
Supporting Information for “Variability in Records of Phanerozoic Seawater 1 
Sulfate,” by T. M. Present, J. F. Adkins, and W. W. Fischer (2020). 2 

Age assignment and data compilation 3 
Histograms of the four compiled proxy datasets are shown in Supporting Figure S1, and summary 4 
statistics are reported in Supporting Table S1.  Supporting Table S2 includes each data source and 5 
a description of the age model applied to the reference, with applicable citations.  Supporting File 6 
d34S_Data.xlsx tabulates the compiled δ34S data with the proxy material, assigned age, and data 7 
source. 8 

Variography 9 
Semivariance is the variance—per point—of the difference between equally spaced pairs of 10 
measurements (Webster & Oliver, 2007, p. 54). Variograms are functions relating semivariance to 11 
the distance between the points, called the lag.  In this paper, the lag is the age difference between 12 
two samples.  The empirical variogram describing the semivariance of the δ34S data, γ, as a function 13 
of lag, h, is estimated for N(h) pairs of data with that lag: 14 
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 17 
Although the variance of pairs of data may change as a function of t, the semivariance does not.  18 
If the variance was not a function of t, then the semivariance would simply mirror the covariance 19 
(Webster & Oliver, 2007, p. 55). 20 
 21 
Formulating variance as the square of the difference is sensitive to outliers in the data.  By 22 
decreasing the order of the variogram estimator from 2 and applying a correction to maintain a 23 
normal distribution, a variogram that unweights tails on the distribution and thus is more robust to 24 
outliers is developed (Cressie & Hawkins, 1980).  A variogram order of 0.5 was used here: 25 
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 28 
Empirical variograms for detrended δ34S data from each proxy in each era are shown in Supporting 29 
Figure S2. Because timeseries are temporally autocorrelated, the semivariance at short lags is less 30 
than at long lags.  Additionally, the maximum variability over the domain of interest is described 31 
by the population variance, and the semivariance approaches this value over an interval called the 32 
range.  The population variance is often referred to as the “sill” in geospatial analysis. 33 
 34 
At the shortest lags, the semivariance is not zero.  This uncorrelated variance represents the 35 
variability of δ34S measurements unresolved by sampling.  It is often referred to as the “nugget” 36 
in geospatial analysis. 37 
 38 



The approach of semivariance to the population variance can be described with a model of the 39 
structure of the empirical variogram.  For our 2-dimensional (time and δ34S) data, covariance can 40 
be modelled by the overlap of two circles populated randomly following a Poisson distribution 41 
(Webster & Oliver, 2007, p. 87).  This circular variogram model describes semivariance as a 42 
function of lag, h, given the range, a, sill, c, and nugget, n: 43 
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 46 
To fit the variogram model to the empirical variogram, we diagnosed the nugget and sill from the 47 
data and visually adjusted the range: the nugget is the empirical semivariance computed at the 48 
mean minimum time between all pairs of data, and the sill is the population variance.  We only 49 
require the model to estimate uncertainty in the δ34S records—we are not attempting to predict 50 
δ34S compositions in rocks that haven’t been sampled. Therefore, it was unnecessary to employ 51 
more agnostic strategies to select a variogram model and fit it to the empirical variogram. 52 

Kriging 53 
Kriging is both a method of interpolating the data and for modelling the uncertainty around the 54 
unobserved, interpolated point (Gebbers, 2010).  The expected value of an interpolated point is 55 
simply a weighted average of the data.  The weights are calculated using the variogram model that 56 
describes semivariance as a function of distance from observations such that the estimated 57 
semivariance of the unobserved point (called the kriging variance) is minimized. 58 
 59 
Detrending the data is necessary to ensure that the mean is constant (first-order stationary), but 60 
results in improper estimation of total variance by failing to account for both uncertainty and bias 61 
in the detrending (Lark & Webster, 2006).  Therefore, kriging variance at long lags may be 62 
underestimated (by failing to include the uncertainty of the detrending model) or even 63 
overestimated (by biased sampling affecting the detrending model and failing to capture the 64 
minimum temporal variance in that region). 65 
 66 
We model the variogram sill as the population variance, but clear mismatches in long-lag empirical 67 
variograms are apparent (Supplemental Figure S2), with some lag intervals having both much 68 
higher and much lower variance.  In addition to a violation of first-order stationarity, we interpret 69 
this as a lack of knowledge of the structure of long-term δ34S trends where it is not constrained by 70 
data, rather than a quantitative statement about its variance over long timescales.  In other words, 71 
dramatic sulfur isotope excursions may be possible in unsampled intervals of geologic time, and 72 
there is no predictive power from the variance deriving from the amplitude of currently observed 73 
excursions.  Our goal of using the kriged variance to describe the quality of δ34S records is 74 
therefore critically different than using the kriged variance to predict δ34S through time, in the way 75 
that kriging is often applied to predict spatial-temporal patterns in environmental and earth 76 
sciences. 77 
 78 
On the other hand, the estimates of uncorrelated variance—that on short timescales—are generally 79 
well constrained by the data.  For estimating kriging variance through time, the variogram model 80 



at short lags is much more important than at long lags. Over the observed range of correlation until 81 
semivariance matches or exceed population variance, most records in each time period indeed 82 
show increasing semivariance with lag distance (Supporting Figure S2).  Only one set of data, the 83 
Cenozoic bulk rock CAS record, has a negligible difference between uncorrelated and population 84 
variance.  Constraints on either are therefore poor, but resultant kriging variance is insensitive to 85 
the exact shape of the variogram model. 86 
 87 
Timeseries variography and kriging of synthetic data 88 
Variography and kriging can usefully describe the structure of variance of timeseries δ34S data.  In 89 
addition to differences between the proxy records inherent to each geologic archive, some variance 90 
in the records may derive from misalignment of age models. 91 
 92 
The dashed line in Supporting Figure S3a represents a synthetic isotope excursion similar in 93 
duration and magnitude to some reported in the Paleozoic, such as during the Cambrian SPICE 94 
interval (e.g., Gill et al., 2007).  The orange dots represent samples taken randomly in time from a 95 
population that follows the synthetic excursion with synthetic Gaussian noise with a standard 96 
deviation of 2‰.  The variogram captures a 1‰ 1σ standard deviation of uncorrelated variance at 97 
the shortest lag interval and approaches the population variance (ca. 5‰) of the synthetic data over 98 
a range of approximately 500 kyr.  Applying a circular variogram model and kriging the random 99 
samples results in the gray kriged estimate. 100 
 101 
But, given multiple aligned records, how much of the variogram structure is attributable to the 102 
inherent “noise” in the archive (illustrated in Supporting Figure S3a) and how much is attributable 103 
to poor temporal alignment?  Supporting Figures S3b and S3c test this by overlaying the synthetic 104 
record in Supporting Figure S3a with randomly misaligned records.  Supporting Figures S3b 105 
represents poor alignment of multiple identical records sampled at different localities by randomly 106 
misaligning the full excursion within the average length of a Paleozoic stage.  Although the kriged 107 
estimate of the interpolated record and the variogram are clearly different than the true synthetic 108 
excursion, the uncorrelated variance and population variance are only slightly larger.  These are 109 
robust statistical descriptions of the uncertainty in the data. 110 
 111 
Similarly, an unconformity or uneven sedimentation rate may change the amplitude or shape of an 112 
isotope excursion if, when sampling, this is unknown.  Supporting Figure S3c shows how 113 
randomly varying the amplitude of the excursion in Supporting Figure S3a with a standard 114 
deviation of 25% also does not dramatically increase the nugget or sill variance. 115 
 116 
In summary, it is likely that the increase in both uncorrelated (nugget) and population (sill) 117 
variance of all records with age represents both poorer age control in older strata, and also a 118 
meaningful change in the variability of ancient rocks due to changes in how sulfate is incorporated 119 
and preserved. 120 



Supporting Figures, Tables, and Files 121 

Supporting Figure S1. Histograms of δ34S of sulfate in each proxy for ancient seawater sulfate with 122 
means and 1σ standard deviations.  Arrows mark bins with 1 to 10 counts, and the broken line marks 123 
the means. 124 

 125 



Supporting Figure S2. Empirical variograms showing semivariance as a function of lag times less 126 
than 40 Myr for each record, and for each record by geologic age.  The dashed horizontal line is the 127 
population variance of all data within the 1st and 99th percentile of the linearly detrended δ34S data, 128 
which is used to estimate the sill for the circular variogram model (green solid line).  The unresolved 129 
variance for each record is the semivariance at the shortest lag. 130 

 131 



Supporting Figure S3. Synthetic data to examine the effect sampling and age modelling on the 132 
variogram of a global isotope excursion sampled at multiple localities.  All sampling and age model 133 
artifacts lead to less than 3‰ nugget effects, which may account for a source of unresolved variance 134 
in many proxy records but cannot explain all unresolved variance in the Phanerozoic. (a) Imprecise 135 
sampling represented by Gaussian noise with a standard deviation of 2‰ added to a synthetic δ34S 136 
excursion with 20‰ amplitude over 2 Myr, like some Paleozoic excursions in CAS data. (b) 137 
Imprecise age alignment represented by precise sampling of multiple randomly aligned but 138 
otherwise identical excursions varying within the average length stratigraphic stage. (c) Inaccurate 139 
age model represented by randomly varying amplitude with 5‰ standard deviation, which is the 140 
effect of an unconformity of unknown duration adding 25% variability to the true excursion 141 
amplitude. 142 

 143 

 144 

Supporting File d34S_Data.xlsx. This Microsoft Excel spreadsheet contains all compiled δ34S 145 
values, their assigned age, the proxy material from which they derive, and their source reference. 146 

 147 

Supporting Table S1. Statistical description of all Phanerozoic δ34S data. SD = standard 148 
deviation. CI = confidence interval. 149 

 n mean SD median (95% CI) skewness 

Evaporite 1581 19.41 7.98 17.10 (16.76 – 17.44) 1.82 

Biogenic CAS 912 18.87 5.14 18.80 (18.41 – 19.19) 0.28 

Bulk CAS 3795 24.18 9.62 23.70 (23.38 – 24.02) -0.48 

Barite 422 19.50 2.22 19.15 (18.83 – 19.47) -0.10 

All data 6710 22.04 8.79 21.08(20.86 – 21.30) 0.23 



Supporting Table S2. References for δ34S data included in compilation; number of CAS, evaporite, 150 
and barite analyses in each reference; and description of age assignments for the data. 151 

Reference CAS Evap. Bar. Age Model and Notes 

Adams et al. (2010) 16 
  

Ages linearly interpolated between Ar/Ar dates in provided in 
Figure 1 in paper. Stratigraphic heights extracted graphically. 

Arp et al. (2008) 6 
  

Assigned age of 146 Ma for the latest Tithonian 

Ault & Kulp (1959) 
 

12 
 

Evaporite ages updated to latest stratigraphy. Omitted salt 
dome (migrated) samples from Feely & Kulp (1957), and only 
included samples with formation tabulated 

Balderer et al. (1991) 
 

11 
 

Data compiled with age model by Bernasconi et al. (2017).  
Omitted vein and sandstone cement anhydrite samples. 

Baldermann et al. (2015) 8 
  

Linear interpoloation of stratigraphic height between Rb/Sr 
ages in paper 

Bernasconi et al. (2017) 
 

282 
 

Age model provided in paper 

Boschetti et al. (2011) 
 

8 
 

Data compiled with age model by Bernasconi et al. (2017) 

Burdett et al. (1989) 56 25 
 

Linear interpolation of stage boundaries from Berggren et al. 
(1985) to ICS2016/04 timescale. Ages and δ34S extracted 
graphically from Figure 3. 

Buschendorf et al. 
(1963) 

 24  Evaporites updated to latest stratigraphy. Omitted sulfide and 
barite samples. 

Chen et al. (1981)  52  Translated from Chinese by Sang Chen, and δ34S extracted 
graphically from figures. Only included Cambrian-Ordovician 
evaporites for which locality and unit could be determined. 

Chen et al. (2013) 71 
  

Linear interpolation of stratigraphic height between conodont 
zone age constraints from Kaufmann (2006), updated to GSSP 
ages in ICS2016/04 

Claypool et al. (1980) 
 

272 
 

Evaporite ages updated to latest stratigraphy 

Cortecci et al. (1981) 
 

30 
 

Used age model in Bernasconi et al. (2017), and assigned 
additional data from Western Alps to Rhaetian (Loprieno et al., 
2011) 

Dahl et al. (2019) 35   Ages provided in paper 

Das et al. (1990)  6  Updated Michigan Basin chronostratigraphy from Rine et al. 
(2017) 

Davies & Krouse (1975) 
 

23 
 

Evaporite ages updated to latest stratigraphy 

Edwards et al. (2018) 117   Age model provided in paper 

Fanlo & Ayora (1998) 
 

26 
 

Data compiled with age model by Bernasconi et al. (2017) 

Fike & Grotzinger 
(2008) 

157 
  

Ages provided in Fike et al. (2015) 

Fox & Videtich (1997) 13   Evaporite ages updated to latest Williston Basin stratigraphy 
using Taki & Pratt (2012) 

Gill, Lyons, & Jenkyns 
(2011) 

105 
  

Linear interpolation of stratigraphic height between stage 
boundaries using ICS2016/04, assigning Calcari Maculati to 
Bajocian stage 



Reference CAS Evap. Bar. Age Model and Notes 

Gill, Lyons, Young, et 
al. (2011) 

111 
  

Linear interpolation of stratigraphic height between stage 
boundaries 

Gill et al. (2007) 74 
  

Linear interpolation of stratigraphic height between stage 
boundaries 

Gomes et al. (2016) 115 
  

Ages provided in paper on GTS2012 time scale, which 
matches ICS2016/04 in the Cretaceous 

He et al. (2019) 165   Ages provided in paper for Siberian CAS data.  For South 
China, age linearly interpolated by stratigraphic height between 
ICS2016/04 age of 529 Ma assigned to FAD of W. crosbyi at 
base of Dahai Mbr, and age of 526.5 Ma to base of Shiyantou 
Fm. (Yang et al., 2018) 

Hitchen & Krouse 
(1972) 

 6  Evaporite ages updated at stage scale to latest stratigraphy; 
omitted non-marine recent and migrated salt dome samples 

Holser & Kaplan, Chem. 
Geol. (1966) 

 
49 

 
Evaporite ages updated to latest stratigraphy. Omitted salt 
dome (migrated) and secondary (cements/vugg-filling/intrusive 
igneous) textures 

Horacek et al. (2010) 
 

6 
 

Data compiled with age model by Bernasconi et al. (2017) 

Hovorka et al. (1993)  34  Assigned Delaware Basin ages from Wu et al. (2020) and 
Kerans and Tinker (1999).  Data extracted graphically from 
Figure 5. 

Hurtgen et al. (2009) 30 
  

At Felix Cove, carbon isotope maxima in SPICE is set as base 
of Steptoean (Saltzman et al., 2004).  In other sections, biomere 
event at onset of SPICE is set as base of Steptoean.  March Pt. 
Formation includes Bolaspidella trilobites (Upper Middle 
Cambrian), and total deposition likely 5-10Ma; the lowest 
sample in the March Pt. Formation is set as the base of the 
Marjuman. Straigraphic heights extracted graphically. 

Insalaco et al. (2006) 
 

23 
 

Age model provided by Bernasconi et al. (2017) 

John et al. (2010) 34 
  

Linear interpolation of stratigraphic height between conodont 
zone age constraints from Kaufmann (2006), updated to GSSP 
ages in ICS2016/04. Stratigraphic heights extracted from Fig. 4 
and 5 graphically 

Johnson et al. (in 
revision) 

130   Ages provided in paper interpolated to ICS2016/04 

Jones & Fike (2013) 42 
  

Linearly interpolated between stage boundaries using 
ICS2016/04.  Hirnantian and Ordovician-Silurian boundary 
placed based on carbon isotope stratigraphy, not 
biostratigraphy, in text. 

Kah et al. (2016) 42 
  

Ages provided in Fig 9, using ICS2016/04 ages at the tie points 

Kaiho et al. (2006) 11 
  

Approximated age model as described for Schobben et al. 
(2017) 

Kaiho et al. (2001) 12 
  

Meishan section bed ages and accumulation rates from Burgess 
et al. (2014). Data tabulated in Kaiho et al. (2006) 

Kaiho et al. (1999) 18 
  

K-Pg boundary set at ICS2016/04 age, and sedimentation rates 
from paper. Data extracted graphically from Figure 3 



Reference CAS Evap. Bar. Age Model and Notes 

Kampschulte & Strauss 
(2004) 

244 
  

Ages updated by interpolation to ICS2016/04 from Harland 
1989 Timescale (Harland et al., 1990). Data tabulated in 
Kampschulte (2001) and Kampschulte et al. (2001) 

Kramm & Wedopohl 
(1991) 

 
9 

 
Zechstein evaporites tied to ICS2016/04 using ~1Myr/unit 
starting at the bottom of the Lopingian (Stollhofen et al., 2008) 

Korte et al. (2004) 5   18.5m correlated by Gorjan & Kaiho (2007) to 250.7 Ma age 
in Bowring et al. (1998); linearly interpolated with H. Parvus 
FAD from Burgess et al. (2014) 

Kozik et al. (2019) 48   Ages provided in paper in Fig. 3 based on Sr isotope 
stratigraphy by Saltzman et al. (2004) 

Li et al. (2009) 27 
  

Bed 27/28 boundary is proposed Permian-Triassic Boundary; 
using age from Burgess et al. (2014).  Maokou/Wujiaping Fm. 
boundary is Guadalupian-Lopingian Boundary according to 
Yadong et al. (2008); using age from ICS2016/04. Data 
extracted from figures graphically. 

Longinelli & Flora 
(2007) 

 
8 

 
Data compiled with age model by Bernasconi et al. (2017) 

Loyd et al. (2012) 63 
  

Linear interpolation of stratigraphic height between stage 
boundaries using ICS2016/04 

Lu & Meyers (2003) 
 

16 
 

Middle Messinian age assigned in ICS2016/04 

Luo et al. (2010) 58   Base of microbialite in Cili section correlated to base of Bed 25 
in Meishan, and assigned age from Burgess et al. (2014); 
linearly interpolated height with FAD of H. Parvus assigned 
age from Burgess et al. (2014) 

Lyu et al. (2019) 126   Ages provided in Fig. 8 

Maharjan et al. (2018) 59   Linear interpolation of GTS2012 age model for conodont 
biostratigraphy provided in Fig. 1 

Marenco et al. (2008) 25 9 
 

Section correlated using flooding surfaces and Sr isotope data, 
and linearly interpolating ages of the Spathian/Anisian and 
Smithian/Spathian boundaries from Burgess et al. (2014) 

Marenco et al. (2013) 20 
  

Linear interpolation of stratigraphic height using stratigraphy 
published in Marenco et al. (2016), which uses ages in 
ICS2016/04. Data table appears truncated in publication; 
stratigraphic height and δ34S extracted graphically from Fig. 4 

Marenco et al. (2016) 7  
  

Linear interpolation of stratigraphic height between stage 
boundaries in Fig 2, using ages from Kah et al. (2016), which 
match ICS2016/04 

Meng, Zhang, Yan, et al. 
(2019) 

 5  Kept middle/upper Darriwilian assignment consistent with 
biostratigraphy and carbon isotope stratigraphy 

Meng, Zhang, 
Schiffbauer, et al. (2019) 

 12  Tarim basin trilobite stratigraphy from Zhu et al. (2019).  
Includes one Lower Ordovician data from Cai et al. (2001) 
constrained to Tremadocian (Guo et al., 2018). 

Mills et al. (2017) 114 
  

Age model developed in paper on GTS2012 time scale, which 
matches ICSv2016/04 in the Cretaceous 



Reference CAS Evap. Bar. Age Model and Notes 

Newton et al. (2004) 32 
  

Linear interpolation of stratigraphic height over the extinction 
interval using ages from Burgess et al. (2014), and age of 251.5 
Ma for top of Tesero Ooilite set as the age at which the δ13C 
returns to a "flat" value at the Meishan GSSP 

Newton et al. (2011) 85 
  

Linear interpolation of stratigraphic height between stage 
boundaries using ICS2016/04 for Yorkshire section, and 
correlated Tibet strata using chemostratigraphy preferred by 
the authors 

Nielsen & Ricke (1964)  51  Evaporite ages updated to latest stratigraphy. Omitted caprock, 
stratigraphically unconstrained samples, lacustrine and 
freshwater-influenced samples, and Mg and K sulfates 

Ohkouchi et al. (1999) 27 
  

Age model based on Al accumulation provided in paper, and 
shifted +0.29 Myr to agree with ICS2016/04 Cenomanian-
Turonian boundary age of 93.9Ma. Ages and δ34S extracted 
graphically from Fig. 3A. 

Owens et al. (2013) 216 
  

Eastbourne section sedimentation rates between carbon isotope 
excursion features from Voigt et al. (2008) astrochronology 
tied to ICS2016/04 time scale using Cenomanian-Turonian 
GSSP.  South Ferriby and Trunch sections tied to ages of CIE 
calculated for Eastbourne section and linearly interpolated 
stratigraphic height.  Raia del Pedale section height linearly 
interpolated between CIE ages from Eastbourne and stage 
boundaries. 

Pankina et al. (1975) 
 

18 
 

Evaporite ages updated to latest stratigraphy 

Paytan et al. (1998) 
  

69 Ages updated to ICS2016/04 from those provided in Kurtz et 
al. (2003), which uses Berggren et al. (1995) timescale.  Ages 
for Sites 305, 366, and 577 updated to ICS2016/04 from those 
provided in Yao et al. (2020). 

Paytan et al. (2004) 
  

123 Ages updated to GTS2004 by Prokoph et al. (2008), and then 
interpolated to ICS2016/04 

Peryt et al. (2010)  52  Evaporite ages updated to latest stratigraphy 

Pisarchik & Golubchina 
(1975) 

 
17 

 
Evaporite ages updated to latest stratigraphy; omitted Vendian 
Motyi Formation 

Playà et al. (2007) 
 

10 
 

Age of 70 kyr given in text 

Posey & Fisher (1989)  59  Assigned Kungarian to lowermost Roadian age to reconcile 
top-Wolfcamp correlations between Midland and Palo Duro 
basins (Blomquist, 2016; Handford & Dutton, 1980; Mazzullo, 
1982). Interpolated correlated wells as in Fig. 3 

Poulton et al. (2015) 24 
  

Sedimentation rates from Kolonic et al. (2005), rescaled to 
reflect obliquity-controlled cycles instead of eccentricity, as the 
authors prefer, citing Meyers et al. (2012).  Cenomanian-
Turonian boundary shifted from GTS2004 age in Kolonic et al. 
(2005) to ICS2016/04. 

Present et al. (2015) 77 
  

Ages determined by linearly interpolating stage boundaries, 
which are placed with carbon isotope stratigraphy as described 
by Jones & Fike (2013) 



Reference CAS Evap. Bar. Age Model and Notes 

Present (2018, Ch. 3) 52 
  

ICS2016/04 ages used to interpolate biostratigraphy and 
carbon isotope stratigraphy in Bergström et al (2009) and 
Cramer et al. (2010) 

Present et al. (2019) 255 
  

Linearly interpolated stratigraphic height between high 
frequency sequence boundary ages in Wu et al. (2020) 

Rennie & Turchyn 
(2014) 

56 
  

Site 807A to 362.8m: Martin & Scher (2004); Site 807A below 
362.8m: Schrag et al. (1995); Site 821A: Wei & Gartner 
(1993); Site 1003A: Wright & Kroon (2000) 

Rennie et al. (2018) 119   Age model provided in paper 

Riccardi et al. (2006) 102   Used Burgess et al. (2014) ages for Meishan section and 
extinction interval at Shangsi, and for Dienerian base.  Used 
Algeo et al. (2013) age for Changhsingian base.  Used Bowring 
et al. (1998) age for base of Meishan bed #7. 

Richardson et al. (2019) 93   Linearly interpolated ages with stratigraphic height given in 
Fig. 4 

Rose et al. (2019) 118   Linearly interpolated stratigraphic height between Datum 2 
bentonite age of 431.8 Ma and top of Sheinwoodian Sub-stage 
2 from Cramer et al. (2012) 

Sakai (1972) 
 

13 
 

Evaporite ages updated to latest stratigraphy. Omitted 
Precambrian samples, and samples purposely chosen to have 
anomalously-low δ34S 

Schobben et al. (2015) 74 
  

Ages provided in paper using Burgess et al. (2014) dates 

Schobben et al. (2017) 19 
  

Assigned approximate mid-Griesbachian age of 251.50 Ma to 
uppermost Balvany East strata, and linearly interpolated 
stratigraphic height to Permian-Triassic Boundary at base of 
Gerennavar Fm., neglecting missing section between Balvany 
East and Balvany North; used same accumulation rate for 
limestones in Nagyvisnyo Fm. anchored at EPME and 
apportioned remaining time in the Boundary Shale beds 
between top of limestones and P-Tr. Boundary 

Schroder et al. (2004) 
 

29 
 

Ages provided in Fike et al. (2015) 

Sim et al. (2015) 68 
  

Ages provided in paper using Kaufmann (2006) time scale 
updated to GSSP ages in ICS2016/04 

Solomon et al. (1971)  27  Evaporite ages updated at stage scale to latest stratigraphy 

Song et al. (2014) 202 
  

Age model is from Figure 4 (tie points are in bold), using dates 
from Burgess et al. (2014) and ICS2016/04; interpolated 
linearly in between tie points; Composite height is linking of 
sections by the C-isotope tie points in Figures 3 and 4: Daijang 
400m = Lower Guandau 135m (N3); Lower Guandau 225m = 
Upper Guandau 10m (P4). Adjusted Daijang B by 18m to 
approx. bring in line with Daijang A, as in Fig 3 



Reference CAS Evap. Bar. Age Model and Notes 

Song et al. (2019) 29   Age model tied to Song et al. (2014) using correlation in Fig. 8 
by linearly apportioning height between 40m and 48m to gap at 
Smithian-Spathian Boundary between 139.2m and 163m at 
Lower Guandau, and Burgess et al. (2014) age for base of 
Smithian at base of section 

Spötl (1988) 
 

8 
 

German-language data compiled and assigned ages by 
Bernasconi et al. (2017) 

Stebbins et al. (2019) 75   Age model provided in Supplemental Figure S4 

Thode & Monster (1965) 
 

68 
 

Evaporite ages updated to latest stratigraphy. Data is reported 
as the range of measurements, so only could include the 
maximum and minimum values in compilation; omitted 
poorly-constrained intervals. 

Thode & Monster (1970) 
 

17 
 

Evaporite ages updated at stage scale to latest stratigraphy 

Thode et al. (1958) 
 

5 
 

Assigned to upper Frasnian (Hearn et al., 2011) 

Thompson & Kah 
(2012) 

235 
  

Ages provided in paper using U/Pb dates in Thompson et al. 
(2012). Data tabulated in Thompson (2011). 

Turchyn et al. (2009) 39 
 

39 Ages updated by interpolation to ICS2016/04 from GTS2004 

Utrilla et al. (1992) 
 

62 
 

Listed formations assigned by stage to ICS2016/04 ages. 
Omitted continental evaporite formations. 

van Everdingen et al. 
(1982) 

 70  Evaporite ages updated to latest stratigraphy. Omitted vein 
gypsum. 

Vinogradov (2007)  23  Toyonian evaporites assigned in 1 Myr intervals by 
subformation (Novikov, 2017) 

Vredenburgh & Cheney 
(1971) 

 
16 

 
Evaporite ages updated to latest stratigraphy. Omitted "sulfur 
crusts." 

Witts et al. (2018) 41 
  

Linearly interpolated magnetochronological age assignments 
using stratigraphic heights. 

Worden et al. (1997) 
 

11 
 

Used age model in Bernasconi et al. (2017) 

Wotte et al. (2012) 85 
  

Linear interpolation of stratigraphic height between stage 
boundaries 

Wotte et al. (2011) 69 
  

Linear interpolation of stratigraphic height between stage 
boundaries, using Susan Duster Limestone sedimentation rate 
for Molodo River and Ulakhan-Kyyry-Taas sections 

Wu et al. (2014) 214 
 

66 Ages updated by interpolation to ICS2016/04 from GTS2004. 
Data tabulated in Wu (2013). 

Yan et al. (2013) 27 
  

Guadalupian-Lopingian boundary set at base of C.p.p. based 
on ICS2016/04; Sedimentation rate from Qiu et al. (2015) 
indicate 0.04cm/kyr in the bedded chert relative to bentonite 
(257 Ma) at top of C.p.p zone, so base of bedded chert is 258.6 
Ma.; applied this sed rate down through the limestone 

Yao et al. (2018)   58 Age model provided in paper relative to PETM, which is taken 
as 55.93 Ma after Westerhold et al. (2008) 

Yao et al. (2020)   88 Ages updated by interpolation to ICS2016/04 from GTS2012 



Reference CAS Evap. Bar. Age Model and Notes 

Yeremenko & Pankina 
(1972) 

 
17 

 
Evaporite ages updated to latest stratigraphy 

Young et al. (2016) 68 
  

Linear interpolation of stratigraphic height between stage 
boundaries in Fig 2 and 3  

Young et al. (2019) 40   Assigned base and top of Ireviken CIE to bentonite age of 
431.8 Ma and top of Sheinwoodian Sub-stage 2 (430.2 Ma) 
from Cramer et al. (2012) for Roberts Mtn. section.  Aligned 
Newsom Roadcut carbon isotope record with Roberts Mtn. 
section, with unconformity on rising limb 

Zhang et al. (2015) 15 
  

Used Smithian/Spathian boundary ages from Burgess et al. 
(2014) and sedimentation rates provided in Figure 3 
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