝑖,𝑗 − 𝑆𝐼𝐹̅̅ ̅̅ ̅ 𝑖  

𝜎𝑆𝐼𝐹𝑖

 

where 𝐴𝑆𝐼𝐹𝑖,𝑗 represents the anomaly of SIF for month i 

in year j. The average value of SIF for month i from 2008 to 

2018 is denoted as𝑆𝐼𝐹̅̅ ̅̅
𝑖̅ . The 𝜎𝑆𝐼𝐹𝑖

 represents the standard 

deviation of SIF for month i over the 11-year period. 

To examine the sensitivity of satellite SIF to SPEI across 

ecosystems, the correlation and regression analyses were 

conducted using the Spearman rank correlation coefficients 

(R values) in this research. This study also correlated 𝐴𝑆𝐼𝐹𝑖,𝑗 

https://e4ftl01.cr.usgs.gov/MOTA/MCD12C1.006/
https://avdc.gsfc.nasa.gov/pub/data/satellite/MetOp/GOME_F/
https://avdc.gsfc.nasa.gov/pub/data/satellite/MetOp/GOME_F/
https://spei.csic.es/map/maps.html


with SPEI values from previous months to evaluate whether 

droughts have lagged effects on vegetation photosynthesis. 

 
Fig.  2 (a) The spatial distribution of SIF in Southwest China 

in July 2013 with SPEI values (1-, 6-, 12-month time scale) 

over the same period showing the (b) short-term, (c) medium-

term, and (d) long-term drought conditions 

 

3. RESULTS AND DISCUSSION 

 

3.1 The Correlation of SIF and SPEI at Different Time 

Scales 

 

Our regression analyses show that SIF has weak correlations 

to SPEI at different time scales (Fig. 3). In most scenarios, a 

weakly positive correlation can be found between SIF and 

SPEI, meaning that SIF slightly increases as SPEI value gets 

larger. Under certain circumstances (e.g. Fig. 3 (k) and (l)), 

SIF can also show significant positive relationships with 

SPEI (p value < 0.05). This positive relationship, to some 

extent, implies that vegetation photosynthesis could become 

stronger when the water stress alleviates. Yet the 

improvement of photosynthesis might be hardly noticeable 

since the strength of the correlation is relatively weak (R 

value < 0.3), suggesting that meteorological droughts in 

Southwest China may not be a major influencing factor for 

causing photosynthetic changes.  

Multiple studies found that SIF is significantly and 

positively correlated with SPEI [2][6][10]. Yet correlation 

does not infer causation. This positive relationship, therefore, 

cannot indicate that the decreased photosynthesis is caused 

by the cutback of wetness. Yet the physiological mechanism 

behind this positive SIF-SPEI relationship does support the 

idea that the decline of water availability can hold the 

photosynthesis back. When water scarcity strikes, most 

vegetation would reduce its water loss through closing 

stomata, thus slowing down the photosynthetic activities 

[11]. The decreased photosynthesis is reflected via the 

changes of SIF signals. If drought prolonged, the plant would 

lose its leaves to further limit the water loss. The process 

would therefore continue to decrease SIF signals over time. 

SIF, however, could also exhibit a significantly negative 

correlation to SPEI in some cases (Fig.3 (c)). This negative 

correlation reflects that when drought condition worsens, the 

vegetation photosynthesis is not interrupted. Instead, the 

intensity of photosynthesis becomes slightly greater. This 

finding is different from previous studies [2][6]. Yet one 

study also finds similar results [10]. The authors attribute this 

significantly negative relationship to the self-regulation 

ability of ecosystems in wet areas. As the authors explained, 

ecosystems in wet areas are known for high soil moisture 

content. The high soil moisture can therefore serve as a buffer 

to regulate the impacts of droughts [11]. The decreasing 

precipitation and increasing temperature induced by 

meteorological droughts may not immediately reduce the SIF 

signals due to the buffering effect of soil moisture. On the 

contrary, the rising temperature could accelerate their 

photosynthetic activities on a small scale [11]. The drought 

threats, thus, may not be captured by SIF retrievals in this 

case. 

 

 
Fig.  3 The relationship between SIF and SPEI (time scale: 1, 

6, 12 months) without any time lag (the significant 

correlations are highlighted using red regression lines) 



3.2 The SIF Responses to Meteorological Droughts 

across Different Ecosystems 

 

Different ecosystems react to meteorological droughts 

differently in terms of the temporal duration (Fig. 4). We find 

that forests show significant correlations to SPEI (1-, 2-, 4-, 

5-, 6-, 7-, 8-, 9-, and 10-month time scale) when there is a 

two-month time lag (Table 2). Meanwhile, no SPEI with 

short-term time scale is found to be significantly correlated 

with SIF anomalies of grasslands, croplands, and shrublands. 

Thus, this finding indicates that forests are more easily 

affected by short-term droughts compared to other 

ecosystems. Unlike forests, the rest of ecosystem types are 

more sensitive to medium- to long-term droughts. For 

example, croplands show high correlations with SPEI 6 to 10 

(Fig. 3 (c)) with one-month time lag, indicating that croplands 

in Southwest China respond to variations of water availability 

after the drought condition accumulates for 6 to 10 months. 

Few studies have also compared the differences of SIF 

responses to droughts across different ecosystems. One study 

mentions that drought could stimulate C4 plants to generate 

certain secondary metabolites (e.g. proline, soluble sugars, 

etc.) that can promote their drought tolerance levels [12]. 

Some tree species, however, lack this mechanism, thus being 

sensitive to droughts in the short term. 

 

Table 2 The SPEI time scale for significant SIF-SPEI 

correlations considering time lag effects 

Ecosystems Lag SPEI Time Scale 

Forests 2 SPEI 01, 02, 04, 05, 06, 07, 08, 09, 10 

Grassland 2 SPEI 08, 09, 10, 11, 12 

Cropland 1 SPEI 06, 07, 08, 09, 10 

Shrubland 0 SPEI 04, 05, 06, 09, 10, 11, 12 

 

 
Fig.  4 Examples of significant responses of SIF to SPEI 

across different ecosystems considering time lag effects 

4. CONCLUSIONS 

 

This study examines the sensitivity of satellite SIF to 

meteorological droughts via correlating SIF anomalies with 

SPEI at different time scales (1 to 12 months).  This study 

also investigates the drought impacts across major 

ecosystems in Southwest China. We conclude that (1) SIF has 

significant yet weak correlations to SPEI across all four types 

of ecosystems in Southwest China. (2) Forests are less 

insensitive to short-term droughts compared to other 

ecosystems. (3) Grassland, cropland, and shrubland can 

tolerate medium- to long-term droughts better than forests. 

The findings of this research offer insights in meteorological 

drought monitoring with remotely sensed data. Satellite-

observed SIF may not be an effective indicator for monitoring 

drought’s impact on vegetation in Southwest China due to its 

weak responses. The robustness and applicability of using 

satellite-observed SIF to quantify photosynthetic changes 

caused by droughts need further evaluation with high spatial 

and temporal resolution observations.  
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