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Abstract 30 

Ocean phytoplankton play a critical role in the global carbon cycle, contributing ~50% of global 31 

photosynthesis. As planktonic organisms, phytoplankton encounter significant environmental 32 

variability as they are advected horizontally across the upper ocean. The impact of this 33 

variability on phytoplankton growth rates has not been quantified and is not captured by many 34 

current biogeochemical models. Here, we systematically investigated the impact of different 35 

rates and magnitudes of sea surface temperature (SST) variability on phytoplankton community 36 

growth rates using surface drifter observations from the Southern Ocean (> 30oS) and a 37 

phenotype-based ecosystem model. Moderate SST changes of 3-5oC over 7-21 days (~4-13 38 

generations for a typical growth rate of 0.5 day-1) produced the largest time lag between the 39 

temperature change and the biological response. Shorter term SST variability (<7 days) had little 40 

impact on the phytoplankton community growth rates. The impact of SST variability was not 41 

captured by the Q10-based model of community growth leading to an overestimation of 42 

community growth rates, particularly in dynamic, strong frontal regions of the Southern Ocean. 43 

Furthermore, we demonstrated that the nature of variability encountered in a Lagrangian 44 

reference frame (following trajectories of surface water parcels) differed from that within an 45 

Eulerian reference frame, which resulted in significant effects on phytoplankton dynamics. Our 46 

results quantify the temporal scales of SST variability relevant for phytoplankton in the Southern 47 

Ocean and take a first step towards including the impact of variability and biological response 48 

times into numerical models. 49 

 50 

Plain Language Summary 51 

Ocean phytoplankton are fundamental to the global carbon cycle. To understand the sensitivity 52 

of the global carbon cycle to shifts in climate, we need to understand the impact of 53 

environmental variability on phytoplankton growth rates. Phytoplankton encounter 54 

environmental variability (e.g. sea surface temperature (SST) changes) in a Lagrangian reference 55 

frame. Here, we quantified the variability in SST encountered by phytoplankton in situ using 56 

surface drifters and investigated the impact of this variability on phytoplankton community 57 

growth rates using a phenotype-based ecosystem model. We also compared SST variability in 58 

the Lagrangian reference frame to the Eulerian reference frame using high-resolution satellite 59 

data. We found significant differences between the two reference frames with larger SST 60 

changes in the Lagrangian than in the Eulerian reference frame, and that these differences 61 

impacted phytoplankton community structure and growth rates. SST changes >0.07 oC/day 62 

induced a lag time between SST changes and the biological response. The impact of SST 63 

variability was not captured by the Q10 model that is typically used by global biogeochemical 64 

models. Our results quantify the temporal scales of SST variability relevant for Southern Ocean 65 

phytoplankton and provide a first step towards implementing the biological response to 66 

variability into numerical models. 67 

 68 
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1. Introduction  69 

The ocean is a highly dynamic environment and, in some regions, is expected to become more 70 

variable with rising global temperatures (Boyd et al., 2016). Previous work investigating the 71 

impact of anthropogenic warming on marine planktonic ecosystems has primarily focused on 72 

shifts in the annual mean and/or seasonal conditions. However, recent work has highlighted the 73 

importance of considering changes in sub-annual temperature variability, in addition to changes 74 

in the mean state (Doblin & van Sebille, 2016; Kroeker et al., 2020). Such short-term variability 75 

may be particularly important for phytoplankton dynamics as both mean environmental 76 

conditions and sub-seasonal variability affect plankton physiology (Kremer et al. 2018).  To 77 

better understand how phytoplankton might respond to future environmental changes, such as 78 

warming, it is important to characterize the variability these phytoplankton encounter in situ and 79 

determine the influence of that variability on physiology and community structure. 80 

 81 

Phytoplankton are largely passive drifters and, so a Lagrangian, rather than Eulerian, reference 82 

frame is most appropriate when considering environmental variability. Both mean conditions and 83 

variability (magnitude and rate of change) can differ markedly between the two reference frames 84 

(e.g. Doblin and van Sebille 2016; Hellweger et al. 2016). As a result, the temperature regime 85 

that sets the thermal acclimation history of a phytoplankton community may differ from 86 

prevalent local conditions. For example, Hellweger et al. (2016) modeled the advection of 87 

communities across large temperature gradients, such as those along a western boundary current, 88 

and showed that the optimum growth temperature (Topt) for the community can be considerably 89 

different from the in situ temperature. However, the impact on the community growth rate and 90 

the extent of differences in the characteristics of Lagrangian versus Eulerian variability – and the 91 

circumstances under which these differences have the largest impact on phytoplankton 92 

community dynamics – remain unclear.  93 

 94 

In global marine ecosystem models, temperature-dependent phytoplankton growth rates are often 95 

parameterized via a Q10 model based on thermal performance curves generated across multiple 96 

temperatures under constant conditions. The Q10 parameterization assumes rapid phenotypic 97 

shifts by the community such that, as the temperature changes, the community rapidly shifts its 98 

optimal growth temperature (Eppley, 1972). Previous modeling studies have demonstrated that 99 

the Q10 growth parameterization does not capture phytoplankton population dynamics, such as 100 

the time-lag between changes in sea surface temperature (SST) and the corresponding change in 101 

optimum growth temperature of the community (Hellweger et al. 2016), and results in an over-102 

estimation of phytoplankton community growth rates (Moisan et al., 2002). Additionally, in a lab 103 

culture study, Bernhardt et al., (2018) demonstrated that due to non-linearities, fluctuating 104 

conditions will alter the shape of the thermal performance curve relative to a constant 105 

environment. An improved understanding of temperature-dependent growth rates and how to 106 

parameterize these relationships in global models is critical as they have been shown to be one of 107 
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the main sources of uncertainty for future climate predictions among global biogeochemical 108 

models (Laufkötter et al., 2015).  109 

 110 

It has been suggested that phytoplankton responses to changes in temperature depend on 111 

previous thermal history (previous acclimation temperature), as well as the magnitude of change 112 

and rate of change (Kremer et al., 2018; Pittera et al., 2014). However, results from lab-based 113 

studies remain inconclusive. Some studies found an overall decrease in community growth rate 114 

in a thermally variable environment relative to a stable environment (Bernhardt et al., 2018; Qu 115 

et al., 2019; Wang et al., 2019), while others found higher growth rates under variable conditions 116 

(Schaum et al., 2018), and some found that thermal variability did not impact community  117 

growth rates (Kling et al., 2019; Qu et al., 2019). The lack of consensus concerning the impact of 118 

variability on phytoplankton growth rates may be due to the different magnitudes and rates of 119 

change used by the different studies, which ranged from ~1.5oC/day (Schaum et al., 2018) to as 120 

high as 10oC/day (Bernhardt et al., 2018).  121 

 122 

The direction of SST change, either increasing or decreasing, can also impact the community 123 

growth rate due to asymmetry in the thermal reaction norm (Moisan et al., 2002). For 124 

phytoplankton in the Southern Ocean, the shape of the reaction norm can be broad and 125 

symmetrical, but for most species tends to be asymmetric, often with skewed tails towards lower 126 

temperatures (Boyd, 2019). The growth response to changes in SST will depend on the starting 127 

SST relative to the optimum growth temperature (Topt) and whether the SST change is increasing 128 

or decreasing (Figure 1). When the starting temperature is along the skewed tail and there is an 129 

increase in SST, the growth rate will increase (orange arrow, Figure 1). If the starting SST is near 130 

Topt, an increase in SST will move beyond the optimum growth and growth rates will decrease 131 

(red arrow, Figure 1). Phytoplankton with skewed reaction norms living in water with 132 

temperatures at or near Topt can persist through larger decreases in SST than they can increases in 133 

SST. Depending on the starting SST, the change in growth rate associated with changing SSTs 134 

can either be linear or exponential and the rate of change in growth rate will depend on the 135 

acclimation rate and type of acclimation or plasticity (i.e. detrimental or beneficial; Kremer et al., 136 

2018) of the phytoplankton. A detrimental response is one in which the initial growth rate after 137 

the temperature shift is greater than the acclimated rate and acclimation to the new temperature 138 

results in a decrease in growth rate. A beneficial response is one in which growth rates fall below 139 

the acclimated growth rate immediately after the temperature shift but then increase to the 140 

acclimated growth rate. When SST changes are slower than the phytoplankton acclimation rate, 141 

the instantaneous growth rate will be equivalent to the acclimated growth rate. When the rate of 142 

SST change is faster than the rate of acclimation, the instantaneous growth rates could be higher 143 

or lower than the acclimated growth rate, depending on the type of response, detrimental or 144 

beneficial, respectively (Kremer et al., 2018).  145 

 146 
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 147 

Figure 1. The impact of SST variability on individual phenotype growth rate. (a) The temperature related 148 
growth response for a phenotype with a skewed shaped reaction norm. The values for the optimum 149 
growth temperature (Topt) and the corresponding maximum growth rate (μmax) are shown with dashed 150 
lines. (b) The 90-day SST profile of an example drifter trajectory (black) and the associated changes in 151 
phenotype growth rate (blue). The orange and red arrows in the top panel indicate the change in the 152 
phenotype growth rate associated with the corresponding changes in SST in the bottom panel.  153 

 154 
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Here, we provide a systematic assessment of the effect of different magnitudes and rates of 156 

change of temperature on community growth rates and how those might relate to the variability 157 

encountered by phytoplankton communities in situ. Specifically, using in situ and remote sensing 158 

SST observations from the Southern Ocean (south of 30oS), we constrained the relevant 159 

frequencies and magnitudes of temperature variability that phytoplankton encounter in the 160 

Lagrangian reference frame. This southern hemisphere region encompasses some of the lowest 161 

(0.2oC)  and highest (1.5oC ), non-seasonal SST variability globally (Deser et al., 2010) which 162 

provided a large range over which to investigate the impact of temperature variability on 163 

phytoplankton community growth rates. We used a suite of idealized simulations of temperature 164 

shifts and a numerical model to provide mechanistic insight into how this variability might 165 

impact community growth rates. We found that relatively small perturbations (< 2 oC over 7 166 

days), which are most common in situ, did not substantially impact community growth rates and 167 

that moderate changes (4-6oC over 21-45 days) had the largest and longest lasting effect on 168 

community growth rates. These moderate changes resulted in a temporary decrease in 169 

community growth rate that lasted up to 20 generations, as the community responded to the new 170 

temperature. Applying our numerical model  to in situ SST data from the Southern Ocean, we 171 

found that the effect of temperature variability on phytoplankton community growth rates was 172 

present everywhere in Southern Ocean with the largest impact occurring in regions dominated by 173 

meso- and sub-mesoscale activity. 174 

 175 

2. Methods 176 

 The impact of SST variability on phytoplankton community growth rates was studied by 177 

combining SST observations, both in situ and from remote sensing products, and a phenotype-178 

based ecosystem model. Here, we focused on the impact of SST variability on phytoplankton 179 

community growth rates and therefore did not consider growth limitations due to other sources of 180 

variability such as nutrients, light, and mixed layer depth (Rohr et al., 2020a, 2020b). Further 181 

work is needed to investigate these multi-driver impacts. 182 

 183 

2.1 Southern Ocean drifter profiles 184 

Lagrangian SST data were obtained from 422 Southern Ocean surface drifters from the Global 185 

Drifter Program with 6-hourly SST data. Float data south of 30oS from July 1999 – April 2016 186 

was downloaded from the Drifter Data Centre at the Atlantic Oceanographic and Meteorological 187 

Laboratory (accessed 11/2018).  The lifetime of the drifters ranged from 91 days to 5.8 years 188 

with a median duration of 521 days. Each drifter was segmented into 90-day trajectories to 189 

provide consistency in the dataset. We used only segments that had less than 10% of missing 190 

data. This resulted in 2,190 90-day trajectories (Figure 2a).  191 

 192 
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The surface drifter trajectories were used to examine SST variability within a Lagrangian 193 

reference frame over different temporal periods. Seasonal dynamics dominated the longer time 194 

frames (90 days) while smaller-scale dynamics were important for the shorter windows. We 195 

chose to include seasonal dynamics in the analysis rather than filter them out as they were 196 

important sources of SST variability encountered by phytoplankton. While surface drifters may 197 

have been subjected to some physical movements that phytoplankton do not encounter (e.g., 198 

lateral transfer across fronts due to wind rather than subduction and mixing), they provided the 199 

best in situ dataset for studying Lagrangian variability in surface temperature. To minimize this 200 

impact, we limited our analysis to the most frequently measured scales of variability within the 201 

drifter record (Section 3.1).  202 

 203 

To estimate the magnitude of Lagrangian variability in our study region, we applied moving 204 

windows of 7, 21, 45, and 90 days to each of the 90-day trajectories and recorded the absolute 205 

value of the maximum range of SST recorded by the drifter during each window (Δ   max) and 206 

the time (∆tmax) over which the temperature change occurred. To assess the distribution of 207 

variability across different window sizes, we aggregated the data into 1oC bins for Δ   max and 208 

∆tmax bins of 0-7, 8-21, 22-45, and 46-90 days. For example, a 2.4oC change that occurred over 209 

14 days was recorded in the 2-3oC and 8-21-day bin.  To investigate the potential impact of 210 

small-scale noise, we also created smoothed splines of each of the 90-day SST profiles using a 211 

cubic smoothing spline (csaps in Matlab with a smoothing parameter of 0.00001). We then 212 

             Δ   max and ∆tmax analysis on the spline data. 213 

 214 
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 215 

Figure 2. a) Map of all 90-day drifter trajectories (n = 2190) colored by SST. Two example trajectories 216 
are highlighted in purple and magenta. b) Reaction norms for each of the 319 phenotypes in the 217 
ecosystem model. The grey lines represent all the phenotype reaction norms and the green lines are 218 
example phenotypes to highlight the reaction norm shape. c and d) Example trajectories and their 219 
resulting model outputs. The top panels show the SST (colors), the community growth rate simulated by 220 
Q10 method (dashed line), and the community growth rate from our phenotype-based model (solid line). 221 
The bottom panel shows the growth rate through time of each phenotype (grey lines). The blue line 222 
follows the phenotype with the highest initial biomass, the red dashed line follows the phenotype that has 223 
the highest biomass at the end of the 90 days, and the green line follows the phenotype that has a Topt 224 
equal to the mean SST of the trajectory. 225 

 226 
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2.2 Remote sensing SST 227 

To compare the SST variability in the Lagrangian reference frame to the variability that would 228 

be  captured in the Eulerian reference frame, we used high-resolution (0.01o horizontal resolution 229 

and 1 day temporal resolution) satellite SST data from GHRSST Level 4 MUR Global 230 

Foundation Sea Surface Temperature Analysis (v4.1) (JPL MUR MEaSUREs Project, 2015; 231 

accessed Oct. 2018). This dataset spanned 2003-2014 which overlaps with 71% of our 90-day 232 

drifter trajectories. For each 90-day drifter segment between 2003-2014, we extracted 90 days of 233 

satellite SST data for the latitude and longitude of the final location of the drifter, where the 90 234 

days corresponded to the dates of the drifter segment. We performed the same Δ   max and ∆tmax 235 

variability analyses for the satellite data as the surface drifter trajectories (described in Section 236 

2.1). 237 

  238 

2.3 Idealized SST profiles 239 

We complemented the observed SST trajectories with idealized SST trajectories to 240 

mechanistically understand the impact of the rate and magnitude of SST change on community 241 

growth rates. Specifically, a suite of trajectories (N = 64) was generated with both increasing and 242 

decreasing SST trends   nging f    Δ    =  o    Δ    = 9oC (in increments of 1oC) over 7, 21, 243 

45, and 90 days. This range was chosen based on our Lagrangian variability analysis. To 244 

minimize initialization bias, SST was held constant for the first 30 days before 245 

increasing/decreasing. After the SST change, the SST was again held constant until the 200th 246 

day. The final temperature for all idealized trajectories was 15oC. The impact of the final 247 

temperature on model results was analyzed with a set of sensitivity experiments. The final SST 248 

had no significant impact on the results when the results were reported in terms of generation, 249 

rather than absolute days as this normalized the effect of higher growth rates at warmer 250 

temperatures (Supplemental Information S1). 251 

 252 

2.4 Phenotype-based Ecosystem Model 253 

To estimate the impact of variable temperature on phytoplankton community growth rates, we 254 

used a phenotype-based ecosystem model. The model consisted of 319 phytoplankton 255 

phenotypes that were identical except for the optimum growth temperatures (Topt). Temperature 256 

dependent growth rate (µ, day-1) was defined as a function of T (oC) (Thomas et al., 2012):  257 

 µ(𝑇) = 𝑎𝑒𝑏𝑇 [1 − (
𝑇−𝑇𝑜𝑝𝑡

𝑤/2
)
2

]    Eq. 1 258 

 259 

where Topt was the optimal growth temperature. The value of b controlled the shape of the 260 

reaction norm, a (day-1) scaled the reaction norm, and w (oC) defined the width of the reaction 261 

norm. We used two sets of reaction norms: a symmetrical, or broad, curve where b = 0 (oC-1) and 262 
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a skewed reaction norm where b = 0.3 (oC-1). Both curves had a thermal breadth of 14oC (w = 20 263 
oC), consistent with observed reaction norms for many polar species (Boyd, 2019). Sensitivity 264 

tests were performed with thermal breadths of 10.5oC (w = 15 oC) and 20.5oC (w = 29 oC) 265 

(Supplemental Information). The results from these sensitivity tests did not differ substantially 266 

from the simulations with a thermal breadth of 14oC. 267 

 268 

The parameter a scaled the reaction norms at Topt to the Eppley curve (Eppley, 1972) where 269 

maximum growth rates ranged between 0.28 - 1.0 day-1 for -1.8oC to 30oC, consistent with 270 

experimental data (Boyd, 2019). Specifically, ai was defined for each phenotype i as: 271 

                        𝑎𝑖 = 0.2963𝑒0.0405𝑇𝑜𝑝𝑡     Eq. 2 272 

This resulted in a Q10 relationship of 1.5, consistent with the apparent Q10 from Sherman et al. 273 

(2016). We generated 319 phenotype curves for both the broad and skewed reaction norms with 274 

Topt ranging from      -1.8 oC to 30 oC increasing by 0.1 oC (Figure 2a).  275 

 276 

The biomass of each phytoplankton phenotype Pi was calculated at each time-step as the integral 277 

of: 278 

 
𝑑𝑃𝑖

𝑑𝑡
= 𝜇𝑖(𝑇)𝑃𝑖 −𝑚(𝑇)𝑃𝑖

2    Eq. 3 279 

where µi(T) was the temperature-dependent growth rate for phenotype i from Equation 1. m(T) 280 

was the temperature-dependent quadratic mortality rate (m3 mmol C-1 day -1) where: 281 

      m(T) = 0.1*a    Eq. 4 282 

Here we used the same temperature dependent Eppley curve (Eq. 2) to scale mortality with 283 

temperature using SST instead of Topt where a = 1 day-1 for SST = 30oC . We imposed a 284 

minimum biomass (0.001 mmol C m-3) so that no phenotype went locally extinct, akin to the 285 

“       ing is           ”   in i l  (Hutchinson, 1961). Sensitivity tests were performed with 286 

the minimum biomass set to 0.0001 mmol C   m-3. The minimum biomass threshold did not 287 

affect the overall patterns but did increase both the magnitude of the difference from the 288 

community growth rates obtained using the Q10 model and the time to acclimation (memory 289 

length, Section 3.2) for both broad and skewed reaction norms (Supplemental Information). 290 

Imposing this minimum biomass purposefully introduced mass into the system which was 291 

accounted for by adjusting the biomass of each phenotype to keep the total community biomass 292 

at the concentration it would have been without the minimum biomass criteria. Specifically, the 293 

total change in biomass without the minimum biomass phenotypes was calculated using the 294 

biomass weighted community growth r    (λ) in  l     f µ( ) in Eq   ,       λ was defined as: 295 

                                    λ = ∑µ𝑖,𝑡
𝑃𝑖,𝑡

𝑃
                                                                                          Eq. 5 296 
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where, µi,t was the growth rate of the ith phenotype at time t for all phenotypes with biomass 297 

greater than the minimum, Pi,t was the biomass of the ith phenotype whose biomass was greater 298 

than the minimum at time t, P was the sum of the biomass of all phenotypes with biomass greater 299 

than the minimum at time t.  300 

 301 

Several different models for mortality and grazing were tested including linear mortality, 302 

constant mortality, a dynamic zooplankton population, and a simple ecosystem model with 303 

constant grazing pressure (see section S.4 in Supplemental Material). All model versions resulted 304 

in qualitatively similar results which demonstrated that the community dynamics were not 305 

particularly sensitive to the top-down control formulation in the model (Section S.4 in 306 

Supplemental Material). Here, we present the quadratic mortality as it was the simplest model 307 

with smooth (non-oscillatory) solutions.  308 

 309 

The ecosystem model was forced with each of the 2,190 drifter segment trajectories (see Figure 310 

2c-e for examples), the corresponding smoothed splines, the idealized SST profiles, and the 311 

satellite-derived SSTs. The initial biomass of phenotypes with a Topt within ± 2.5oC of the 312 

starting SST value were randomized to simulate previously accumulated biomass with 313 

phenotypes outside this range set to the minimum biomass. Simulations that used idealized SST 314 

profiles were performed 100 times with different initial biomass conditions to account for 315 

stochasticity in the model initialization. 316 

 317 

3. Results  318 

3.1 SST variability 319 

We characterized in situ SST variability using the surface drifter SST data. The      g  ∆   max 320 

values ranged from 0.9oC ± 0.7o  ( σ) f        -day window, which corresponded to 0.13oC/day 321 

change over the 7 days, to 4.2oC ± 2.0 o  ( σ) f        0-day window or 0.05oC/day change 322 

(Figure S8, Table S1). The latter was consistent with the expected seasonal SST cycle for the 323 

Southern Ocean (Reynolds & Smith, 1994). The SST variability of the drifters was highly 324 

     l      i   ∆   max (Figure S9). 325 

 326 

Using     Δ   max analysis, we were able to quantify the most common types of variability 327 

encountered in situ in terms of both the magnitude of change and the rate of change (Figure 3a). 328 

Due to the difference in the number of data points generated by the moving windows, the data 329 

are presented as the distribution function (fraction) then converted to percent for that window 330 

l ng   s              inn   ∆   max data sum to 100% over each window length. A 7-day 331 

window was most likely to have a Δ   max of 2oC or less (82%), 14% of the data had a Δ   max 332 

envelope of 3oC, and ~3% of the trajectories recorded a Δ   max of 4 oC. Over a 21-day window, 333 
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most trajectories had a Δ   max of 2-3oC (combined account for 86% of data) and ~10% of the 334 

trajectories had a Δ   max of 4-5oC. As the window length increased, trajectories were more 335 

likely to frequently have l  g   Δ   max. For the 45-day window lengths, Δ   max of 2-4oC 336 

were most common (83% of data), and for 90-day window lengths, Δ   max of 3-5oC were most 337 

common (61% of data)  Δ   max reached as high as 9oC for the 90-day windows but accounted 338 

for only 2.5% of the data in that window.  339 

 340 

 341 

Figure 3. SST variability and the impact on growth rate and memory length for a skewed reaction norm 342 
 n    in    sing ∆      n i i ns (s       l   n  l M    i l f         sing ∆     n             i n 343 
n      s l s)  P n l ( ) s   s     f  q  n    f Δ          ng s in       if         f    iff   n  siz   344 
windows. Data are presented as total percentage of data that fall within each window length bin such that 345 
each row sums to 100%. Data to right of the thick black line are below a 2.5% occurrence rate and are 346 
excluded from the other analyses. Panel (b) plots the decline in community growth rate in the phenotype 347 
model that results from the SST moving out of the thermal niche of the original population (see Methods 348 
 n  Fig       )                g               s n  Δ     n   in    l ng       in  i ns           n   349 
supported by the results from panel (a). Panel (c) shows the percent difference between the Q10 350 
parameterized growth rate and the phenotype modeled community growth rates at the point where SST 351 
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stabilizes (see Figure S12 for example). Panel (d) plots the memory effect length associated with SST 352 
changes in the idealized simulations. This represents the time it takes for the community growth rate to be 353 
within 5% of the steady state growth rate at the final SST from the first time-step that SST is constant 354 
(See Figure S12 for example). 355 

 356 

R s l s f        Δ   max analysis for the satellite data showed that while the Lagrangian and 357 

Eulerian reference frames largely recorded similar SST changes, the Lagrangian reference frame 358 

was more likely to capture l  g  Δ   max (Figure S10). For example, over a 7-day window, 359 

Δ   max in a bin around 3oC was almost twice as likely to occur in the Lagrangian (14%) than in 360 

the Eulerian (8%) reference frame. For the 21-day window, a Δ   max of 3-4oC was more likely 361 

to occur in the Lagrangian (35%) reference frame than in the Eulerian (23%). Similarly, for the 362 

45-day window, Δ   max of 2-4 oC were common in both, and larger changes of 4-5oC were 363 

more common in the surface drifters (28%) than the satellite data (19%). Across the full 90 days, 364 

Δ   max of 3-5 oC dominated the variability for both reference frames but the surface drifters 365 

were twice as likely to record Δ   max beyond this range (29% of data) compared to the satellite 366 

data (15%). Overall, while patterns of variability were similar, the Lagrangian reference frame 367 

was more likely to record larger SST changes than the Eulerian. The larger SST changes 368 

recorded in the Lagrangian reference frame impact phytoplankton community growth rates in a 369 

different manner than the smaller SST changes that overlap between the two reference frames 370 

(see Sections 3.2 and 3.3 below). Simulating phytoplankton growth with environmental 371 

variability recorded in the Eulerian reference frame, as is common among many global 372 

biogeochemical models, omits biologically relevant variability.  373 

 374 

For most of the SST data recorded by the drifters, the rate of SST change was slower than the 375 

expected phytoplankton acclimation rates. Acclimation rates for the Southern Ocean diatom F. 376 

cylindrus range from 0.3oC/day to 0.6oC/day (Robert Strzepek, personal communication). For the 377 

drifter trajectories, only 8% of all the days analyzed (n = 197,100 days) recorded daily rates of 378 

SST change higher than 0.3oC/day and less than 2% recorded daily rates of change larger than 379 

0.6oC/day (Figure S11). Because SST rates of change were typically slower than the 380 

phytoplankton acclimation rate, we hypothesized that the rate of acclimation would not play a 381 

major role in the community response. To simplify model dynamics, we ran our model with 382 

rapid acclimation such that each phenotype responded directly to SST changes. See Section 4.1 383 

for discussion about situations in which acclimation may be important.  384 

 385 

3.2 Idealized Simulations 386 

We used idealized simulations to develop a mechanistic understanding of how variability 387 

impacts community growth rates. First, we used the idealized SST profiles to assess the impact 388 

of changing SSTs on community growth rates by calculating the biomass-weighted community 389 

growth rate (Eq. 5) at each timestep of the simulation. We found that SST rates of change larger 390 
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than 2-3oC in 45-90 days (or 28-57 generations at the stabilized growth rate of 0.5 day-1), which 391 

corresponded to a rate of SST change of 0.02-0.07 oC/day, caused community growth rates to 392 

decrease, regardless if SSTs were increasing or decreasing. Once SSTs stabilized at the final 393 

value, community growth rates increased and eventually stabilized. We tracked the time required 394 

for the community growth rate to reach ±5% of the stable value from the timestep at which SSTs 395 

stabilized. This time l g     s      ll i      , “        ff   ”, was then converted to 396 

generations rather than days as this allowed us to understand the relative impact of temperature 397 

change on phytoplankton using a common currency such that our results are not growth rate 398 

dependent. We then compared the biomass-weighted community growth rates from the 399 

phenotype model to the community growth rates calculated using the Q10 equation to test the 400 

impact of rapid phenotype shifts on phytoplankton growth rates. We report only results for those 401 

magnitudes of temperature change and durations of change that we observed in the drifter data 402 

set (Figure 3 ), s   ifi  ll : Δ    =  -4oC in 7 days (0.29-0.57 oC/day) , Δ    =  -5oC in 21 403 

days (0.10-0.24 oC/day) , Δ    =  -6oC in 45 days (0.04-0.13 oC/day),  n  Δ    =  -9oC in 90 404 

days (0.02-0.1 oC/day). Uncertainty estimates reported here are the result of stochastic variability 405 

f        si  l  i ns  i    iff   n  ini i l   n i i ns        s l s f        f ll   ng   f Δ   s 406 

are shown in the Supplemental Information (Figures S13 and S14).   407 

 408 

3.2.1 Impact of variable SSTs on community growth rates in the phenotype model 409 

For small, gradual SST changes of 2-3oC in 45-90 days (0.02-0.07 oC/day), the community 410 

growth rates changed linearly with the SST changes during the period of SST transition and then 411 

stabilized once SST stopped changing. That is, the distribution of phenotypes within the 412 

community changed at the same rate as the SST such that the Topt of the most dominate 413 

phenotype closely matched the SST. As a result, the temporal response in the community growth 414 

rate from the phenotype model was similar to the growth rate from a null model using a 415 

community Q10 parameterization which assumes rapid phenotype shifts in the community in 416 

response to changing SST conditions. In all other simulations, when SST changed by more than 417 

3oC, independent of the time over which this change occurred, a different pattern was observed. 418 

Growth rates initially increased or decreased depending on the sign of the SST change, but then 419 

began to decrease rapidly (see Figure S12 for example). The growth rates continued to decrease 420 

until a minimum value was reached. This corresponded to when SSTs stabilized, after which 421 

community growth rates increased to their final value and remained there for the rest of the 422 

simulation. Growth rates decreased  s       s     ±   ( σ) during this low growth period 423 

(Figure 3b) and a SST increase of 4oC in 7 days (0.57oC/day) resulted in the largest change 424 

(Figure S13). While the absolute percent change in growth rate was partly due to our model 425 

formulation, the qualitative results were robust and seen in the other ecosystem models we tested 426 

(Figure S7).  427 

 428 

Shifts in community growth rates were determined both by changes in the growth rates of 429 

individual phenotypes (i.e. shifts along a reaction norm) and shifts in the community 430 
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composition (i.e. abundance of different phenotypes). The decrease in community growth rates 431 

that accompanied both increases and decreases in SSTs was caused by the SSTs extending 432 

beyond the thermal optimum of the initial community such that the bulk of the biomass was 433 

growing slowly. During this period, the individual phenotypes with elevated growth rates only 434 

made up a small fraction of the community and so did not contribute significantly to the 435 

community growth rate. The community growth rates then rebounded as these high growth 436 

phenotypes increased their biomass and eventually became the dominate biomass group. Faster 437 

rates of SST change moved the community out of the thermal optimum of the initial community 438 

     q i kl     n s  ll       s  f    ng ,  n       f    l  g    n  f s    ∆   s resulted in 439 

greater decreases in community growth rates. However, the high growth individuals were able to 440 

dominate the community more quickly due to the high loss rates for the slow (or no) growth 441 

individuals and so the community growth rates rebounded more quickly than in the cases of 442 

moderate SST change. For rapid SST changes, the rate and type of acclimation response could 443 

potentially play a role in the shifts in community growth rates depending on the nature of the 444 

plastic response (see Discussion).  445 

 446 

3.2.2 Memory Effect 447 

The overall magnitude and direction (increasing or decreasing) of SST change, combined with 448 

time under transient conditions, and shape of the reaction norm (broad vs skewed) all played a 449 

critical role in determining the length of the memory effect – defined here as the amount of time 450 

for the community growth rate to stabilize. Critically, our results indicated that the most common 451 

∆SST changes (Figure 3a) were associated with the longest memory effects (Figure 3d).  Nearly 452 

all ∆SST values tested were sufficient to create a memory effect of longer than 2 generations, 453 

and moderate changes of 3-4oC over 7-45 days or 4-28 generations (0.07-0.57 oC/day) resulted in 454 

the longest memory effects with slight differences between the reaction norm shapes (Figure 3d, 455 

Figure S12). These moderate changes incurred the longest memory effect (up to 22 generations) 456 

for both reaction norm shapes (decreasing SST, Figure S14) or up to nearly five times longer 457 

than the duration of the ∆SST transient. Larger SST changes (5-6 oC) that occurred over 45 or 90 458 

days or 28-57 generations (0.06-0.13 oC/day) tended to have slightly shorter memory effects (~8-459 

19 generations) than the moderate changes (3-4 oC; 0.03-0.09 oC/day) that occurred over the 460 

same time frame (~10-23 generations). This difference was not statistically significant. Longer 461 

memory effects for moderate SST changes resulted from dominant phenotypes in the previously 462 

acclimated community being able to grow in the new environment, albeit at a reduced rate. This 463 

made it harder for the phenotypes optimally suited for the new environment to become more 464 

abundant, which resulted in larger memory effects. Communities that underwent large and rapid 465 

temperature changes showed the largest short-term decline in community growth rates (Figure 466 

S13) but also rebounded more quickly (i.e. had a shorter memory effect) than communities 467 

experiencing moderate changes in SST (Figure S14). 468 

 469 
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The sign of the SST change also impacted the response time of the community. Decreasing 470 

Δ   s     l ng           ff   s     n      g   f   g n    i ns             in    sing Δ   s 471 

(t-test, 95% CI) for the skewed shaped reaction norms. The longer memory effect was due to the 472 

long tail on the decreasing side of the reaction norm, which allowed the phenotypes in the initial 473 

community to grow during decreasing SST conditions (Figure S14). For reaction norms that 474 

wer  s      i  l              i    g                 ,      i    i n  f Δ     i  n         , 475 

and the memory lengths were statistically the same f   in    sing  n        sing Δ   s ( -test, 476 

95% CI) (Figure S14).  477 

 478 

3.2.3 Impact of assuming rapid phenotype shifts via Q10 model 479 

Using the Q10 equation (only a function of SST) to calculate community growth rates resulted in 480 

perfect environmental tracking, or effectively (unrealistic) rapid phenotype shifts such that the 481 

Topt of the community perfectly followed SST (Figure S12). However, as discussed in Section 482 

3.2.1, the timescales required for rearrangement of the community composition resulted in 483 

decreased community growth rates in response to SST variability. To compare the Q10 484 

community growth rates to the phenotype-based model growth rates, we calculated the percent 485 

difference between phenotype-based model and the Q10 model relative to the Q10 model (as [(Q10 486 

– phenotype)*100]/Q10) at the time step when SSTs stabilize, which typically corresponds to the 487 

time of minimum growth in the phenotype-based model (Figure 3c and S12). Community growth 488 

rates derived from the Q10 model were always larger than those simulated by the phenotype 489 

model, which was consistent with previous work that suggested that SST variability will result in 490 

lower growth rates than when temperature variability is not considered (Moisan et al. 2002; 491 

Bernhardt et al. 2018). However, the difference from Q10 was not constant but rather a function 492 

of SST variability. As     ∆    in   ased over a given window length, so did the difference 493 

between the phenotype model and the Q10 model. The largest departures from Q10 occurred for 494 

Δ   s  f  oC and 5 oC over 7 and 21 days, respectively, with up to 80% lower simulated 495 

community growth rates for the phenotype model. The magnitude of this difference was 496 

consistent with the modeling study of Moisan et al. (2002) who found that the Q10 growth rate 497 

model over-estimated individual phenotype growth rates and population growth rates. The 498 

s  ll s   iff   n         n         ls   s f   Δ    =   oC over 90 days which resulted in 2.5-499 

5% lower growth rates    n   ll , l  g   Δ   s  n  f s        s  f    ng  (changes occurring 500 

over a few generations) resulted in larger differences between the models.  501 

 502 

3.3 Southern Ocean Drifter Trajectories 503 

The idealized simulations allowed for a mechanistic explanation of the impact SST changes have 504 

on phytoplankton community growth rates. However, in the ocean, SST change is much more 505 

complicated as phytoplankton are exposed to a large variety of rates and duration of SST 506 

changes. We used Southern Ocean drifter trajectories to investigate the impact of in situ SST 507 

variability on community growth rates.  508 
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Using the Southern Ocean drifter trajectories, we found that, like the idealized simulations, the 509 

phenotype model resulted in lower average community growth rates compared to the Q10 model 510 

over the entire 90-days (Figure 4). Like the idealized simulations, as drifter SST variability 511 

increased, so did the difference between the phenotype model and the Q10 model. The mean 512 

percent difference between the phenotype model and the Q10 model for the trajectories ranged 513 

between 9.0% - 39.8% for the skewed reaction norms. A similar pattern was observed for the 514 

broad shaped reaction norms, but the magnitude of the difference was smaller and ranged from 515 

just 0.6% to 24.6% different (Figure S15). Trajectories with higher mean SSTs were affected less 516 

by SST variability than trajectories with lower SSTs. This was due to faster growth rates at 517 

higher temperatures, which allowed more rapid responses to SST changes and shorter memory 518 

lengths in terms of days (when normalized to generations there was no difference).  519 

 520 

 521 

Figure 4. Impact of SST variability on community growth rate. The average percent difference in 522 
community growth rate between the phenotype model and the Q10 growth model from the 90-day drifter 523 
s g  n s      l       g ins      s  n        i  i n ( σ)  f       if  r SST. Each segment is colored by 524 
the mean SST. Results from the idealized trajectories are shown as black circles with filled circles 525 
denoting increasing SST trajectories and open circles denoting decreasing SSTs.  Pink triangles represent 526 
the two example trajectories from Figure 2. Results shown here are for skewed shaped reaction norms, see 527 
Figure S15 for results for the broad shaped reaction norms.  528 

To isolate the impact that short-term variability may have had on community growth rates 529 

relative to longer-term shifts, we compared the 90-day mean biomass-weighted community 530 
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growth rate of the drifter trajectories to the smoothed splines derived from the trajectories. The 531 

smoothed splines (i.e. low frequency variability) accounted for a varying percentage of the 532 

overall SST variability from a median value of 27% when looking at a 1-day window to 93% 533 

when looking at a 90-day window (Figure S16). We found that removing short-term variability 534 

had no impact on community growth rates (t-test, 95% CI; Figure S17).  535 

 536 

4. Discussion 537 

4.1 Impact of Acclimation 538 

Acclimation becomes potentially important when the rate of acclimation is slower than the rate 539 

of SST change. To assess the potential impact of an acclimation timescale that was slower than 540 

the SST change on our results, we ran the phenotype-based model with a range of acclimation 541 

rates (0.2 oC/day to 0.6 oC/day (Robert Strzepek, personal communication) and ∆SST changes of 542 

2-4oC in 7 days (0.29-0.57 oC/day) and 5oC in 21 days (0.24 oC/day) (Section S.7 in 543 

Supplemental Material). The results were generally consistent with the rapid acclimation results 544 

which suggested that acclimation timescales have a secondary impact on community growth 545 

rates compared to phenotypic shifts. The slower acclimation rates did shift the balance between 546 

phenotypic change in growth rate and the community composition shift (Section 3.2.1) and 547 

resulted in both a delay in the decrease in community growth rates and a smaller magnitude 548 

decrease (Figures 5a and S18). The memory effect increased linearly with a decrease in 549 

acclimation rate (longer acclimation time) (Figures 5b and S19). 550 

 551 
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 552 

Figure 5. The impact of acclimation on memory lengths. Acclimation rates that were slower than the rate 553 
of SST change resulted in longer memory lengths than for simulations in which acclimation rate was 554 
equal to or faster than the SST rate of change.  555 

 556 

The phenotypic plasticity represented in the model was a simplistic representation of plasticity. 557 

Specifically, we assumed that the phenotype slowly adjusted its growth rate by moving along the 558 

reaction norm at the rate defined by the acclimation timescale.  As such, whether the plastic 559 

response was “  n fi i l”    “    i  n  l” (Kremer et al., 2018) depended on whether SSTs 560 

were increasing or decreasing and whether the initial SST was above or below Topt.  In reality, 561 

plastic responses are much more complex and nonlinear and most likely vary among species 562 

(Kremer et al., 2018). Additional work is needed to better constrain both the range or acclimation 563 

timescales and the mechanisms of phenotypic plasticity. However, our results suggest that these 564 

dynamics will only become important under rapid temperature changes which are infrequent in 565 

the ocean.  566 

 567 

4.2 Implications for in-situ community composition 568 

Our findings support the important role of thermal history in shaping the response of 569 

phytoplankton communities to changes in temperature. We have shown that SST variability can 570 

lower community growth rates for tens of generations following SST perturbation. This indicates 571 

that, for many regions of the ocean, the phytoplankton community will not be fully acclimated to 572 
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local conditions as a result of the mismatch between timescales of physical variability and 573 

biological response. This mismatch in timescales will be a function of the rate and magnitude of 574 

variability that phytoplankton in the water mass were previously exposed to and may be reflected 575 

in physiological properties such as optimum growth temperature or overall community growth 576 

rate.  577 

 578 

      s l s  ls      i    n i      n      nsi n  n      l ssi    in i l       “       ing is 579 

everywhere: but the environment sel   s” (Hutchinson, 1961)  E  n    n ‘       ing is 580 

          ’,    s              i  s  l  f    n i  n  n  l s l   i n (     ni      l     n ) 581 

is a critical factor in determining community composition. Specifically, we hypothesize that even 582 

when the ‘   i  l’   g nis  is    s n  in  n  n i  n  n ,        i  ili   g n          l   l 583 

physics, lateral advection, and seasonal trends can delay or prevent that organism from 584 

dominating the community. This hypothesis is supported by previous modeling work that has 585 

shown a time-lag on the order of weeks to a month in the phytoplankton community growth 586 

response to SST changes due to lateral advection and seasonal trends (Moisan, et al., 2002; 587 

Hellweger et al. 2016). Here, we have quantified the relationship between varying rates of SST 588 

variability and the timescale required for community replacement to impact the community 589 

composition. 590 

 591 

Underlying the time lag of the community response to SST variability were differences in the 592 

distribution of phenotypes. When rates of change were slow, the community was able to keep up 593 

with the changing SSTs and the Topt of the most abundant phenotype matched the changing SSTs 594 

(i.e. there is no memory effect and difference from Q10 is small). However, as SSTs became 595 

more variable, the dynamics described above (Section 3.2) resulted in a mismatch between in 596 

situ SST and the Topt of the dominant phenotype (which resulted in larger offsets from Q10 and a 597 

memory effect). Further, our results indicated that the difference in the nature of SST variability 598 

between the Eulerian and Lagrangian reference frames could cause different community growth 599 

rates and phenotype distribution.   600 

 601 

The influence of lateral advection on the phenotype distribution of the community was evaluated 602 

by comparing differences in the offset between the Topt of the most abundant phenotype and the 603 

SST of the simulation. We compared the SST at the end of each 90-day segment to the 604 

phenotype Topt offset (defined as SST minus Topt of the most abundant phenotype at the final 605 

time step).  While the final SST of the drifter segments and satellite data were not statistically 606 

different (t-test, 95% CI, Figure S20), differences in the nature of variability in the proceeding 90 607 

days resulted in a significant difference between the final SST and the Topt of the most abundant 608 

phenotype (t-test, 95% CI, Figures 6 and S21). The magnitude of the offset between SST and Topt  609 

depended on the timing of SST changes throughout the 90-day profiles. Consistent with the 610 

results from the idealized simulations, when SST changes were slow, the offset between SST and 611 
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the Topt of the most abundant phenotype were negligible (Figure S22 for an example) while 612 

larger and/or faster SST changes resulted in larger offsets (Figure S23 for an example). Large 613 

SST changes that occurred early in the 90-day segment allowed sufficient time for the 614 

community to respond and for the Topt of the community to reflect the SST change, assuming the 615 

SST profile stayed relatively stable after the initial SST change (see drifter data in Figure S22). 616 

When SST changes occurred later in the 90-days, the community did not have sufficient time to 617 

respond which caused a larger offset between the SST at day 90 and the Topt of the community 618 

(see satellite data in Figure S23). Different phenotype distributions for the Eulerian versus 619 

Lagrangian reference frames is consistent with previous results that showed advection of 620 

phytoplankton communities was a key process in shaping phytoplankton diversity (Barton et al., 621 

2010; Clayton et al., 2013; Lévy et al., 2014). 622 

 623 

 624 

Figure 6. The impact of Lagrangian and Eulerian variability on community composition. Here we plot the 625 
difference between the Topt of the most abundant phenotype at the end of each 90-day trajectory and the 626 
final SST for the drifter trajectory (x-axis) and the satellite data (y-axis). The final SSTs for the drifter and 627 
satellite data are statistically identical (t-test, 95% CI). Therefore, deviations from the 1:1 line 628 
demonstrate the impact of a Lagrangian versus Eulerian reference frame on community composition.  629 

 630 

Our results support the hypothesis of Moisan et al. (2002) that the shape of the temperature 631 

reaction norms has a significant impact on the community response to temperature variability. 632 
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Additionally, we suggest that the nature of the environmental variability may play an important 633 

role in determining which reaction norm shapes will be most regionally competitive. 634 

Specifically, under decreasing temperatures, a phenotype with a skewed reaction norm (Topt is 635 

closer to Tmax) is predicted to have a competitive advantage over a phenotype with a broad 636 

reaction norm (Topt at the center of the range), given the same range and Topt. The increased 637 

competitive advantage is because the skewed reaction norm provides a larger range of 638 

temperatures less than Topt under which the phenotype can grow and, consequentially, a more 639 

gradual decline in growth rate as a function of decreasing temperatures. Therefore, organisms 640 

with skewed reaction norms should be adapted to have Topt values close to maximum 641 

encountered temperatures not only due to the rapid drop in growth rates for temperatures greater 642 

than Topt (Thomas et al., 2012) but also due to the competitive advantage under temperatures less 643 

than Topt (Moisan et al., 2002). Conversely, broad reaction norms are favored when temperatures 644 

are warming, as expected, or when temperatures are more variable.  Our results have 645 

implications for the global distribution of reaction norm shapes.  One would expect more skewed 646 

reaction norms in the tropics where the warmest waters are found making it easier to evolve a 647 

Topt close to the maximum encountered temperature as this upper bound is constrained (Thomas 648 

et al., 2012).  However, in the polar regions where the temperatures encountered by 649 

phytoplankton is much more variable, there should be selective pressure for broad reaction 650 

norms with large growth ranges beyond Topt  as suggested by Moisan et al. (2002) or skewed 651 

reaction norms where Topt is higher than mean SSTs (Thomas et al., 2012). 652 

 653 

4.3 Implications for simulating community growth rates in global biogeochemical models 654 

The Q10 temperature-growth response is widely used in ecosystem models. The premise behind 655 

employing a Q10 growth equation is that each modeled functional group encompasses many 656 

species or strains with successive optimum growth temperatures. Therefore, a temperature 657 

change will merely shift the distribution of species/strains in the group such that the one with a 658 

Topt matching the new temperature will dominate the community. However, as we have 659 

demonstrated, the timescale of this shift is important and is a function of the rate, magnitude, and 660 

 i    i n  f                ng   n      s      f     s   i s s   ins’       l   s  ns         As 661 

a result, this succession does not occur as rapidly as represented by the Q10 function. In fact, 662 

community growth rates often temporarily declined until the phenotype with Topt near ambient 663 

conditions overcame the previously accumulated biomass. Because of the temporary decrease in 664 

community growth rates, the Q10 temperature-growth response not only overestimates 665 

temperature-related community growth but does so as a function of SST, SST variability, and 666 

reaction norm shape. Critically, this indicates that adjusting the Q10 relationship to use a lower 667 

exponent as previously suggested (Sherman et al., 2016) will only partially capture realistic 668 

dynamics.  669 

 670 

In addition to not capturing the full effect of SST variability on growth rates, biogeochemical 671 

models may not be adequately capturing relevant variability.  The current framework of most 672 
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biogeochemical models requires them to be integrated in an Eulerian reference frame. We have 673 

shown that the Eulerian variability can differ substantially from the Lagrangian reference frame 674 

(Figure S11). While the overall magnitude of the variability was similar between the Eulerian 675 

and Lagrangian reference frames, we also found that the character of that variability was 676 

different (Figure S11) and the Lagrangian reference frame recorded more variability that 677 

generated longer memory effects in the phytoplankton community growth rates. The spatial 678 

patterns of SST variability in the Southern Ocean were similar between Eulerian and Lagrangian 679 

reference frames (Figure 7a,c) as was the effect on community growth rates (Figure 7b,d). 680 

However, due to the dampened variability in the Eulerian reference frame relative to the 681 

Lagrangian reference frame, the offset between community growth rates simulated using the Q10 682 

equation and the phenotype model was also lessened. Models such as DARWIN (Follows et al., 683 

2007) resolve phenotypes with a range of thermal reaction norms and so will capture the 684 

community growth rate dynamics presented here. However, additional work is needed to 685 

compare the variability encountered by functional group phenotypes in large-scale models 686 

integrated in an Eulerian framework to true Lagrangian variability.   687 

 688 
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 689 

Figure 7. Distribution of SST variability (a, c) and the deviation in community growth rate from Q10 (b, d) 690 
over the Southern Ocean (>30°S).  Top row shows drifter data and bottom row shows satellite data. Three 691 
key regions of high SST variability stand out: Malvinas-Brazil confluence zone, the Agulhas 692 
Retroflection, and the Subtropical front. These regions have enhanced SST variability in both datasets but 693 
higher variability in the drifters. These high variability regions correspond to large differences between 694 
the phenotype model growth rates and Q10. 695 

 696 

Improving the parameterized temperature-growth relationship may be particularly important in 697 

the Southern Ocean. We used the model results described above to identify key regions within 698 

the Southern Ocean that might be most strongly impacted by temperature variability. Three 699 

particular regions stand out that exhibited the most SST variability and had the largest relative 700 

deviations from the Q10 model: the Malvinas-Brazil confluence zone; the Agulhas Retroflection 701 

region; and downstream from these two along the Subtropical Front near ~45oS, 60oE (Figures 702 

7a,b). All three regions were previously identified as highly dynamic, strong frontal regions 703 

(Artana et al., 2019; Beal et al., 2015; Graham & Boer, 2013) and shown to be important hot-704 
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spots for phytoplankton diversity (Barton et  l ,     ;  l    n     l ,     ;  ’  i i      l ,     ; 705 

Soccodato et al., 2016). These regions represent the boundaries where cold, fresh polar water 706 

meets the warm, salty subtropical where abundant mixing via meso- and sub-mesoscale 707 

processes can occur ( l    n     l ,     ;  ’  i i      l ,     ) and lead to the highly variable 708 

SSTs recorded by the floats. It is possible that in these highly dynamic frontal regions the floats 709 

were subjected to physical movements across the fronts that was previously thought to elude 710 

phytoplankton movements. However, recent field and modeling studies have shown that cross-711 

front transfer and diapycnal mixing can occur due to the fine-scale physics associated with these 712 

strong fronts (Clayton et al., 2017; Mahadevan, 2016; Wenegrat et al., 2020) 713 

 714 

Our results also showed that large SST changes were not required for temperature variations to 715 

have a lasting impact on community growth rates. While large differences between Q10 716 

community growth rates and the phenotype-based model community growth rates were common 717 

in the regions mentioned above, other regions of the Southern Ocean that had moderate (2-3.5 718 
o ,  σ)        i  ili    ls  recorded equally large differences in community growth rate, often 719 

at least 45% smaller than Q10 estimates and up to 94.5% different. This was consistent with our 720 

results from the idealized simulations which showed that moderate temperature changes can have 721 

large impacts on community growth rates.  722 

 723 

5. Conclusions 724 

In this study we utilized idealized SST simulations and SST data from ocean surface drifters to 725 

show that synoptic SST variability on time-scales of a few days to a few weeks temporarily 726 

decreases phytoplankton community growth rates, while higher frequency variability has little 727 

impact. The time it took for the community growth rate to reflect the new environment was 728 

dependent upon the rate and magnitude of temperature change, the direction of change, and the 729 

s      f     s   i s s   ins’       l   s  ns             l  g s          ff   s resulted from 730 

moderate changes in SST that occur over 1-3 weeks. This impact of SST variability can 731 

potentially cause a large offset between a phenotype-based temperature-dependent community 732 

growth rate and a Q10 based estimate and suggests that phytoplankton communities sampled in 733 

situ may often not be adjusted to local conditions. Given the highly variable nature of the ocean 734 

and importance of environmental variability for phytoplankton physiology, it is critical to 735 

consider the correct reference frame and the magnitude and duration of variability when studying 736 

phytoplankton dynamics. Here we demonstrated that the Lagrangian reference frame captured by 737 

drifters was, in many instances, not equivalent to the Eulerian frame and that this had significant 738 

impacts for estimating phytoplankton growth rates.   739 
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 776 

Figure 1. The impact of SST variability on individual phenotype growth rate. (a) The 777 
temperature related growth response for a phenotype with a skewed shaped reaction norm. The 778 
values for the optimum growth temperature (Topt) and the corresponding maximum growth rate 779 

(μmax) are shown with dashed lines. (b) The 90-day SST profile of an example drifter trajectory 780 
(black) and the associated changes in phenotype growth rate (blue). The orange and red arrows in 781 
the top panel indicate the change in the phenotype growth rate associated with the corresponding 782 

changes in SST in the bottom panel.  783 

Figure 2. a) Map of all 90-day drifter trajectories (n = 2190) colored by SST. Two example 784 
trajectories are highlighted in purple and magenta. b) Reaction norms for each of the 319 785 
phenotypes in the ecosystem model. The grey lines represent all the phenotype reaction norms 786 
and the green lines are example phenotypes to highlight the reaction norm shape. c and d) 787 

Example trajectories and their resulting model outputs. The top panels show the SST (colors), the 788 
community growth rate simulated by Q10 method (dashed line), and the community growth rate 789 

from our phenotype-based model (solid line). The bottom panel shows the growth rate through 790 
time of each phenotype (grey lines). The blue line follows the phenotype with the highest initial 791 
biomass, the red dashed line follows the phenotype that has the highest biomass at the end of the 792 

90 days, and the green line follows the phenotype that has a Topt equal to the mean SST of the 793 

trajectory. 794 

Figure 3. SST variability and the impact on growth rate and memory length for a skewed 795 

     i n n     n    in    sing ∆      n i i ns (s       l   n  l Material for decreasing 796 
∆     n             i n n      s l s)  P n l ( ) s   s     f  q  n    f Δ        hanges in 797 

the drifter data for different sized windows. Data are presented as total percentage of data that 798 
fall within each window length bin such that each row sums to 100%. Data to right of the thick 799 
black line are below a 2.5% occurrence rate and are excluded from the other analyses. Panel (b) 800 

plots the decline in community growth rate in the phenotype model that results from the SST 801 
moving out of the thermal niche of the original population (see Methods and Figure S12). Data 802 

that are greyed out represen  Δ     n   in    l ng       in  i ns           n   s            803 

the results from panel (a). Panel (c) shows the percent difference between the Q10 parameterized 804 

growth rate and the phenotype modeled community growth rates at the point where SST 805 
stabilizes (see Figure S12 for example). Panel (d) plots the memory effect length associated with 806 
SST changes in the idealized simulations. This represents the time it takes for the community 807 
growth rate to be within 5% of the steady state growth rate at the final SST from the first time-808 
step that SST is constant (See Figure S12 for example). 809 

Figure 4. Impact of SST variability on community growth rate. The average percent difference in 810 

community growth rate between the phenotype model and the Q10 growth model from the 90-day 811 
  if    s g  n s      l       g ins      s  n        i  i n ( σ)  f       if         E    s g  n  812 
is colored by the mean SST. Results from the idealized trajectories are shown as black circles 813 

with filled circles denoting increasing SST trajectories and open circles denoting decreasing 814 
SSTs.  Pink triangles represent the two example trajectories from Figure 2. Results shown here 815 
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are for skewed shaped reaction norms, see Figure S15 for results for the broad shaped reaction 816 
norms.  817 

Figure 5. The impact of acclimation on memory lengths. Acclimation rates that were slower than 818 
the rate of SST change resulted in longer memory lengths than for simulations in which 819 

acclimation rate was equal to or faster than the SST rate of change.  820 

Figure 6. The impact of Lagrangian and Eulerian variability on community composition. Here 821 

we plot the difference between the Topt of the most abundant phenotype at the end of each 90-822 
day trajectory and the final SST for the drifter trajectory (x-axis) and the satellite data (y-axis). 823 
The final SSTs for the drifter and satellite data are statistically identical (t-test, 95% CI). 824 

Therefore, deviations from the 1:1 line demonstrate the impact of a Lagrangian versus Eulerian 825 
reference frame on community composition.  826 

Figure 7. Distribution of SST variability (a, c) and the deviation in community growth rate from 827 
Q10 (b, d) over the Southern Ocean (>30°S).  Top row shows drifter data and bottom row shows 828 
satellite data. Three key regions of high SST variability stand out: Malvinas-Brazil confluence 829 

zone, the Agulhas Retroflection, and the Subtropical front. These regions have enhanced SST 830 
variability in both datasets but higher variability in the drifters. These high variability regions 831 

correspond to large differences between the phenotype model growth rates and Q10. 832 
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