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 Records derived from evaporites, barite, and carbonate-associated sulfate are 9 

similar, but also contain dramatic short-term discrepancies 10 

 Variation created by diagenetic and depositional processes increases with age in all 11 

records, obscuring temporal trends in marine sulfate 12 

Plain Language Summary 13 

Sedimentary rocks deposited in ancient oceans preserve a record of seawater composition.  14 

We compare the sulfur isotopic composition of three sedimentary materials that contain 15 

sulfate—a major ion in seawater important for carbon and oxygen cycling.  Evaporite salts, 16 

the mineral barite, and trace sulfate in limestone each have the same first-order trends over 17 

the last 541 million years, but also display substantial shorter order discrepancies that 18 

reflect how the materials capture and store paleooceanographic information.  These 19 

discrepancies partially obscure understanding of the relationship between life, ocean 20 

chemistry, and climate. 21 
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Abstract 25 

The δ
34

S of seawater sulfate reflects processes operating at the nexus of sulfur, carbon, and 26 

dioxygen cycles.  However, knowledge of past seawater sulfate δ
34

S values must be 27 

derived from proxy materials that are impacted differently by depositional and post-28 

depositional processes.  We produced new timeseries estimates for the δ
34

S value of 29 

seawater sulfate by combining 6710 published data from three sedimentary archives—30 

marine barite, evaporites, and carbonate-associated sulfate—with updated age constraints 31 

on the deposits.  Robust features in the records capture temporal trends in the δ
34

S value of 32 

seawater and its interplay with other Phanerozoic geochemical and stratigraphic trends.  33 

However, high-frequency discordances demonstrate that each record is differentially prone 34 

to depositional biases and diagenetic overprints.  The amount of noise, quantified from the 35 

variograms of each record, increases with age for all δ
34

S proxies, indicating that post-36 

depositional processes obscure detailed knowledge of seawater sulfate’s δ
34

S value deeper 37 

in time. 38 

1 Introduction 39 

Seawater sulfate acts as a major oxidant of organic carbon, controlling the cadence of its 40 

burial in sediments and connecting the carbon and sulfur cycles (Bowles et al., 2014; 41 

Jørgensen, 1982).  Microbial sulfate reduction (MSR), reoxidation of sulfide, and the burial 42 

and oxidation of pyrite govern sedimentary inorganic carbon and alkalinity fluxes (Ben‐43 

Yaakov, 1973; Froelich et al., 1979).  Pyrite in sedimentary rocks may be exposed and 44 

oxidized during uplift, erosion, and weathering, impacting the dioxygen and carbon dioxide 45 

budgets on tectonic timescales (Burke et al., 2018; Kump & Garrels, 1986; M. A. Torres et 46 

al., 2014).  Over Phanerozoic time (the past 541 Myr), the burial of sulfide and disulfide 47 

minerals must eventually balance the acid produced and dioxygen consumed during 48 

terrestrial pyrite weathering.  Therefore, tracking ancient sulfate fluxes related to these 49 

processes illuminates when, how, and where the Earth system achieves this balance, and 50 

what happens during intervals of unsteadiness. 51 

Thode et al. (1953) first recognized that a record of ancient marine sulfur isotopic 52 

compositions (δ
34

S) could inform changes to Earth’s biogeochemical cycles, and Ault and 53 

Kulp (1959) applied mass balance assumptions in an early effort to quantify important 54 

sulfur fluxes.  Isotope fractionations during MSR preferentially enrich the residual sulfate 55 

in 
34

S (Harrison & Thode, 1958).  Thus, when more sulfate is reduced and fixed into pyrite, 56 

removing more light sulfur isotopes from the oceans, the remaining sulfate in seawater 57 

becomes enriched in the heavy, rare isotopes.  Holland (1973) first attempted to calculate 58 

changes in dioxygen fluxes from δ
34

S data.  Holser (1977) further recognized that rapid 59 

changes in the δ
34

S value of seawater coincide with intervals of biotic crises and dramatic 60 

reorganizations of Earth’s climate and biosphere.  The subsequent forty years have seen 61 

many efforts to derive an accurate and precise record of how the δ
34

S value of seawater 62 

sulfate has changed over Earth history. 63 
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Three sedimentary materials constitute proxy archives of δ
34

S values of Phanerozoic 64 

seawater sulfate: (1) marine evaporites, which include sulfate salts precipitated from 65 

evaporated seawater in marginal marine basins; (2) marine barite, which forms from a suite 66 

of biogeochemical processes associated with sinking particles and early diagenesis in 67 

pelagic waters; and (3) carbonate-associated sulfate (CAS), which is minor sulfate 68 

incorporated into the crystal lattice of biogenic and abiogenic calcite, aragonite, and 69 

dolomite phases that accumulate in sedimentary rocks.  Important reviews (Bottrell & 70 

Newton, 2006; Claypool et al., 1980; Holser et al., 1989; Strauss, 1997; Veizer et al., 1980) 71 

on the evolution of the Phanerozoic sulfur cycle have assumed that these proxies accurately 72 

preserve the isotopic composition of ancient seawater sulfate. 73 

We produced a new timeseries to estimate the Phanerozoic history of the δ
34

S value of 74 

seawater sulfate by synthesizing published geochemical data with updated geochronology 75 

and stratigraphic correlations.  From this record we quantified the differences exhibited 76 

between the archives, which we attribute to mechanics of how sulfate is incorporated into 77 

and preserved in sedimentary rocks. 78 

2 Synthesis of Phanerozoic seawater sulfate δ
34

S proxy data 79 

We compiled 6710 measurements from 108 references that analyzed δ
34

S values in 80 

Phanerozoic marine evaporites, bulk rock CAS, biogenic CAS, or marine barite.  Some 81 

previous evaporite δ
34

S compilations included data from salt diapirs, secondary veins in 82 

non-sedimentary rocks, aqueous brines that had dissolved nearby evaporite-bearing 83 

formations, or brackish or non-marine depositional environments; these data were excluded 84 

from this compilation.  The bulk rock CAS record contains data from sedimentary 85 

carbonate phases, although the extraction procedure employed varies between studies.  The 86 

biogenic CAS record includes CAS data from brachiopods, belemnites, bivalves, and 87 

foraminifera, as well as sulfate in apatite from conodonts.  Although preservation of 88 

biogenic and bulk-rock CAS was addressed in each reference, all data were included in the 89 

current compilation.  Sulfur isotope data from authigenic phosphorites were not included. 90 

Each δ
34

S value was assigned an age using the International Commission on Stratigraphy 91 

2016/04 time scale (Cohen et al., 2013; updated) (Figure 1).  For data from studies that 92 

included radiometric ages, the radiometric age model was maintained.  For studies that 93 

included stage-level assignments of the lithostratigraphy, ages were assigned by linearly 94 

interpolating on stratigraphic thickness unless the reference included independent estimates 95 

of sedimentation rate.  For studies that assigned ages but did not include stratigraphic data, 96 

ages were updated by linearly interpolating between the assigned ages of stage boundaries 97 

in each time scale.  The δ
34

S data and stratigraphic height or age assignment was extracted 98 

graphically from figures in references that did not tabulate data.  Many evaporite deposits 99 

have substantially improved stratigraphic and age assignments since publication of their 100 

sulfur isotope data.  The ages of evaporite-bearing formations have been updated using the 101 

most recent tectono-stratigraphy and/or economic exploration literature.  The Supporting 102 
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Information enumerates the δ
34

S data, assigned age, data type, data source, and method and 103 

literature used for each age assignment. 104 

Each proxy material has different, irregularly spaced temporal distributions (Figure 1a).  To 105 

estimate Phanerozoic δ
34

S trends, each proxy record was interpolated at 500 kyr resolution 106 

(Figure 1b).  Kriging—a geostatistical approach using autocorrelation to quantify stochastic 107 

components in spatiotemporal data—was used to weight data for interpolation and estimate 108 

confidence intervals (Gebbers, 2010).  Kriging weights the data between two endmembers 109 

of linearly detrended variance.  At the maximum is the variance of all points in that 110 

geologic interval, and at the minimum is the unresolved chatter between data closely 111 

spaced in time. Variance increases from low values at the shortest separation distances to 112 

the population variance with the assumption that spatiotemporal processes are most 113 

correlated over short intervals.  The kriged uncertainty on the interpolations reflects this 114 

increase in variance, such that interpolated values further from data have larger 115 

uncertainties up to the population variance according to the observed range of 116 

autocorrelation.  Kriging was done on each geologic material, partitioned by era, by 117 

modelling variograms, which are functions describing how the variance per point 118 

(semivariance) of pairs of linearly detrended data varies with their average separation 119 

distance in time (Supporting Information).  A circular variogram model, which represents 120 

the expected correlation between data arranged according to a Poisson distribution within 121 

two overlapping circles (Webster & Oliver, 2007), was used to create kriging estimates of 122 

the interpolated δ
34

S values and variance. 123 

 124 

Figure 1 [next page]. Records of Phanerozoic seawater sulfate δ
34

S generated from proxy 125 

materials. (a) The number of δ
34

S analyses of each proxy per Myr, in 5 Myr bins, illustrates 126 

the temporal bias in the sampling of each material through Phanerozoic time.  (b) 127 

Interpolated proxy records of the δ
34

S composition of sulfate over Phanerozoic time.  128 

Shading indicates the kriged 1σ confidence intervals.  (c) All compiled proxy data for the 129 

δ
34

S of Phanerozoic seawater. 130 
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3 Discussion 132 

3.1 Trends and distribution of δ
34

S in proxies 133 

During seventy years of effort to determine a history of Phanerozoic seawater sulfate δ
34

S 134 

from different geologic materials, it has implicitly been assumed that each proxy samples 135 

the same primary population of seawater δ
34

S compositions through space and time.  This 136 

is reasonable because Phanerozoic seawater likely contained abundant sulfate as a 137 

conservative, well-mixed anion.  Modern seawater has 28 mM sulfate, which has an 138 

approximate residence time of more than 10 Myr—much longer than the mixing time of 139 

the oceans (Bottrell & Newton, 2006; Walker, 1986).  The episodic presence of supergiant 140 

gypsum and anhydrite deposits in the sedimentary record indicates that sulfate has been a 141 

major constituent in ancient seawater, as well.  These deposits, which represent long-lived 142 

intervals of basin recharge and evaporation of seawater (Warren, 2010), formed 143 

episodically from Mesoproterozoic through Phanerozoic time (Grotzinger & Kasting, 1993; 144 

Pope & Grotzinger, 2003) during intervals with favorable tectonic and climatic 145 

arrangements (Warren, 2010).  The composition of fluid inclusions in halite from these 146 

evaporite deposits further suggest that sulfate maintained at least millimolar concentrations 147 

throughout Phanerozoic time (Lowenstein et al., 2003). 148 

However, comparison of all Phanerozoic δ
34

S data for each proxy indicates that the four 149 

datasets do not come from the same distribution (Supporting Information, non-parametric 150 

Kruskal-Wallis one-way analysis of variance, χ
2
[3,6709] = 684.54, p ≪ 0.001).  Therefore, 151 

each proxy likely has different temporally or spatially variable sampling biases or reflects 152 

different biogeochemical processes that create variance in the time-series of ancient 153 

sulfate’s δ
34

S. 154 

All archives exhibit high δ
34

S values in early Paleozoic time, fall to minima in the late 155 

Paleozoic, and increase to modern values (~21‰) over Mesozoic and Cenozoic time 156 

(Figure 1c).  This pattern was originally noted in the evaporite record by Ault and Kulp 157 

(1959), reaffirmed by more extensive evaporite compilations (Claypool et al., 1980; Holser 158 

et al., 1989; Holser & Kaplan, 1966; Strauss, 1997), and confirmed in the CAS record by 159 

Kampschulte and Strauss (2004).  The δ
34

S pattern covaries with many other geochemical 160 

records of changing seawater composition (Hannisdal & Peters, 2011; Prokoph et al., 161 

2008), and so has been interpreted to reflect long-term changes in sea-level related to the 162 

assembly and breakup of Pangea (Alexandra V. Turchyn & DePaolo, 2019).  How changes 163 

in tectonic processes directly affect the δ
34

S value of seawater sulfate or indirectly affect 164 

sulfur mass balance and depositional and diagenetic processes remains unclear (Fike et al., 165 

2015; Alexandra V. Turchyn & DePaolo, 2019). 166 

Seawater sulfate concentrations and δ
34

S may have varied on short timescales.  Limited 167 

periods of sulfate drawdown may coincide with intervals of biogeochemical changes, and 168 

these may be expressed as high spatial and temporal δ
34

S gradients (Holser, 1977; Kah et 169 

al., 2004, 2016).  If these gradients represent globally relevant budgets of carbon, nutrients, 170 
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and oxidizing capacity, then the residence time of sulfate in ancient oceans must have been 171 

much shorter than today, indicating ancient marine sulfate inventories dramatically smaller 172 

than the modern inventory or much larger fluxes.  For example, the biological pump—173 

remineralization of sinking organic matter that is fractionated by tens of permille from 174 

dissolved inorganic carbon—is only capable of creating inorganic carbon isotopic gradients 175 

of less than 3‰ given Quaternary nutrient inventories and ca. 2 mmol/kg bicarbonate 176 

(Toggweiler & Sarmiento, 1985).  Fractionations between oxidized and reduced species are 177 

comparable for carbon and sulfur, so even small gradients in the δ
34

S of marine sulfate, of 178 

similar magnitude to carbon isotope gradients driven by the biological pump, would have 179 

required both a higher proportion of anaerobic organic carbon remineralization and more 180 

than an order of magnitude smaller sulfate inventory. 181 

Two higher-order fluctuations in the evaporite record in the Upper Devonian and the lower 182 

Triassic were identified by Holser (1977) and are recorded by CAS as well.  Additional 183 

fluctuations in the bulk CAS, biogenic CAS, and barite records are apparent due to their 184 

higher temporal resolution than the evaporite record for much of the Phanerozoic.  In 185 

general, the interpolated CAS and barite δ
34

S records are within about 10‰ of that of the 186 

evaporite record (Figure 2a), suggesting that the other proxy materials record the same first 187 

order features of the Phanerozoic sulfur cycle.  Which higher-frequency variations reflect 188 

spatial or temporal changes in the δ
34

S of ancient oceans, and which reflect local or 189 

diagenetic controls on the formation of the archive? 190 
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 191 

Figure 2. Comparison of δ
34

S values and variance generated from proxy materials. (a) 192 

Residuals between the evaporite record and each other record shaded with kriged 1σ 193 

confidence intervals.  (b) Confidence intervals produced from kriging data from each proxy 194 

in each era.  Where data is sparse, the confidence intervals approach the standard deviation 195 

of linearly detrended data in each geologic period, excluding 1
st
 and 99

th
 percentile outliers.  196 

Where there is data, the confidence interval is the uncorrelated chatter determined from the 197 

semivariance of data temporally closer than the mean minimum time between data pairs. 198 

 199 

3.2 Sources of δ
34

S variance 200 

The range of variance for each proxy is plotted in Figure 2b.  The maxima in each era on 201 

each curve represents the standard deviation of δ
34

S data over each geologic era.  For 202 

example, the standard deviation of linearly detrended Paleozoic bulk CAS data is 7.4‰ 203 

(excluding 1
st
 and 99

th
 percentile outliers), while that of all Cenozoic barite data is 1.3‰.  204 

These standard deviations reflect the combination of local spatiotemporal trends in 205 

seawater sulfate’s δ
34

S, plus an uncorrelated random component.  The uncorrelated, 206 

random component can be estimated by the semivariance of pairs of data that are closer 207 

together than the mean minimum time between all pairs of data (Gebbers, 2010).  The 208 

uncorrelated variance for each proxy is plotted as the minima in each era on each curve in 209 

Figure 2b and represent a measure of the quality of the archives. 210 
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The uncorrelated variance is different for each archive and increases with age.  Cenozoic 211 

and Mesozoic CAS data have uncorrelated variance larger than that of evaporites and 212 

barite.  Uncorrelated Paleozoic bulk rock CAS data have a standard deviation more than 213 

twice that of biogenic CAS and evaporites.  This difference between multiple proxies of the 214 

same age indicates that the uncorrelated variance is likely caused, in part, by variability 215 

inherent to how δ
34

S is preserved, rather than just inadequate sampling of primary spatial 216 

and temporal variability of seawater sulfate. 217 

The remaining analysis considers the biogeochemical sources of variance in each archive 218 

that may have contributed to the uncorrelated variance.  Importantly, trends statistically 219 

distinguishable from the uncorrelated variance need not represent true trends in the δ
34

S of 220 

Phanerozoic seawater.  The same sources of variance controlling the uncorrelated data may 221 

themselves have spatial or temporal components that lead to biased estimates of 222 

Phanerozoic seawater’s composition in the proxy records. The uncorrelated variance, in 223 

part, quantifies the disagreement between contemporaneous records from different 224 

localities.  Trends in the data smaller than the uncorrelated variance are indistinguishable 225 

from random noise.  This is true even for individual records from stratigraphic successions 226 

with coherent δ
34

S trends: a given stratigraphic succession may clearly resolve a trend in 227 

the δ
34

S of the proxy but fail to statistically resolve a trend in the δ
34

S of seawater sulfate. 228 

3.2.1 Evaporites 229 

Deposits of carbonate, sulfate, and halide salts form as seawater evaporates in restricted 230 

basins.  Throughout Phanerozoic time, bedded marine evaporites formed subaqueously, in 231 

salinas (hypersaline lagoons) and salt pans, and subaerially, in supratidal sabkha 232 

environments.  Extremely thick (>100s of meters) evaporite deposits have also formed in 233 

deeper-water environments.  Deposition and preservation of evaporites require favorable 234 

climatic and tectonic conditions where restricted basins experience net evaporation 235 

(Warren, 2010).  Therefore, the evaporite record has limited spatial and temporal continuity 236 

(Claypool et al., 1980; Strauss, 1997). 237 

Because evaporites are massive products of seawater sulfate, they are largely expected to 238 

provide an accurate proxy for the δ
34

S of ancient seawater sulfate.  However, because they 239 

form in marginal marine environments often with biologically adverse salinities, it can be 240 

difficult to constrain their geologic age with biostratigraphy.  In many deposits, it is also 241 

challenging to discern depositional environment or deconvolve marine and non-marine 242 

geochemical signatures (Hardie, 1984; Kendall & Harwood, 1989; Lu & Meyers, 2003).  243 

The restricted, marginal marine settings in which many evaporites form are prone to 244 

changes in fluid source or depositional environment with minor base-level changes (Playà 245 

et al., 2007).  Basins rich in evaporites also often form diapirs that drive salt tectonics, 246 

which complicates a deposit’s internal stratigraphy (Nielsen, 1989). 247 

Evaporites can have a δ
34

S range of 1‰ to 6‰ within a formation (Thode & Monster, 248 

1965).  This variability cannot be attributed to fractionation during gypsum precipitation, 249 
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which produces sulfate salt prior to halite saturation that has a δ
34

S composition 1‰ to 2‰ 250 

higher than the unevaporated seawater (Raab & Spiro, 1991).  Salinity stratification in 251 

evaporating basins can promote water-column anoxia and allows MSR to distill sulfate to 252 

higher δ
34

S compositions than the original seawater; in some cases, evaporite δ
34

S 253 

compositions are higher than other proxies from the same depositional basin (Fike & 254 

Grotzinger, 2010).  Consequently, early workers hypothesized that the isotopic composition 255 

of ancient seawater was best reflected by the lowest δ
34

S value in an evaporite succession 256 

(Ault & Kulp, 1959; Davies & Krouse, 1975; Thode & Monster, 1965).  However, 257 

evaporite basins in marginal marine environments are recharged not only by unadulterated 258 

seawater, but by groundwater and runoff as well.  These fluids may contain sulfate with 259 

dramatically different δ
34

S compositions from remobilized older evaporite deposits or 260 

weathered sedimentary pyrite and organic sulfur (Nielsen & Ricke, 1964; Utrilla et al., 261 

1992).  Finally, high organic carbon concentrations in many evaporite deposits can promote 262 

isotope fractionation by thermochemical sulfate reduction during burial diagenesis 263 

(Vinogradov, 2007). 264 

At least some of the uncorrelated variance in evaporite isotope ratio data also results from 265 

poor stratigraphic control (Supporting Information).  Here we used updated stratigraphic 266 

information to better constrain the age of evaporite data, but the record can further benefit 267 

from improved resampling during intervals where δ
34

S changes appear in other records.  268 

Modern stratigraphic models permit relation of evaporite deposition to better age 269 

constraints in carbonate and clastic strata.  Bernasconi et al. (2017) recently produced a 270 

high-resolution evaporite record that resolved the major early Triassic δ
34

S excursions seen 271 

in earlier datasets; thus careful correlation and assignment of geologic ages permits 272 

tracking changes in the Phanerozoic sulfur cycle with evaporites.  Indeed, the stratigraphic 273 

control for Mesozoic evaporites provided by Bernasconi et al. (2017) likely drives the low 274 

standard deviation of uncorrelated Mesozoic evaporite data to values (0.4‰) comparable to 275 

that of the marine barite record (0.3‰). 276 

3.2.2 Barite 277 

Barite precipitates from hydrothermal fluids, sediment pore fluids, and from particles 278 

within the marine water column (Paytan et al., 1993, 2002).  Barite is under-saturated in 279 

most of the ocean (Chow & Goldberg, 1960; Church & Wolgemuth, 1972).  However, 280 

marine barite has been observed in sediment traps in the upper 200 m in the water column, 281 

especially in high-productivity regions, and is associated with sulfate enrichment from 282 

decaying organic matter and barite enrichment in dissolving siliceous plankton (Bishop, 283 

1988).  While barite super-saturation is achieved predominately by the addition of sulfate 284 

from oxidizing organic sulfur (Horner et al., 2017; Jacquet et al., 2007), marine barite 285 

apparently precipitates with δ
34

S values within 0.4‰ of modern seawater (Paytan et al., 286 

1998, 2002).  Barite is subsequently transported to sediments by fecal pellets and marine 287 

snow (Bishop, 1988), and preserved in oxic marine sediments in high-productivity regions 288 

where enough barite is delivered to saturate pore fluids (Church & Wolgemuth, 1972).  289 

Sulfate reduction in anoxic sediments can cause dissolution of barite, which re-precipitates 290 
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at the base of the sulfate reduction zone with extremely high δ
34

S compositions (M. E. 291 

Torres et al., 1996). 292 

Marine barite is considered an accurate proxy for ancient seawater δ
34

S because it 293 

precipitates in the open-ocean water column and is texturally distinguishable from 294 

diagenetic barite that forms in anoxic sediments at redox fronts (Paytan et al., 1993).  295 

However, the marine barite record is limited by the availability of open-marine sediments 296 

that deposited in high-productivity regions wherein authigenic enrichment of barite occurs 297 

and where pore fluid sulfate concentrations remain above zero (Paytan et al., 1993).  298 

Consequently, the barite δ
34

S record is unlikely to be extended much further  than the 299 

current dataset spanning the last 130 Myr.  Paleozoic bedded barite deposits are associated 300 

with economically-important metal sulfide deposits (C. A. Johnson et al., 2009), but 301 

contain large δ
34

S variability (>10‰) and do not resolve the ancient seawater record any 302 

better than other proxy materials.  Additionally, with few exceptions (e.g., Yao et al., 303 

2018), the temporal resolution of the marine barite δ
34

S record is unlikely to dramatically 304 

improve, especially during biogeochemical events characterized by low marine 305 

productivity (such as the Cretaceous-Paleogene boundary) or bottom-water anoxia (such as 306 

ocean anoxic events) that would have limited authigenic barite enrichment or preservation. 307 

3.2.3 Carbonate-associated sulfate 308 

Limestones and dolomites were deposited continuously throughout Phanerozoic time, 309 

accumulating in marginal marine and open-ocean environments.  A minor amount of 310 

sulfate is incorporated into biogenic and abiogenic carbonate phases.  Biogenic carbonates 311 

often contain part-per-thousand sulfate by mass, while inorganic cements typically contain 312 

hundreds of parts-per-million (Barkan et al., 2020; Busenberg & Plummer, 1985; Giri & 313 

Swart, 2019; Paris, Fehrenbacher, et al., 2014; Staudt & Schoonen, 1995).  Recent 314 

sediments from various peritidal carbonate platform environments include CAS with an 315 

isotopic composition similar to modern seawater (Lyons et al., 2004).  CAS, therefore, 316 

complements and exceeds the temporal resolution and completeness of the evaporite and 317 

barite records (Strauss, 1997). 318 

Diagenetic processes may exchange sulfate with the primary carbonate and alter its isotopic 319 

composition (Fichtner et al., 2017; Present et al., 2015, 2019).  Kampschulte & Strauss 320 

(2004) suggested that the variability of multiple δ
34

S analyses from contemporaneous 321 

stratigraphic successions could be used to quantify the effect of diagenesis on the CAS 322 

record.  However, rapidly-changing and disparate CAS δ
34

S compositions have since been 323 

generated and interpreted—especially in Paleozoic studies—as intervals of heterogeneous 324 

seawater sulfate δ
34

S reflecting periods of low sulfate concentrations and low marine 325 

sulfate residence times (e.g., Gill, Lyons, Young, et al., 2011; Kah et al., 2004). 326 

Limestones and dolomites are comprised of mud or grains that precipitated both 327 

biologically and abiotically from seawater, with cements binding them together.  Each of 328 

these components may recrystallize in pore fluids whose chemical composition reflects 329 
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marine, meteoric, and burial diagenetic processes.  A combustion CAS analysis typically 330 

requires 10 g to 100 g of carbonate (Wotte et al., 2012), and this mass requirement dictates 331 

that samples mix components that may have precipitated and/or recrystallized at different 332 

times.  Recent application of plasma-source mass spectrometry for sulfur isotope analysis 333 

has permitted δ
34

S analyses on less than one-thousandth as much sulfate, corresponding to 334 

5 mg to 50 mg of carbonate (Paris, Adkins, et al., 2014; Paris et al., 2013; Present et al., 335 

2015, 2019; Rennie et al., 2018).  Well-preserved biogenic grains, recrystallized grains, 336 

matrix, and cements contain CAS with δ
34

S compositions varying by as much as 25‰, 337 

spanning most of range of CAS analyses from the entire Phanerozoic (Present et al., 2015, 338 

2019).  Therefore, much of the variability of CAS δ
34

S data may not reflect the δ
34

S 339 

composition of ancient seawater sulfate.  Identifying components that retain the δ
34

S of 340 

sulfate incorporated from syndepositional seawater is critical to precisely and accurately 341 

exploit the CAS δ
34

S archive. 342 

CAS can reflect the δ
34

S of syndepositional seawater sulfate if the carbonate component 343 

did not recrystallize after precipitation, if recrystallization and cementation occurred in 344 

contact with a low-sulfate fluid, or if the δ
34

S of pore fluid sulfate was not fractionated 345 

from seawater (Gill et al., 2008; Lyons et al., 2004; Rennie & Turchyn, 2014).  Alteration 346 

occurs if the sediments recrystallize above the depth at which sulfate is completely 347 

consumed by MSR but deep enough that some distillation of δ
34

S within sediment pore 348 

fluid has occurred (Fike et al., 2015; Present et al., 2019; Rennie & Turchyn, 2014; Witts et 349 

al., 2018).  Additionally, some ancient carbonates contain CAS with anomalously low δ
34

S 350 

interpreted to result from the incorporation of sulfate from sulfide that was reoxidized 351 

during diagenesis or weathering (Baldermann et al., 2015; Fichtner et al., 2017; Fike et al., 352 

2015; P. J. Marenco et al., 2008; Present et al., 2015, 2019; Rennie & Turchyn, 2014; 353 

Riccardi et al., 2006; Yan et al., 2013).  Carbonates recrystallizing during burial may also 354 

be prone to diagenetic modification of the δ
34

S of CAS if the burial fluids were sulfate rich 355 

(Fichtner et al., 2017, 2018; Present et al., 2015).  The δ
34

S in burial fluids may be highly 356 

variable, and include sulfate from hydrocarbon or organic matter degradation (Fichtner et 357 

al., 2018; Thode & Monster, 1965, 1970), dissolved evaporites, or groundwater modified 358 

by MSR (Dogramaci et al., 2001; Present et al., 2019). 359 

These diagenetic controls on the δ
34

S of CAS decrease the precision and accuracy of the 360 

proxy.  This is quantified by its uncorrelated variance, which is much higher in the CAS 361 

archive than that observed in other seawater sulfate δ
34

S proxies.  Uncorrelated Paleozoic 362 

CAS data has a standard deviation of 5.0‰, and that of Mesozoic CAS is 4.4‰, which is 363 

five to ten times larger than that of Paleozoic and Mesozoic evaporites (1.0‰ and 0.4‰, 364 

respectively).  Further, diagenesis may have impacted accuracy by systematically biasing 365 

the δ
34

S of CAS with respect to the primary composition of seawater sulfate.  For example, 366 

base level often controls the stratigraphic arrangement of facies in carbonates successions, 367 

which can impart biases as large as 10‰ on the δ
34

S of CAS (Present et al., 2019; 368 

Richardson et al., 2019).  Both the random and systematic variability is on the order of 369 

well-resolved rapid changes of 3‰ to 6‰ in the δ
34

S of marine barite and biogenic CAS. 370 
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3.2.4 Biogenic CAS 371 

Biogenic CAS may offer a more robust δ
34

S record than bulk CAS because biogenic 372 

carbonate can often be readily separated from other limestone components, preservation 373 

quality can be assessed, and vital effects appear to be small in most taxa (A. Kampschulte 374 

et al., 2001; Paris, Fehrenbacher, et al., 2014; Present et al., 2015).  In modern and cultured 375 

biogenic carbonates, the incorporated sulfate has an isotopic composition within 2‰ of the 376 

seawater from which it precipitated (Burdett et al., 1989; A. Kampschulte et al., 2001; 377 

Kaplan et al., 1963; Mekhtiyeva, 1974; Paris et al., 2013; Paris, Fehrenbacher, et al., 2014; 378 

Present et al., 2015).  Burdett et al. (1989) produced the first continuous biogenic CAS 379 

dataset for the Neogene Period and demonstrated that it agreed with the evaporite δ
34

S 380 

record.  Kampschulte et al. (2001) and Kampschulte and Strauss (2004) then demonstrated 381 

that biogenic CAS captured the first-order features of the Phanerozoic evaporite record, and 382 

could be correlated with higher resolution and confidence than evaporites to the carbonate 383 

carbon isotope record.  More recently, Rennie et al. (2018) produced a taxon-specific 384 

foraminiferal CAS record with variance and secular trends comparable to the marine barite 385 

record. 386 

Low-magnesium calcite, precipitated by many brachiopods, belemnites, and planktonic 387 

foraminifera, is stable at Earth’s surface and shallow burial conditions.  The low-388 

magnesium calcite biogenic CAS δ
34

S record has significantly improved the resolution of 389 

the Phanerozoic δ
34

S record during two key periods.  First, during the Toarcian (Jurassic) 390 

Ocean Anoxic Event, belemnite CAS displays a large (6‰) δ
34

S excursion that is not 391 

apparent in the evaporite record (Gill, Lyons, & Jenkyns, 2011; Newton et al., 2011).  392 

Second, during Carboniferous time, brachiopods record a prolonged recovery from a δ
34

S 393 

maximum in middle Devonian time (D. J. Johnson et al., in revision; A. Kampschulte et al., 394 

2001; N. Wu et al., 2014).  However, aragonite and high-magnesium calcite, precipitated 395 

by many bivalves, gastropods, corals, trilobites, echinoderms, bryozoans, and marine algae, 396 

commonly dissolves and/or recrystallizes to calcite or dolomite during burial (Brand & 397 

Veizer, 1980).  Few studies have investigated CAS δ
34

S from formerly aragonitic fossils 398 

(Mekhtiyeva, 1974; Present et al., 2015; Witts et al., 2018). 399 

Unfortunately, well-preserved biogenic carbonate is rare in the rock record, especially 400 

during intervals of climatic or biologic crisis (e.g., mass extinction events).  Even 401 

apparently well-preserved biogenic carbonate can still be susceptible to diagenetic 402 

alteration (Fichtner et al., 2018; Witts et al., 2018).  Like the marine barite record, a 403 

significant expansion of the biogenic CAS δ
34

S proxy record is limited by the availability 404 

of suitable sample material. 405 

3.3 Discrepant early Phanerozoic proxy records 406 

Major δ
34

S trends and excursions in Cenozoic, Mesozoic, and late Paleozoic records are 407 

exhibited in multiple archives, but significant discrepancies and gaps are apparent in 408 

records from Cambrian to Devonian time (Figure 1c).  In early- to mid-Paleozoic strata, 409 
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biogenic carbonates are sparse, marine barite is absent, and bulk CAS δ
34

S values diverge 410 

from evaporites by greater than 10‰ (Figure 2a).  Additionally, Paleozoic variance is 411 

highest for all records (Figure 2b).  New approaches are necessary to better resolve the 412 

structure of early- to mid-Paleozoic seawater sulfate δ
34

S. 413 

Large δ
34

S excursions correlate with global perturbations evidenced by carbon isotope 414 

excursions and trace metal, pyrite sulfur isotope, and bioturbation intensity records 415 

(Canfield & Farquhar, 2009; Fike et al., 2015; Gill et al., 2007; Jones & Fike, 2013).  416 

Because part of the δ
34

S variance in all archives derives from depositional and early 417 

diagenetic processes—such as MSR, pyrite formation, and sulfide reoxidation—careful 418 

attention to facies and depositional controls may reveal important changes in organic matter 419 

and metal cycling in marine pore fluids (Fike & Grotzinger, 2010; Present et al., 2019; 420 

Rennie & Turchyn, 2014; Richardson et al., 2019).  Embracing the information content in 421 

the spatial and temporal structure of these sources of variance should enrich understanding 422 

of Paleozoic oceanographic, biologic, and climatic change. 423 

4 Conclusions 424 

Phanerozoic δ
34

S data were compiled from evaporites, barite, biogenic CAS, and bulk rock 425 

CAS and updated to a consistent time scale.  Each of these archives contains spatial and 426 

temporal biases arising from both syndepositional and diagenetic biogeochemical 427 

processes. The variance in each record increases with age, partly due to the increased 428 

importance of post-depositional processes in older materials. 429 

The barite record has the lowest variance and likely accurately captures the δ
34

S of ancient 430 

oceans.  However, its spatial and temporal extent is limited to the availability of suitable 431 

marine sediment cores.  The evaporite record was built from massive amounts of ancient 432 

seawater sulfate, and while it can be impacted by processes associated with sulfur cycling 433 

in these marginal marine basins, its largest limitation emerges from requirements of 434 

favorable climatic and tectonic conditions to form and preserve these basins.  Biogenic 435 

CAS δ
34

S analyses have similar variance to the evaporite record but have a higher temporal 436 

resolution.  The biogenic CAS record thus appears to resolve marine sulfur cycle features 437 

not apparent in other archives during the Carboniferous and the Jurassic.  However, δ
34

S 438 

data from even the best-preserved biogenic carbonate material must be interpreted in the 439 

context of additional constraints on the diagenetic history of the sample. 440 

Bulk CAS contains a statistically significant different distribution of δ
34

S compositions 441 

than the biogenic CAS, evaporite, or barite records.  Early diagenetic overprinting of CAS 442 

occurs in depositional environments where carbonate recrystallization and cementation 443 

coincides with sulfate-rich pore fluids with modified δ
34

S values.  Despite these 444 

complications, bulk CAS can be widely applied in ancient sedimentary basins and is the 445 

only archive readily able to resolve sulfur cycle changes during rapid biogeochemical 446 

events and to extend the δ
34

S record into Precambrian time. 447 
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Reconstructing ancient seawater chemistry from sedimentary proxy archives requires 448 

assessing primary and diagenetic sources of variance.  The comparison of different archives 449 

of δ
34

S in sedimentary sulfate presented here increases confidence in robust features of the 450 

record; this will help guide future interpretation of data from key biogeochemical 451 

transitions in the Phanerozoic, and inform interrogation of Precambrian strata for which 452 

fewer archives are available. 453 
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