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Supporting Text 1. Distribution and drivers of grazing dynamics using the

VIIRS chlorophyll record

In Figure 1 we use phytoplankton carbon biomass estimated remotely from the Carbon-

based Productivity Model (Westberry et al., 2008) to compare directly to prognostic

phytoplankton biomass resolved in the simulation. However, estimating carbon biomass

from space using particle back-scattering involves a di↵erent set of assumptions than

traditional estimates of phytoplankton abundance which infer chlorophyll concentrations

from ocean color. To confirm these di↵erences did not influence our results we repeated

the analysis comparing the seasonal cycle of modelled phytoplankton carbon to that of

remotely sensed chlorophyll from VIIRS (Sathyendranath et al., 2019). The results were

largely consistent (Supporting Figure 1).

The primary di↵erence is that the two clear asymptotes apparent when using CbPM

biomass as an indicator of phytoplankton abundance are now not as well defined, with the

lower asymptote disappearing entirely. Note, while we use a sigmoidal function to fit the

relationship for consistency and direct comparison, it may be better described with a rect-

angular hyperbole. It is not entirely clear why there is no lower asymptote for chlorophyll

but it may have to do with the detection threshold for ocean colour versus backscatter,

the fact that at low phytoplankton concentrations the particle back scatter signal may no

longer be dominated by phytoplankton, or variability in the carbon to chlorophyll ratio

as a result of community composition or photo-adaptation. Never the less, our two most

important results remain consitent: 1. The type III response consistently outperforms

the type II response (Supporting Figure 2, Supporting Table 1) and 2. the seasonal
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cycle in more eutrophic regions is better described using larger K1/2 values (Supporting

Figures 1, 2)

Note, model skill scores appear higher for VIIRS than CbPM (Supporting Table 1);

however, model skill was normalized across all runs using chlorophyll (VIIRS) and all run

using carbon (CbPM) independently. Thus, the higher scores for VIIRS do not necessar-

ily mean the modelled seasonal phytoplankton cycle better reflects observed chlorophyll

compared to carbon, but rather that the di↵erence between the model skill achieved with

the optimal K1/2 values compared to sub-optimal K1/2 values is larger when comparing

to observed chlorophyll.

Supporting Text 2. First order stability of the functional response

The shape of the functional response curve, g([Cphyto]), influences the shape of the

seasonal cycle of phytoplankton biomass primarily through its stabilizing or desta-

bilizing influence on phytoplankton population dynamics (Gentleman & Neuheimer,

2008). The stabilizing influence of grazing is determined by how clearance rates (Cl =

g([Cphyto])/[Cphyto]) change in response to changing phytoplankton biomass. If phyto-

plankton accumulation decreases clearance rates, thereby promoting further population

growth, that is a positive feed back with a destabilizing influence. Alternatively, if phy-

toplankton accumulation increases clearance rates, thereby damping further population

growth, that is a negative feed back with stabilizing influence. The stabilizing influence of

the functional response at a given phytoplankton concentration can thereby be quantified

by the first derivation of the clearance rate with respect to the phytoplankton concentra-

tion (i.e. dCl
d[Cphyto]

). The value of dCl
d[Cphyto]

is determined both the shape of g([Cphyto]) as
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well as the prognostic phytoplankton concentration which determines where on the curve

dCl
d[Cphyto]

is evaluated.

To capture a mean sense of the stabilizing influence of the functional response across

a complete model run and many di↵erent phytoplankton concentrations, we define the

mean first order stability as the value of dCl
d[Cphyto]

at the mean annual [Cphyto] in a given

grid cell of a given run. The mean first order stability of our experiments was consistently

negative (destabilizing) when a type II response was employed (Figure S3B) and positive

(stabilizing) when a type III response was employed (Figure S3A). Note, while it is not

possible to have positive first order stability when a type II response is used, it is possible

to have negative first order stability stability when a type III response is used. The latter

is possible in model configurations with a very low gmax or very strong bottom-up growth

conditions that could buoy phytoplankton populations above K1/2.

Regardless of response type, large K1/2 values stretch out the response curve, leading

to the depression and linearization of the functional response at low (but common) prey

concentrations, slow and steady clearance rates, and very little influence on the stability

of the system. Decreasing K1/2 with a type II response monotonically decreases the

first order stability by both directly altering the shape of the functional response curve

and indirectly decreasing the prognostic phytoplankton population via increased grazing

pressure. Decreasing K1/2 with a type III response monotonically increases the first order

stability of the system. This occurs because decreasing K1/2 increases grazing pressure

and, without suitably strong bottom-controls, keeps the annually-averaged phytoplankton

concentration below K1/2, where the first order stability increases as K1/2 decreases.
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Supporting Text 3. Challenges and potential of parameterizing zooplankton

community composition

By invoking the equations descried in Figure 1 or Supporting Table 1 mod-

ellers could implicitly resolve changes in zooplankton community composition by driv-

ing changes in the community-integrated functional attributes (i.e. K1/2) of a single

zooplankton group with changes in prey abundance. However, experimenting with this

parameterization warrants careful consideration of several factors.

Ecologically, such a parameterization requires assuming that a) bulk phytoplankton

biomass co-varies with phytoplankton community composition in a systematic way, with

less productive waters inhabited by smaller phytoplankton (Roy et al., 2013), and b)

zooplankton community composition is determined by the composition of the prey field

in a systematic way, with more e�cient grazing able to dominate when prey options are

smaller (Kiørboe & Hirst, 2014). While both assumptions are generally well supported by

observations and together are consistent with the emergent relationship between observed

phytoplankton biomass and the inferred grazing dynamics required to best recreate its

seasonal cycle (Figure 1), implementing the associated relationship introduces additional

challenges.

First o↵, the specific parameters listed in Supporting Table 1 and Figure 1 would

likely need to be tuned-up to the bottom-up configuration and physical dynamics of each

particular model in which they are embedded. Secondly, it is not obvious what space and

time scales one should assume that specific grazing rates should change due to the influence

of food scarcity on individual zooplankton versus the influence of zooplankton community

May 10, 2023, 6:05am



X - 6 ROHR ET AL.: INVERSE MODELLING ESTIMATES OF GRAZING

composition on mean grazing dynamics. That is, while the value of K1/2 determines

the instantaneous response of zooplankton grazing rates to food scarcity, it should take

longer for K1/2 itself to evolve. This is because K1/2 reflects the mean physiological

characteristics of the entire zooplankton community and can only change at the rate with

which community composition can evolve. This timescale likely varies globally and as

a function of other environmental drivers such as temperature (Richardson, 2008). For

example, much shorter time periods are needed in communities dominated by asexually-

reproducing zooplankton such as salps compared to those dominated by zooplankton with

complex, multi-year, life histories, such as euphausiids (Steinberg et al., 2015). Finally,

the best implementation of this parameterization would require further constraining the

relationship between phytoplankton biomass and K1/2 in addition to the strength and co-

variability of other drivers of zooplankton bio-geogrpahy such as temperature (Brandão

et al., 2021) or the relative distribution of prey in models with multiple phytoplankton

groups.

Despite the challenges, properly implementing such a parameterization could realize

dramatic improvements in BGC models and our predictions of changes to marine carbon

cycling. Extending from the assumption that a given optimal K1/2 reflects the mean be-

havior of a particular zooplankton community, other attributes of that community could

be additionally parameterized. For instance, crustaceans associated with slower grazing

(and larger K1/2 values) are typically stronger swimmers. They tend to vertically mi-

grate on daily and seasonal timescales, allowing them to actively transport carbon much

faster than microzooplantkon (Steinberg & Landry, 2017). This could be represented by
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increasing the flux of carbon from zooplankton into the sinking detritus pool (i.e. POC)

at low K1/2 values, without explicitly including the important role of Diel-vertical migra-

tion in carbon transport (Archibald et al., 2019). Other important BGC attributes that

vary with zooplankton community composition include the recalcitrance of their detritus

and thus the remineralization rates of what they contribute to export production, their

sensitivity to temperature, their stoichiometry and carbon content, and their response to

seasonal change in the depth of the surface mixed layer.
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Figure S1. Identical to Figure 1, except using VIIRS chlorophyll instead of CbPM

carbon biomass to track the observed phytoplankton phenology.
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Figure S2. Identical to Figure 1 D, E and Supporting Figure 2 D, E, expect

now showing results from individual experiment suites (each using a di↵erent gmax value)

instead of averaging optimal values across experiment suites.

May 10, 2023, 6:05am



ROHR ET AL.: INVERSE MODELLING ESTIMATES OF GRAZING X - 13
Ty

pe
 II

I
(g

m
ax

=
 1
)

Ty
pe

 II
(g

m
ax

=
 1
)

A

B

First Order Stability

First Order Stability

M
ore Stable   M

ore U
nstable

K1/2 = 16 K1/2 = 8 K1/2 = 4 K1/2 = 2 K1/2 = 1 K1/2 = 0.5

Figure S3. Sensitivity of ecosystem stability to K1/2. Global distributions of the mean-

annual first order stability is plotted for all K1/2 values, each with a consistent gmax = 1,

and a A) type III and b) type II functional response.
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A B C

Figure S4. The mean annual model bias is plotted for the A) mixed layer depth

(MLD) relative to HYCOM reanalysis, B) Phytoplankton biomass relative to CbPM and

C) NPP relative to CbPM.
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Response 
Type 

gmax 
(d-1)

Parameters of Sigmoidal Fit (95% Confidence)

!!/# = # + %− #
' + ()* +!"#$% − ,

-

Mean 
Model 
Skill

# % , -

Type II 0.5 4.89 
(4.77-5.00)

11.17  
(11.05-11.29)

1.10  
(1.09-1.10)

0.30
(0.28-0.33) 0.57

Type II 1 6.19 
(6.10-6.28)

13.98
(13.88-14.09)

1.07
(1.06-1.08)

0.20
(0.18-0.21) 0.61

Type II 2 8.479 
(8.24-8.7)

14.53  
(14.36-14.69)

1.076  
(1.06-1.09)

0.5  
(0.45-0.57) 0.56

Type II Mean 6.68
(6.59-6.76)

13.16  
(13.07-13.24)

1.08 
(1.08-1.09)

0.28 
(0.27-0.30) 0.57

Type III 0.5 1.96 
(1.86-2.04)

6.65
(6.57-6.78)

1.06
(1.05-1.06)

0.26
(0.23-0.28) 0.75

Type III 1 2.90 
(2.80-3.00)

6.65
(8.18-8.35)

1.034 
(1.03- 1.04)

0.23 
(0.21- 0.25) 0.74

Type III 2 4.20  
(4.11-4.29)

9.91 
(9.8-10.00)

1.027 
(1.02-1.03)

0.16
(0.14-0.17) 0.73

Type III Mean 3.0
(2.92-3.10)

8.279 
(8.20-8.36)

1.038
(1.03-1.04)

0.22
(0.20-0.23) 0.74

A Optimal K1/2 (mmolC m-3) vs. Mean-annual Observed Phytoplankton Biomass (mmolC m-3)

Response 
Type 

gmax 
(d-1)

Parameters of Sigmoidal Fit (95% Confidence)

!!/# = # + %− #
' + ()* +,- − .

/

Mean 
Model 
Skill

# % . /

Type II
0.5 -1.01  

(-3.55-1.54)
10.54  

(10.35-10.73)
0.06  

(0.04-0.09)
0.25  

(0.2102, 
0.2897)

0.65

Type II 1 0.23  
(-6.58-7.04)

12.2  
(12.04-12.36)

12.2 
(12.04-12.36)

0.20 
(0.15-0.24) 0.64

Type II 2
-855 

(-1.4e+06-
1.48e+06)

11.61  
(10.74-12.47)

-0.81  
(-240-240)

0.60
(-1.14-2.34) 0.47

Type II Mean -3.446  
(-16.04-9.15)

11.34  
(11.19-11.49)

0.00  
(-0.09-0.08)

0.27  
(0.20-0.33) 0.59

Type III 0.5 1.10 
(0.43-1.77)

5.78 
(5.66-5.90)

0.10  
(0.08-0.11)

0.17 
(0.14-0.20) 0.79

Type III 1 2.378  
(1.74-3.01)

7.42  
(7.29-7.55)

0.10  
(0.09-0.11)

0.15 
(0.12-0.17) 0.81

Type III 2 2.28 
(0.73-3.83)

8.84  
(8.69-8.98)

0.08  
(0.06-0.09)

0.15  
(0.12-0.18) 0.85

Type III Mean 2.00
(1.21-2.79)

7.34  
(7.21-7.45)

0.09  
(0.08-0.10)

0.15
(0.12-0.18) 0.82

B Optimal K1/2 (mmolC m-3) vs. Mean-annual Observed Chlorophyl (mg m-3)

Table S1. The relationship between mean annual phytoplankton abundance and the

K1/2 parameter required to best recreate its seasonal cycle. Di↵erent relationships refer

to di↵erent response functions (II,III), gmax values (0.5,1,2) and observed phytoplankton

variables (Carbon, Chlorophyll). Mean model skill refers to the average cost function

score of the optimal K1/2 across all grid cells in a given configuration
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