
 
 

Supplementary Information to  1 

Detrital carbonate minerals in Earth’s element cycles 2 

Gerrit Müller*,a, Janine Börkerb, Appy Sluijs a, Jack J. Middelburg a  3 

a Department of Earth Sciences, Utrecht University, The Netherlands  4 

b Institute for Geology, CEN (Center for Earth System Research and Sustainability), Universität 5 

Hamburg, Germany 6 

 7 

g.muller@uu.nl 8 

janine.boerker@uni-hamburg.de 9 

A.Sluijs@uu.nl 10 

J.B.M.Middelburg@uu.nl 11 

 12 

* corresponding author: Gerrit Müller 13 

Mail: g.muller@uu.nl 14 

Address: Room 318, Vening Meineszgebouw A, Princetonlaan 8a, 3584 CB Utrecht 15 

S1 Data compilation 16 

To derive a model for the prediction of carbonate content in riverine suspended sediment from 17 

catchment properties, we compiled a dataset of riverine annual average PIC concentrations (GloRiSe 18 

v 1.1, Müller et al., 2021a) and respective catchment information, including the composition of rocks 19 

(GLiM, Hartmann and Moosdorf, 2012), unconsolidated sediment (GUM, Börker et al., 2018) and 20 

soil (WISE, Batjes, 2012), as well as a variety of hydro-environmental, topographical and land cover-21 

related variables (HydroBasins v. 1.0, Linke et al., 2019). Annual median PIC concentrations were 22 

calculated separately for single observations, seasonal averages and annual averages from suspended 23 
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and bed sediment samples with grain sizes < 125 µm (fine sand) for each location, following the 24 

calculation scheme of Müller et al., (2021b). In addition to direct PIC measurements (e.g. barometric 25 

or by Carbon analyzer), mineralogical and petrographic observations (Light Microscopy, X-Ray 26 

Diffractometry, Electron Microscopy or Raman Spectroscopy) were stoichiometrically converted to 27 

PIC: 28 

 29 

𝑃𝑃𝑃𝑃𝑃𝑃 [𝑤𝑤𝑤𝑤%] = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ 0.12 + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∗ 0.125 ≈ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ 0.12 ≈ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∗ 0.12 (S1) 30 

 31 

The value 0.12 is the stoichiometric mass fraction of C in CaCO3 and 0.125 the one of C in 32 

CaMg(CO3)2. For samples, where no such information about their carbonate content was given, we 33 

used an empirical linear model based on CaO, MgO, K2O and Al2O3 to estimate PIC concentrations 34 

(Figure S 1; Table S 1).  35 

 36 

Figure S 1 Performance of the mean coefficient, major-element based empirical model for the prediction of 37 
PIC from CaO, MgO, K2O and Al2O3 on the complete set of annual median PIC values from direct 38 
measurements (N = 49). The red line represents a fit of a Gaussian error distribution. The blue line represents 39 
the 1:1 line, i.e., a perfect prediction. 40 
 41 
The parameters of this relationship were derived by a linear regression of annual values from GloRiSe 42 

locations, for which major element composition was given along with direct PIC measurements, using 43 



a Levenberg-Marquardt algorithm. This empirical model was preferred over stoichiometric 44 

conversion of CaO to PIC and unmixing models, because it mitigates complications through sorbed, 45 

silicate-bound and phosphate-related CaO, difficulties associated with variable fractions of dolomite 46 

and ambiguity of the relationship between chemical and mineral composition. The model potentially 47 

overpredicts PIC in basalt-dominated catchments, as mafic mineral assemblages contribute elevated 48 

silicate-bound CaO and MgO contents not covered in the calibration. Therefore, we set locations 49 

manually to zero, at which the sum of basaltic and intermediate volcanics and plutonics and 50 

pyroclastics exceed the potential source carbonate content of the catchment (whose derivation is 51 

described below). Samples from locations on basaltic islands (e.g., Iceland), were excluded from the 52 

analysis. To estimate the precision of this model on the basis of uncertainty through limited sample 53 

availability and (potentially) insufficient coverage, the linear regression was repeated 20,000 times 54 

with different (80%) subsets selected by Latin hypercube sampling (LHS). LHS assures an even 55 

distribution of each (pseudo-)random subset over the whole range. The size subsets was chosen as a 56 

compromise retaining representativity and sufficient size and sub-set diversity. The optimal number 57 

of runs was chosen as the point where mean value and standard deviation of parameter estimates 58 

remained stable within < 0.01. Resulting parameters and uncertainties are given in Tab. S1 and yield 59 

an R2 of 0.81 (p < 0.01), when applied to the full original dataset. By comparing single measurements 60 

to flux-weighted mean values at ten locations with > 10 samples with sediment flux information 61 

available in GloRiSe, we estimate the mean relative uncertainty of the annual average PIC 62 

concentration to 50 % (median deviation 47.4 %, mean deviation: 54.9 %). 63 

Table S 1 Mean and standard deviation (SD) of 20,000 parameter estimates for the prediction of PIC from 

CaO, MgO, K2O and Al2O3.  

 CaO MgO K2O Al2O3 

Mean Coefficient 0.134 -0.024 0.112 -0.017 

SD 0.035 0.064 0.040 0.004 



Each location was assigned the HydroBasins sub-basin it is located in at Pfafstetter level 7 by the 64 

minimum Euclidian distance from the location to the polygon outline (< 0 if the location is inside the 65 

specific polygon). Point data located outside of any sub-basin was excluded from further analysis, as 66 

these tend to be located in estuaries or even coastal regions, where marine influence becomes 67 

significant. The mean of annual averages of all locations within the same subbasin was calculated 68 

(mostly 2 locations per sub-basin).  69 

The average lithological composition for each sub-basin and respective upstream values were 70 

calculated using the SAGA toolbox (Conrad et al., 2015) in the open-access geographic information 71 

system QGIS (QGIS Development Team, 2021). For this purpose, the Global Lithological Map 72 

(GLiM) was converted to WGS 84, vectorized and polygons were dissolved by lithological class. The 73 

absolute and relative lithological composition of each sub-basin was calculated using the area 74 

occupied by each mono-lithological unit within that sub-basin. Upstream values were then calculated 75 

for each sub-basin from all basins indicated to flow into the specific basin by following the 76 

NEXT_DOWN identifier in the nested HydroBasins catchment outlines for a maximum of 420 basins 77 

back, exceeding the longest flow path at Pfaffstetter level 7. To combine this lithological information 78 

into a single variable, we assigned each lithological and unconsolidated sediment unit a source 79 

carbonate content in accordance to the descriptions provided in the respective reference (Börker et 80 

al., 2018; Hartmann and Moosdorf, 2012). Carbonate sediments were assumed to purely consist of 81 

carbonate, mixed sediments were assumed a 50:50 mixture of siliciclastic and carbonate sediments 82 

and one third of all evaporites was assumed to be carbonate. The carbonate content of metamorphic 83 

rocks can range from 0 to 100 and its average is unknown on a global scale. We therefore assume the 84 

composition of metamorphic rocks to be equal to the average composition of the rest of Earth’s rock 85 

surface, yielding a carbonate content of 27 % (Hartmann and Moosdorf, 2012). Procedures were 86 

followed similarly for the map of unconsolidated sediments (GUM, Börker et al., 2018), to assign 87 

globally representative carbonate concentrations to each sediment class using published global 88 

estimates (Journet et al., 2014; Müller et al., 2021b) and the GeoReM geomaterial reference database 89 



(Jochum et al., 2005). The unconsolidated sediment unit (‘su’) in GLiM was assigned no carbonate 90 

content to avoid overlap with the GUM.  Details of the assignment can be inspected in the according 91 

scripts (supplementary MATLAB file ‘PredictorSets.m’ and ‘MapUnit_CarbonateContent’.xlsx’). 92 

For soils, the carbonate content was given directly as a polygon property within the database (WISE, 93 

Batjes, 2012). All three carbonate sources were summed, normalized to 100% and used as an 94 

indication of the potential source carbonate (SC), i.e., the carbonate available to be transported as PIC 95 

by the respective river.  96 

Notably, matrix carbonate can be present in nominally carbonate-free siliciclastic sediments and 97 

accounted for by assigning 10 % carbonate to this unit (Figure S 3). This assignment neglects the 98 

chemical and mineralogical heterogeneity of the individual rock units. For instance, alluvial sediment 99 

may be extremely diverse and not well-represented by a global average. This becomes visible in high 100 

PIC values (several wt%) that were assigned a low SC (< 10 %), which is implausible because of the 101 

dissolution-dominated weathering behavior of carbonates. While we notice that this issue might be 102 

the major source of inaccuracy of our results, these values (where River PIC > 0.8*SC-related PIC) 103 

were excluded from our analysis as they rather reflect a misfit of the maps used, our carbonate 104 

assignment and the PIC concentrations, then the true relative variance of the variables. 105 

 106 

Figure S 2 PIC vs source carbonate content from rocks, sediments and soils within the respective catchment. 107 



The blue line represents our logical constraint that river PIC < 0.8 times the source carbonate related PIC. 108 

The value of 0.8 is somewhat arbitrarily chosen, but considering 0.9 or 0.7 makes negligible 109 

differences and the main point is to remove unreasonably high PIC values (compared to the maps 110 

used). The  297 variables provided by HydroBasins were reduced to 99 variables by selecting only 111 

upstream The main point is to remove unreasonably high PIC values (in respect to the maps used).and 112 

annual averages. From these 99 variables, potentially important predictors were identified and 113 

grouped using the correlation matrix and established causal relationships to PIC and carbonate 114 

weathering. For highly intercorrelated variables, e.g. precipitation and runoff, only the one was 115 

selected that better correlated to PIC and cannot be represented by any other variable or variable 116 

combination (e.g., runoff by precipitation and upstream area). The 9 selected variables are presented 117 

in the main text 118 

S2 Regression and Upscaling 119 

A justification of the chosen approach to regression and general information are given in the main 120 

text, while in the following the exact setting and procedures of the regression are described in detail.  121 

S2.1 Qualitative indication of PIC presence 122 

For the qualitative prediction of PIC presence (yes/no), we assigned each location in our data 123 

compilation a class (0 = no, 1 = yes) according to a critical threshold concentration of 0.1 wt% PIC, 124 

that can effectively not be distinguished from zero within uncertainty. 75 % of the dataset were used 125 

to train a set of different models derived from employing different methods, such as linear and logistic 126 

regression, tree- and ensemble techniques, discriminant analysis, nearest neighbor, naïve Bayes 127 

classifiers and Support Vector Machines (SVM), all of which are available in the MATLAB 2019b 128 

Machine Learning toolbox. Of those, Ensemble techniques, naïve Bayes classifiers and SVMs 129 

performed similarly well with respect to the accuracy of positive indications, while only SVMs 130 

exhibit the same quality for negative indications. We therefore chose to (automatically) optimize the 131 

hyperparameters of an SVM algorithm with respect to our dataset, yielding a final accuracy of 83.6 % 132 

for positive classifications and of 77 % for negative classification. For the negative indications, we 133 



inserted LHS-distributed numbers within the range of 0 to 0.1 wt% in the Monte Carlo simulation. In 134 

the end, the uncertainty on our global estimate that is induced by SVM accuracy is potentially very 135 

small, because even false positive indications may result in PIC values close to the truth. The reason 136 

is that the quantitative model would tend to still predict low values in these cases. False negative 137 

indications, in contrast, may actually scratch the lower limit of what is reliably predictable, but are 138 

likely close to a value within a range of 0 to 0.2 wt%, as observed in individual test plots of the 139 

quantitative prediction.  140 

S2.2 Quantitative symbolic regression by Multi-Gene Genetic Programming 141 

The open-source toolbox GPTIPS 2.0 (Searson et al., 2010) was implemented for Symbolic 142 

Regression based on Multi-Gene Genetic Programming. Due to changes in the MATLAB symbolic 143 

math toolbox, GPTIPS can currently only be used in MATLAB versions older than v2018a. Symbolic 144 

Regression by GPTIPS was used to derive the form and the parameters of a quantitative model to 145 

predict PIC concentrations from catchment properties. Single terms (‘Genes’) are (pseudo-)randomly 146 

created along tree-like structures and linearly combined to full models by weighting coefficients 147 

estimated using classic least-squares regression. These models are applied to the training subset and 148 

results are compared to observed PIC concentrations in individual ‘tournaments’ of pre-defined size. 149 

The best performing models in these tournaments are evolved through genetic operations, such as 150 

numerical mutation, copy or exchange (‘cross-over’).   151 

Apart from the chosen predictor variables and constants between -10 and 10, individual genes can 152 

contain the following operators/functions: times, plus, minus, power, exp(), log(), square root(), 153 

exp(*-1), *-1, tanh() and cosh().  Each run starts with a? population of? 1000 models consisting of up 154 

to 5 genes with a maximum tree-depth of 3. In a single run, equations were evolved over 500 155 

generations with a 20 % probability of mutation by a Gaussian function with a standard deviation of 156 

0.2, 78 % probability of cross-over (of which 30 % are high-level cross-overs) and 2 % of direct copy. 157 

Tournament size was set to 2, comparing a maximum of models to each other. To reduce complexity 158 

of the resulting equations, a pareto-fraction of 10 % was introduced, that is 10 % of the tournament 159 



decisions include a penalty for expressional complexity (= sum of number of nodes in all sub-trees 160 

describing a model). For the rest, our fitness function was defined as the root mean squared error 161 

(RMSE): 162 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 =  RMSE = �∑ (Obsi−Predi)2𝑁𝑁
𝑖𝑖

𝑁𝑁
                                   (S2) 163 

Where N is the number of samples, i is an integer between 0 and N, Obs is the observed value and 164 

Pred the prediction. To avoid overfitting, each model was tested on a 25 % subset, that was not 165 

considered during training. The model that performed best compared to this test set was chosen as the 166 

output.  167 

S 2.3 Calculation of the global riverine PIC flux and Monte Carlo Simulations  168 

The result of the data compilation and regression efforts is a gapless composite set of observed, 169 

modelled and zero-constrained PIC concentrations for each HydroBasins (sub-)basin at Pfafstetter 170 

level 7. For the basins directly draining into the ocean, PIC concentrations were multiplied by their 171 

respective sediment discharge to yield PIC fluxes, which were then summed up to yield the global 172 

riverine PIC flux. To test for the effect of anthropogenic reduction of the global sediment discharge 173 

(Cohen et al., 2014), we repeated this procedure using disturbed sediment discharge values provided 174 

by GlobalDelta (Caldwell et al., 2019; Nienhuis et al., 2020).  175 

The exact number resulting from this procedure would change, if (i) different subsets would have 176 

been selected for the individual runs, (ii) different samples would have been available (uncertainty of 177 

annual averages and representativity of the input data), (iii) another sediment flux would have been 178 

implemented (uncertainty of the sediment discharge model). The influence of the accuracy of the 179 

input maps is not considered in the error analysis and discussed below. To account for the effect such 180 

variations exert on our estimation of global PIC flux (i-iii), we re-estimated the PIC flux as the mean 181 

of 830 Monte Carlo simulations (MC), while the associated uncertainty is represented by the standard 182 

deviation of the individual results (Koehler et al., 2009). The number of simulations was determined 183 

by monitoring the change in mean values and standard deviations (Koehler et al., 2009), which appear 184 

to stabilize within a few 100 repetitions. The 830 simulation used were selected from a total of 2,000 185 



simulations based on the frequency of outliers in respect to the 10 % and 90 % percentile of all 2,000 186 

results for the same basin. The 830 simulations selected had < 0.3 % outliers in PIC fluxes.  187 

In each MC simulation, observed PIC concentrations were perturbed by a pseudo-random factor 188 

between -0.3 and 0.3, which corresponds to the mean relative uncertainty of the annual averages. 189 

Evenly distributed perturbation factors were achieved using LHS. This implies that our uncertainty 190 

estimate is an upper limit, because even distributions facilitate more variability than Gaussian 191 

distribution through higher frequencies of marginal values. Subsequently, the full regressive 192 

classification and symbolic regression procedure was repeated for each of these perturbed sets and 193 

predictions were made for the missing basins with a positive indication of PIC presence. Basins with 194 

SC < 10 % were manually set to 0 for all runs (see 2 Methods, Main Text). Finally, the individual 195 

simulations were combined with a set of sediment discharge perturbed by an LHS-based factor 196 

between – 0.5 and 0.5. This range is oriented on the performance of the WBMSed 2.0 model at a 197 

number of well-distributed test locations (Cohen et al., 2014) and on the range of published estimates 198 

of the global sediment discharge of ~ 12 – 20 Gt/y (e.g., Beusen et al., 2005; Milliman and Farnsworth, 199 

2011; Syvitski and Kettner, 2011). For each individual basin, outliers between the accepted 200 

simulations and unreasonable high values (> 12 wt% PIC corresponds to > 100 wt% carbonate) were 201 

removed before further statistical treatment. 202 

This extensive uncertainty analysis accounts for all variations on our results, except for the 203 

accuracy of the maps our model is based on. This is particularly true for the derivation of SC, which 204 

strongly depends on the assumptions made during carbonate assignment to the individual units, 205 

especially those of unconsolidated sediment. The accuracy of the lithological map (GLiM) was 206 

estimated to ~ 60 %, considering nominally different, but similar units as a fit (Hartmann and 207 

Moosdorf, 2012). This demonstrates the general issue, that modelling of Earth-system processes can 208 

only be as good as we observe and record Earths’ properties. Variables related to human influence 209 

may also be subjected to different sorts of bias, while records of temperature, precipitation, soil 210 

carbonate, the extent of water bodies and the rough indications of vegetation type seem more reliable, 211 



as these are more easily measured or documented. However, there may also be a degree of uncertainty 212 

emerging from the extrapolation and harmonization procedures used to generate the available gridded 213 

and gapless maps that we used as input variables (Linke et al., 2019). 214 

Additionally, the importance of individual variables for the prediction of PIC concentrations 215 

was evaluated by the coefficients of correlation and determination between each variable and the 216 

modelled Monte Carlo-mean PIC concentrations (see main text). This method reduces biases due to 217 

multi-collinearity and non-linearity and is commonly applied to the evaluation of canonical 218 

correlations analyses (Kuylen and Verhallen, 1981).  219 

S3 First-order estimates 220 

Literature data for the average river PIC concentration (relative to dry suspended sediment mass) 221 

globally range from 1 wt% (Meybeck, 1982) to 4 wt% (Savenko, 2007), compared to 0.4 wt% for the 222 

continental USA (Canfield, 1997). Despite denoted as inorganic carbon, we assume the second value 223 

(Savenko, 2007) to represent the carbonate concentration rather than the carbon concentration. The 224 

conversion to mass % of carbon by the multiplication with 0.2 (20 % carbon in CO3) yields 0.8 wt%, 225 

which is in the range of the other estimates. Considering a global riverine sediment flux of 19.1 Pg/y 226 

(Beusen et al., 2005; Cohen et al., 2014; Milliman and Farnsworth, 2011) with 21 % being related to 227 

(nominally) carbonate-free basaltic lithologies (Milliman and Syvitski, 1992), the global PIC flux 228 

might be 63 to 150 Mt C/y ( = 5 to 12.5 Tmol C/y). This is slighlty lower than the value of Gattuso 229 

et al. (1998) (14 Tmol C/y), but consistent with the range reported by Middelburg et al. (2020) (7.4-230 

14.2 Tmol C/y).  231 

From the difference between the global mean major element composition of riverine 232 

suspended particles with and without decarbonation during sample preparation (Bayon et al., 2015; 233 

Viers et al., 2009), we estimate a global average PIC concentration of 0.6 wt% based on a 234 

concentration of carbonate-related CaO of 2.9 wt% and a C/Ca ratio of 0.21 in calcite. This results in 235 

a PIC flux of 92 Mt C/y or 12.7 Tmol C/y, consistent with the previously estimated range. These first-236 



order estimates support our hypothesis, that riverine PIC fluxes may indeed be a significant, but 237 

largely overlooked flux in the Earth system. Notably, these concentrations are not flux-weighted and  238 

based on rather small and incomprehensible datasets. As tropical rivers dominate the global sediment 239 

flux to the ocean by far (Milliman and Farnsworth, 2011) and exhibit the highest rates of chemical 240 

weathering (Hartmann et al., 2014) and carbonate dissolution (Romero-Mujalli et al., 2019), the true 241 

magnitude of the global PIC flux and its behavior in response to changing sound conditions remain 242 

very uncertain.  243 

Greenland and Antarctica were not included in the model estimates, as they are not part of the 244 

sediment discharge model (Cohen et al., 2014), and are hardly mapped. We therefore took published 245 

estimates of sediment discharge by meltwater and ice-rafted debris from literature (Overeem et al., 246 

2017; Raiswell et al., 2008; Wadham et al., 2013). We further assume that the PIC concentration of 247 

sediment discharged from Greenland and Antarctica is equal to the average global concentration, 248 

which is in line with the few available measurements from Greenland available in GloRiSe v1.1 249 

(Müller et al., 2021b). The average PIC concentration of atmospheric dust was taken from a model-250 

estimate of the global average dust composition (Journet et al., 2014) and complemented by a widely 251 

accepted estimate for atmospheric dust deposition in the ocean (Jickells et al., 2005). Numbers and 252 

calculus can be found in the supplementary files (‘CryosphereAtmosphere.xslx’). 253 

Data and script availability 254 

The all data and scripts used for this study, along with a detailed manual and the supplementary 255 

information, can can be accessed via: https://github.com/GerritMuller/Detrital-Carbonates-in-256 

Earths-Element-cycles. 257 
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