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composition.  We compare the sulfur isotopic composition of three sedimentary materials 15 
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information.  These discrepancies partially obscure understanding of the relationship 20 
between life, ocean chemistry, and climate. 21 
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Abstract 25 

The δ34S of seawater sulfate reflects processes operating at the nexus of sulfur, carbon, and 26 
oxygen cycles.  However, knowledge of past seawater sulfate δ34S values must be derived 27 
from proxy materials that are impacted differently by depositional and post-depositional 28 
processes.  We produced new timeseries estimates for the δ34S value of seawater sulfate by 29 
combining 6710 published data from three sedimentary archives—marine barite, evaporites, 30 
and carbonate-associated sulfate—with updated age constraints on the deposits.  Robust 31 
features in multiple records capture temporal trends in the δ34S value of seawater and its 32 
interplay with other Phanerozoic geochemical and stratigraphic trends.  However, high-33 
frequency discordances indicate that each record is differentially prone to depositional biases 34 
and diagenetic overprints.  The amount of noise, quantified from the variograms of each 35 
record, increases with age for all δ34S proxies, indicating that post-depositional processes 36 
obscure detailed knowledge of seawater sulfate’s δ34S value deeper in time. 37 

1 Introduction 38 

Seawater sulfate acts as a major oxidant of organic carbon, controlling the cadence of its 39 
burial in sediments and connecting the carbon, sulfur, and oxygen cycles (Bowles et al., 40 
2014; Jørgensen, 1982).  Microbial sulfate reduction (MSR), reoxidation of sulfide, and the 41 
burial and oxidation of pyrite govern sedimentary inorganic carbon and alkalinity fluxes 42 
(Ben‐Yaakov, 1973; Froelich et al., 1979).  Pyrite in sedimentary rocks may be exposed and 43 
oxidized during uplift, erosion, and weathering—impacting Earth’s dioxygen and carbon 44 
dioxide budgets on tectonic timescales (Burke et al., 2018; Kump & Garrels, 1986; M. A. 45 
Torres et al., 2014).  Over Phanerozoic time (the past 541 Myr), the burial of sulfide and 46 
disulfide minerals must have balanced the acid produced and dioxygen consumed during 47 
terrestrial pyrite weathering.  Therefore, tracking ancient sulfate fluxes related to these 48 
processes illuminates when, how, and where the Earth system achieves this balance, and 49 
what happens during intervals of unsteadiness. 50 

Thode et al. (1953) first recognized that a record of ancient marine sulfur isotopic 51 
compositions (δ34S) could constrain changes to Earth’s biogeochemical cycles, and Ault and 52 
Kulp (1959) applied mass balance assumptions in an early effort to quantify important sulfur 53 
fluxes.  Isotope fractionations during MSR preferentially enrich the residual sulfate in 34S by 54 
several percent (Bradley et al., 2016; Harrison & Thode, 1958; Sim et al., 2011).  When more 55 
sulfate is reduced and fixed into pyrite, removing more light sulfur isotopes from the oceans, 56 
the remaining sulfate in seawater becomes enriched in the heavy, rare isotopes.  Holland 57 
(1973) first attempted to calculate changes in dioxygen fluxes from δ34S data.  Holser (1977) 58 
further recognized that rapid changes in the δ34S value of seawater coincide with intervals of 59 
biotic crises and dramatic reorganizations of Earth’s climate and biosphere.  The subsequent 60 
forty years have seen many efforts to derive an accurate and precise record of how the δ34S 61 
value of seawater sulfate has changed over Earth history. 62 
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Three sedimentary materials constitute proxy archives of Phanerozoic seawater sulfate δ34S 63 
values: (1) marine evaporites, which include sulfate salts precipitated from evaporated 64 
seawater in marginal marine basins; (2) marine barite, which forms from a suite of 65 
biogeochemical processes associated with sinking particles in pelagic waters; and (3) 66 
carbonate-associated sulfate (CAS), which is minor sulfate incorporated into the crystal 67 
lattice of biogenic and abiogenic calcite, aragonite, and dolomite phases that accumulate in 68 
sedimentary rocks. 69 

Important reviews (Bottrell & Newton, 2006; Claypool et al., 1980; Holser et al., 1989; 70 
Strauss, 1997; Veizer et al., 1980) on the evolution of the Phanerozoic sulfur cycle have 71 
assumed that these proxies more-or-less accurately preserve the isotopic composition of 72 
ancient seawater sulfate. This assumption is reasonable because Phanerozoic seawater likely 73 
contained abundant sulfate as a conservative, well-mixed anion.  Modern seawater has 28 74 
mmol/kg sulfate, which has an approximate residence time of more than 10 Myr—much 75 
longer than the mixing time of the oceans (Bottrell & Newton, 2006; Walker, 1986).  76 
Supergiant gypsum and anhydrite deposits in the sedimentary record indicate that sulfate has 77 
been a major constituent in ancient seawater, as well.  These deposits, which represent long-78 
lived intervals of basin recharge and evaporation of seawater (Warren, 2010), formed 79 
episodically from Mesoproterozoic through Phanerozoic time (Grotzinger & Kasting, 1993; 80 
Pope & Grotzinger, 2003).  The composition of fluid inclusions in halite from evaporite 81 
deposits further suggested that sulfate maintained at least millimolar concentrations 82 
throughout Phanerozoic time (Lowenstein et al., 2003). 83 

Important features in the δ34S age curves were observed in multiple datasets on both long 84 
and short timescales.  All archives exhibited high δ34S values in early Paleozoic time, fell to 85 
minima in the late Paleozoic, and increased to modern values (~21‰) over Mesozoic and 86 
Cenozoic time.  This pattern was originally noted in the evaporite record by Ault and Kulp 87 
(1959) and reaffirmed by more extensive evaporite compilations (Claypool et al., 1980; 88 
Holser et al., 1989; Holser & Kaplan, 1966; Strauss, 1997).  Burdett et al. (1989) produced 89 
the first continuous biogenic CAS dataset for the Neogene Period and demonstrated that it 90 
agreed with the evaporite δ34S record.  Kampschulte et al. (2001) and Kampschulte and 91 
Strauss (2004) then demonstrated that biogenic CAS captured the first-order features of the 92 
Phanerozoic evaporite record, and could be correlated with higher resolution and confidence 93 
than evaporites to the carbonate carbon isotope record.  The δ34S pattern covaries with many 94 
other geochemical records of changing seawater composition (Hannisdal & Peters, 2011; 95 
Prokoph et al., 2008), and so has been interpreted to reflect long-term changes related to the 96 
assembly and breakup of Pangea (Turchyn & DePaolo, 2019). 97 

In addition to long-term trends, Holser (1977) identified shorter fluctuations (5–50 Myr) in 98 
the Upper Devonian and lower Triassic evaporite record; these excursions are recorded by 99 
CAS as well (Kampschulte & Strauss, 2004).  Increased temporal resolution from barite and 100 
CAS found additional rapid excursions, notably associated with Jurassic and Cretaceous 101 
intervals of widespread organic-rich shale deposition (Gill, Lyons, & Jenkyns, 2011; Paytan 102 
et al., 2004) and Paleogene carbon cycle perturbation (Paytan et al., 1998; Rennie et al., 103 
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2018).  In addition, some δ34S records with high temporal resolution, especially derived from 104 
CAS, have rapid variability (Kah et al., 2016; Kampschulte et al., 2001), and data from 105 
multiple locations containing similar-age strata have δ34S heterogeneity (Gill, Lyons, Young, 106 
et al., 2011; Present et al., 2015). 107 

Although seawater sulfate was likely well-mixed for much of Phanerozoic time, these rapidly 108 
varying datasets indicated that short periods of sulfate drawdown may have been expressed 109 
as high spatial and temporal δ34S gradients (Holser, 1977; Kah et al., 2004, 2016).  If these 110 
gradients represent globally relevant budgets of carbon, nutrients, and oxidizing capacity, 111 
then the residence time of sulfate in ancient oceans must have been much shorter than today.  112 
An analogy to the carbon cycle is illustrative.  Isotopic fractionations between oxidized and 113 
reduced species are comparable for carbon and sulfur.  The biological pump—114 
remineralization of sinking organic matter that is fractionated by tens of permille from 115 
dissolved inorganic carbon—is only capable of creating inorganic carbon isotopic gradients 116 
of less than 3‰ given Pliocene-age to present nutrient inventories and ca. 2 mmol/kg 117 
bicarbonate (Toggweiler & Sarmiento, 1985).  Therefore, even small gradients in the δ34S of 118 
marine sulfate, of similar magnitude to carbon isotope gradients driven by the biological 119 
pump, would have required both a higher proportion of anaerobic organic carbon 120 
remineralization and more than an order of magnitude smaller sulfate inventory. 121 

However, the implicit assumption that proxies for seawater δ34S values are suitably accurate 122 
and precise to demonstrate rapid changes in seawater’s composition has not been tested.  The 123 
processes by which the proxy materials form and incorporate sulfate from seawater may 124 
affect their δ34S value, complicating the reconstruction of Phanerozoic seawater’s 125 
composition but providing nuance on biogeochemical sulfur cycling and its imprint on the 126 
rock record. 127 

We produced a new timeseries to estimate the Phanerozoic history of the δ34S value of 128 
seawater sulfate by synthesizing published geochemical data with updated geochronology 129 
and stratigraphic correlations.  We attribute some of the differences between archives to 130 
mechanics of how sulfate is incorporated into and preserved in sedimentary rocks.  This 131 
approach tests the assumption that each archive samples the same history of seawater δ34S 132 
values, quantifies uncertainty in proxy archives, and reveals that some major sources of 133 
variance are themselves produced by biogeochemical processes that may have varied through 134 
Phanerozoic time. 135 

2 Synthesis of Phanerozoic seawater sulfate δ34S proxy data 136 

We compiled 6710 measurements from 108 references that reported δ34S values in 137 
Phanerozoic marine evaporites, bulk rock CAS, biogenic CAS, or marine barite.  Each δ34S 138 
value was assigned an age using the International Commission on Stratigraphy 2016/04 time 139 
scale (Cohen et al., 2013; updated) (Figure 1).  The Supporting Information enumerates the 140 
δ34S data, assigned age, data type, data source, and method and literature used for each age 141 
assignment. 142 
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Each proxy material has different, irregularly spaced temporal distributions (Figure 1a).  To 143 
estimate Phanerozoic δ34S trends, each proxy record was interpolated at 50 kyr resolution 144 
(Figure 1b).  Kriging—a geostatistical approach using autocorrelation to quantify stochastic 145 
components in spatiotemporal data—was used to weight data for interpolation and estimate 146 
confidence intervals (Gebbers, 2010).  Because kriging uses the empirical autocorrelation 147 
structure of the data to produce weights, it is well suited for irregularly spaced data.  148 
Autocorrelation varies between two endmembers of linearly detrended variance: at the 149 
maximum is the variance of all points in that geologic interval, and at the minimum is the 150 
unresolved chatter between data closely spaced in time.  The kriged uncertainty on the 151 
interpolations reflects this increase in variance, such that interpolated values further from 152 
data have larger uncertainties up to the population variance according to the observed range 153 
of autocorrelation.  Kriging was done on each geologic material, partitioned by era, by 154 
modelling variograms—functions describing how the variance per point (semivariance) of 155 
pairs of linearly detrended data varies with their average separation distance in time 156 
(Supporting Information).  Paleogeography was not considered, so spatial variability was 157 
collapsed into the temporally unresolved chatter within each era. 158 

 159 

Figure 1 [next page]. Records of Phanerozoic seawater sulfate δ34S generated from proxy 160 
materials. (a) The average number of δ34S analyses of each proxy per Myr, in 5 Myr bins, 161 
illustrates the temporal bias in the sampling of each material through Phanerozoic time.  (b) 162 
Interpolated proxy records of the δ34S composition of sulfate over Phanerozoic time.  163 
Shading indicates the kriged 1σ confidence intervals.  (c) All compiled proxy data for the 164 
δ34S of Phanerozoic seawater. 165 
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3 Discussion 167 

3.1 Distribution of δ34S in proxies 168 

During seventy years of effort to determine a history of Phanerozoic seawater sulfate δ34S 169 
from different geologic materials, it has implicitly been assumed that each proxy samples the 170 
same primary population of seawater δ34S compositions through space and time.  However, 171 
comparison of all Phanerozoic δ34S data for each proxy indicates that the four datasets do not 172 
come from the same distribution (Supporting Information, non-parametric Kruskal-Wallis 173 
one-way analysis of variance, χ2[3,6709] = 684.54, p ≪ 0.001).  Therefore, each proxy likely 174 
has different temporally or spatially variable sampling biases or reflects different 175 
biogeochemical processes that contribute to variance in the time-series of ancient sulfate’s 176 
δ34S. 177 

Major δ34S trends and excursions in Cenozoic, Mesozoic, and late Paleozoic records are 178 
exhibited in multiple archives, but significant discrepancies and gaps are apparent in records 179 
from Cambrian to Devonian time (Figure 1c).  In early- to mid-Paleozoic strata, biogenic 180 
carbonates are sparse, marine barite is absent, and bulk CAS δ34S values diverge from 181 
evaporites by greater than 10‰ (Figure 2a).  Additionally, Paleozoic variance is highest for 182 
all records (Figure 2b). 183 

The evaporite record, being comprised of massive amounts of sulfate but limited in spatial 184 
and temporal extent, likely captures long-term δ34S trends.  The bulk CAS, biogenic CAS, 185 
and barite records have higher temporal resolution than the evaporite record for much of the 186 
Phanerozoic, potentially capturing shorter δ34S excursions.  187 
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 188 

Figure 2. Comparison of δ34S values and variance generated from proxy materials. (a) 189 
Residuals between the evaporite record and each other record shaded with kriged 1σ 190 
confidence intervals.  (b) Confidence intervals produced from kriging data from each proxy 191 
in each era.  Where data is sparse, the confidence intervals approach the standard deviation 192 
of linearly detrended data in each geologic era, excluding 1st and 99th percentile outliers.  193 
Where there is data, the confidence interval is the uncorrelated chatter determined from the 194 
semivariance of data temporally closer than the mean minimum time between data pairs. 195 

 196 

3.2 Sources of δ34S variance 197 

The δ34S variability for each proxy is plotted in Figure 2b.  The maxima in each era on each 198 
curve represents the standard deviation of detrended δ34S data over each geologic era.  For 199 
example, the standard deviation of linearly detrended Paleozoic bulk CAS data is 7.4‰ 200 
(excluding 1st and 99th percentile outliers), while that of all Cenozoic barite data is 1.3‰.  201 
These standard deviations can be interpreted as a naive description of expected variability 202 
where data is sparse, and reflect the combination of local spatiotemporal trends in the proxy 203 
record plus an uncorrelated random component.  The uncorrelated, random component is 204 
estimated by the semivariance of pairs of data that are closer together than the mean 205 
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minimum time between all pairs of data (Gebbers, 2010).  The uncorrelated variances for 206 
each proxy are plotted as the minima in each era on each curve in Figure 2b. 207 

Uncorrelated variance is a metric that convolves multiple sources of uncertainty.  Sources of 208 
variance of geologic interest include temporally unresolved variability in seawater δ34S 209 
values and temporally incoherent variability in how the sedimentary archives were formed 210 
or altered.  These sources of variance may be temporally unresolved due either to spatial 211 
variability of seawater sulfate’s δ34S at a given time, or to temporal variability more rapid 212 
than the resolution of the record.   In addition, the uncorrelated variance captures analytical 213 
uncertainty related to making δ34S measurements in each archive, and non-systematic error 214 
in age assignments of proxy materials.  While the relative contributions of each of these 215 
sources of uncertainty may differ between proxies or with age, the uncorrelated variance 216 
metric—like the population variance—describes the data’s structure and how predictive a 217 
given δ34S measurement is of other nearby values. 218 

This analysis produced two key results: the uncorrelated variance is different for each 219 
archive, and for all archives it increases with age.  Cenozoic and Mesozoic CAS data have 220 
uncorrelated variance larger than that of evaporites and barite.  Uncorrelated Paleozoic bulk 221 
rock CAS data have a standard deviation more than twice that of biogenic CAS and 222 
evaporites.  Differences between multiple proxies of the same age indicate that the 223 
uncorrelated variance is likely caused, in part, by variability inherent to how δ34S is 224 
preserved, rather than just inadequate sampling of primary spatial and temporal variability 225 
of seawater sulfate. 226 

The remaining analysis considers the sources of variance in each archive that may have 227 
contributed to the uncorrelated variance.  Importantly, trends statistically distinguishable 228 
from the uncorrelated variance need not represent true trends in the δ34S of Phanerozoic 229 
seawater.  The same sources of variance controlling the uncorrelated data may themselves 230 
have spatial or temporal components that lead to biased estimates of Phanerozoic seawater’s 231 
composition in the proxy records. The uncorrelated variance, in part, quantifies the 232 
disagreement between contemporaneous records from different localities.  Trends in the data 233 
smaller than the uncorrelated variance are indistinguishable from random noise.  This is true 234 
even for individual records from stratigraphic successions with coherent δ34S trends: a given 235 
stratigraphic succession may clearly resolve a trend in the δ34S of the proxy but fail to 236 
statistically resolve a global trend in the δ34S of seawater sulfate. 237 

3.2.1 Evaporites 238 

Deposits of carbonate, sulfate, and halide salts form as seawater evaporates in restricted 239 
basins.  Throughout Phanerozoic time, bedded marine evaporites formed subaqueously, in 240 
salinas (hypersaline lagoons) and salt pans, and subaerially, in supratidal sabkha 241 
environments.  Extremely thick (>100s of meters) evaporite deposits have also formed in 242 
deeper-water environments.  Deposition and preservation of evaporites require favorable 243 
climatic and tectonic conditions where restricted basins experience net evaporation (Warren, 244 
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2010).  Therefore, the evaporite record has limited spatial and temporal continuity (Claypool 245 
et al., 1980; Strauss, 1997). 246 

Because evaporites are massive products of seawater sulfate, they are largely expected to 247 
provide an accurate proxy for the δ34S of ancient seawater sulfate.  However, because they 248 
form in marginal marine environments often with biologically adverse salinities, it can be 249 
difficult to constrain their geologic age with biostratigraphy.  In many deposits, it is also 250 
challenging to discern depositional environment or deconvolve marine and non-marine 251 
geochemical signatures (Hardie, 1984; Kendall & Harwood, 1989; Lu & Meyers, 2003).  The 252 
restricted, marginal marine settings in which many evaporites form are prone to changes in 253 
fluid source or depositional environment with minor base-level changes (Playà et al., 2007).  254 
Basins rich in evaporites also often form diapirs that drive salt tectonics, which complicates 255 
a deposit’s internal stratigraphy (Nielsen, 1989). 256 

Evaporites can have a δ34S range of 1‰ to 6‰ within a formation (Thode & Monster, 1965).  257 
This variability cannot be attributed to fractionation during gypsum precipitation, which 258 
produces sulfate salt prior to halite saturation that has a δ34S composition 1‰ to 2‰ higher 259 
than the unevaporated seawater (Raab & Spiro, 1991).  Salinity stratification in evaporating 260 
basins can promote water-column anoxia and allows MSR to distill sulfate to higher δ34S 261 
compositions than the original seawater; in some cases, evaporite δ34S compositions are 262 
higher than other proxies from the same depositional basin (Fike & Grotzinger, 2010).  263 
Consequently, early workers hypothesized that the isotopic composition of ancient seawater 264 
was best reflected by the lowest δ34S value in an evaporite succession (Ault & Kulp, 1959; 265 
Davies & Krouse, 1975; Thode & Monster, 1965).  However, evaporite basins in marginal 266 
marine environments are recharged not only by unadulterated seawater, but also by 267 
groundwater and runoff with δ34S compositions biased either higher or lower than seawater 268 
from remobilized older evaporite deposits or weathered sedimentary pyrite and organic 269 
sulfur (Nielsen & Ricke, 1964; Utrilla et al., 1992).  Finally, high organic carbon 270 
concentrations in many evaporite deposits can promote isotope fractionation by 271 
thermochemical sulfate reduction during burial diagenesis (Vinogradov, 2007). 272 

Some of the uncorrelated variance in evaporite isotope ratio data also results from poor 273 
stratigraphic control (Supporting Information).  Here we used updated stratigraphic 274 
information to better constrain the age of evaporite data, but the record can further benefit 275 
from higher-resolution sample collection with improved stratigraphic control during 276 
intervals where δ34S changes appear in other records.  Modern stratigraphic models permit 277 
correlation of evaporitic strata to better-constrained carbonate and clastic strata.  Bernasconi 278 
et al. (2017) recently produced a high-resolution evaporite record that resolved the major 279 
early Triassic δ34S excursions seen in earlier datasets; thus careful correlation and assignment 280 
of geologic ages permits tracking changes in the Phanerozoic sulfur cycle with evaporites.  281 
Indeed, the stratigraphic control for Mesozoic evaporites provided by Bernasconi et al. 282 
(2017) likely drives the low standard deviation of uncorrelated Mesozoic evaporite data to 283 
values (0.4‰) comparable to that of the marine barite record (0.3‰). 284 
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3.2.2 Barite 285 

Barite precipitates from hydrothermal fluids, sediment pore fluids, and from particles within 286 
the marine water column (Paytan et al., 1993, 2002).  Barite is under-saturated in most of the 287 
oceans (Chow & Goldberg, 1960; Church & Wolgemuth, 1972).  However, barite has been 288 
observed in sediment traps in the upper 200 m in the water column, especially in high-289 
productivity regions, and is associated with sulfate enrichment from decaying organic matter 290 
(Bishop, 1988).  While barite super-saturation is achieved predominately by the addition of 291 
sulfate from oxidizing organic sulfur (Horner et al., 2017; Jacquet et al., 2007), marine barite 292 
apparently precipitates with δ34S values within 0.4‰ of modern seawater (Paytan et al., 1998, 293 
2002).  Barite is subsequently transported to sediments by fecal pellets and marine snow 294 
(Bishop, 1988), and preserved in oxic marine sediments in high-productivity regions where 295 
enough barite is delivered to saturate pore fluids (Church & Wolgemuth, 1972).  Sulfate 296 
reduction in anoxic sediments can cause dissolution of barite, which re-precipitates at the 297 
base of the sulfate reduction zone with extremely high δ34S compositions (M. E. Torres et 298 
al., 1996). 299 

Marine barite is considered an accurate proxy for ancient seawater δ34S because it 300 
precipitates in the open-ocean water column and is texturally distinguishable from diagenetic 301 
barite that forms in anoxic sediments at redox fronts (Paytan et al., 1993).  However, the 302 
marine barite record is limited by the availability of open-marine sediments that deposited in 303 
high-productivity regions where both authigenic enrichment of barite occurs and pore fluid 304 
sulfate concentrations remain above zero (Paytan et al., 1993).  Consequently, the barite δ34S 305 
record is unlikely to be extended much further than the current dataset spanning the last 130 306 
Myr.  Bedded barite deposits are associated with economically-important disulfide mineral 307 
deposits (C. A. Johnson et al., 2009), but contain large δ34S variability (>10‰) and do not 308 
resolve the ancient seawater record any better than other proxy materials.  Additionally, with 309 
few exceptions (e.g., Yao et al., 2018), the temporal resolution of the marine barite δ34S 310 
record is unlikely to dramatically improve, especially during biogeochemical events 311 
characterized by low marine productivity (such as the Cretaceous-Paleogene boundary) or 312 
bottom-water anoxia (such as ocean anoxic events) that would have limited authigenic barite 313 
enrichment or preservation. 314 

3.2.3 Carbonate-associated sulfate 315 

Limestones and dolomites deposited continuously throughout Phanerozoic time, 316 
accumulating in marginal marine and open-ocean environments.  A minor amount of sulfate 317 
is incorporated into biogenic and abiogenic carbonate phases.  Biogenic carbonates often 318 
contain part-per-thousand sulfate by mass, while inorganic cements typically contain 319 
hundreds of parts-per-million (Barkan et al., 2020; Busenberg & Plummer, 1985; Giri & 320 
Swart, 2019; Paris, Fehrenbacher, et al., 2014; Staudt & Schoonen, 1995).  Recent sediments 321 
from various peritidal carbonate platform environments include CAS with an isotopic 322 
composition similar to modern seawater (Lyons et al., 2004).  CAS, therefore, complements 323 
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and exceeds the temporal resolution and completeness of the evaporite and barite records 324 
(Strauss, 1997). 325 

Diagenetic processes may exchange sulfate with the primary carbonate and alter its isotopic 326 
composition (Fichtner et al., 2017; Murray et al., 2020; Present et al., 2015, 2019).  327 
Kampschulte & Strauss (2004) suggested that the variability of multiple δ34S analyses from 328 
contemporaneous stratigraphic successions could be used to quantify the effect of diagenesis 329 
on the CAS record.  However, rapidly-changing and disparate CAS δ34S compositions have 330 
since been generated and interpreted—especially in Paleozoic studies—as intervals of 331 
heterogeneous seawater sulfate δ34S reflecting periods of low sulfate concentrations and low 332 
marine sulfate residence times (e.g., Gill, Lyons, Young, et al., 2011; Kah et al., 2004). 333 

Limestones and dolomites are comprised of mud or grains that precipitated both biologically 334 
and abiotically from seawater, with cements binding them together.  Each of these 335 
components may recrystallize in pore fluids whose chemical composition reflects marine, 336 
meteoric, and burial diagenetic processes.  A combustion CAS analysis typically requires 10 337 
g to 100 g of carbonate (Wotte et al., 2012), and this mass requirement dictates that samples 338 
mix components that may have precipitated and/or recrystallized at different times.  Further, 339 
CAS analyses may be contaminated by sulfur from co-occurring phases, including sulfide 340 
and disulfide minerals, sulfur-bearing organic material, and sulfate salts (Edwards et al., 341 
2019; Marenco, Corsetti, Hammond, et al., 2008; Present et al., 2015; Theiling & Coleman, 342 
2015; Wotte et al., 2012).  Recent application of plasma-source mass spectrometry for sulfur 343 
isotope analysis has permitted δ34S analyses on less than one-thousandth as much sulfate, 344 
corresponding to 5 mg to 50 mg of carbonate (Paris, Adkins, et al., 2014; Paris et al., 2013; 345 
Present et al., 2015, 2019; Rennie et al., 2018).  Well-preserved biogenic grains, 346 
recrystallized grains, matrix, and cements contain CAS with δ34S compositions varying by 347 
as much as 25‰, spanning most of range of CAS analyses from the entire Phanerozoic 348 
(Present et al., 2015, 2019).  Therefore, much of the variability of CAS δ34S data may not 349 
reflect the δ34S composition of ancient seawater sulfate.  Identifying components that retain 350 
the δ34S of sulfate incorporated from syndepositional seawater is critical to precisely and 351 
accurately exploit the CAS δ34S archive. 352 

CAS can reflect the δ34S of syndepositional seawater sulfate if the carbonate component did 353 
not recrystallize after precipitation, if recrystallization and cementation occurred in contact 354 
with a low-sulfate fluid, or if the δ34S of pore fluid sulfate was not fractionated from seawater 355 
(Gill et al., 2008; Lyons et al., 2004; Rennie & Turchyn, 2014).  Alteration occurs if the 356 
sediments recrystallize above the depth at which sulfate is completely consumed by MSR 357 
but deep enough that some distillation of δ34S within sediment pore fluid has occurred 358 
(Edwards et al., 2019; Fike et al., 2015; Present et al., 2019; Rennie & Turchyn, 2014; Witts 359 
et al., 2018).  Additionally, some ancient carbonates contain CAS with anomalously low δ34S 360 
interpreted to result from the incorporation of sulfate from sulfide that was reoxidized during 361 
diagenesis or weathering (Baldermann et al., 2015; Edwards et al., 2019; Fichtner et al., 362 
2017; Fike et al., 2015; Marenco, Corsetti, Kaufman, et al., 2008; Present et al., 2015, 2019; 363 
Rennie & Turchyn, 2014; Riccardi et al., 2006; Yan et al., 2013).  Carbonates recrystallizing 364 
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during burial may also be prone to diagenetic modification of the δ34S of CAS if the burial 365 
fluids were sulfate rich (Fichtner et al., 2017, 2018; Present et al., 2015).  The δ34S in burial 366 
fluids may be highly variable, and include sulfate from hydrocarbon or organic matter 367 
degradation, dissolved evaporites, groundwater modified by MSR, or sulfate released by 368 
dissolution of CAS (Dogramaci et al., 2001; Fichtner et al., 2018; Murray et al., 2020; Present 369 
et al., 2019; Thode & Monster, 1965, 1970). 370 

These diagenetic controls on the δ34S of CAS decrease the precision and accuracy of the 371 
proxy.  This is quantified by its uncorrelated variance, which is much higher than that 372 
observed in other seawater sulfate δ34S proxies.  Uncorrelated Paleozoic CAS data has a 373 
standard deviation of 5.0‰, and that of Mesozoic CAS is 4.4‰, which is five to ten times 374 
larger than that of Paleozoic and Mesozoic evaporites (1.0‰ and 0.4‰, respectively).  375 
Further, diagenesis may have impacted accuracy by systematically biasing the δ34S of CAS 376 
with respect to the primary composition of seawater sulfate.  For example, base level often 377 
controls the stratigraphic arrangement of facies in carbonates successions, which can impart 378 
biases as large as 10‰ on the δ34S of CAS (Present et al., 2019; Richardson, Keating, et al., 379 
2019).  Both the random and systematic variability is on the order of well-resolved rapid 380 
changes of 3‰ to 6‰ in the δ34S of marine barite and biogenic CAS. 381 

3.2.4 Biogenic CAS 382 

Biogenic CAS may offer a more robust δ34S record than bulk CAS because biogenic 383 
carbonate can often be readily separated from other limestone components, preservation 384 
quality can be assessed, and vital effects appear to be small in most taxa (Kampschulte et al., 385 
2001; Paris, Fehrenbacher, et al., 2014; Present et al., 2015).  In modern and cultured 386 
biogenic carbonates, the incorporated sulfate has an isotopic composition within 2‰ of the 387 
seawater from which it precipitated (Burdett et al., 1989; Kampschulte et al., 2001; Kaplan 388 
et al., 1963; Mekhtiyeva, 1974; Paris et al., 2013; Paris, Fehrenbacher, et al., 2014; Present 389 
et al., 2015).  Recently, Rennie et al. (2018) produced a taxon-specific foraminiferal CAS 390 
record with variance and secular trends comparable to the marine barite record. 391 

Low-magnesium calcite, precipitated by many brachiopods, belemnites, and planktonic 392 
foraminifera, is stable at Earth’s surface and shallow burial conditions.  The low-magnesium 393 
calcite biogenic CAS δ34S record has significantly improved the resolution of the 394 
Phanerozoic δ34S record during two key periods.  First, during the Toarcian (Jurassic) Ocean 395 
Anoxic Event, belemnite CAS displays a large (6‰) δ34S excursion that is not well resolved 396 
in the evaporite record (Gill, Lyons, & Jenkyns, 2011; Newton et al., 2011).  Second, during 397 
Carboniferous time, brachiopods record a prolonged recovery from a δ34S maximum in 398 
middle Devonian time (D. L. Johnson et al., 2020; Kampschulte et al., 2001; N. Wu et al., 399 
2014).  However, aragonite and high-magnesium calcite, precipitated by many bivalves, 400 
gastropods, corals, trilobites, echinoderms, bryozoans, and marine algae, dissolves and/or 401 
recrystallizes much more readily than low-magnesium calcite (Brand & Veizer, 1980).  Few 402 
studies have investigated CAS δ34S from formerly aragonitic fossils (Mekhtiyeva, 1974; 403 
Present et al., 2015; Witts et al., 2018). 404 
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Unfortunately, well-preserved biogenic carbonate is rare in the rock record, especially during 405 
intervals of climatic or biologic crisis (e.g., mass extinction events).  Even apparently well-406 
preserved biogenic carbonate can still be susceptible to diagenetic alteration (Fichtner et al., 407 
2018; Witts et al., 2018).  Like the marine barite record, a significant expansion of the 408 
biogenic CAS δ34S proxy record is limited by the availability of suitable sample material. 409 

3.3 Discrepant early Phanerozoic proxy records 410 

While all archives imperfectly estimate ancient seawater’s composition, they provide 411 
generally indistinguishable estimates considering the sources of uncertainty discussed 412 
(Figure 2a).  Paleozoic bulk rock CAS data, as a notable exception, commonly exhibit rapid 413 
δ34S variability (Figure 1b), but other archives with less uncorrelated variance are absent or 414 
lack temporal resolution (Figure 1a).  Throughout Phanerozoic strata, CAS data consistently 415 
display more unresolved variance than other archives, yet they record the same long-term 416 
trends (Figure 2), suggesting that some δ34S excursions recorded by CAS may not represent 417 
changes in the composition of the ocean.  The high uncorrelated variance in all early 418 
Paleozoic archives may mask δ34S excursions on the order of those well-resolved in younger 419 
strata by all archives.  Spatial and temporal variability in early Paleozoic CAS data may 420 
represent short residence times of sulfate in sulfidic oceans (e.g., Gill, Lyons, Young, et al., 421 
2011; Kah et al., 2016), local diagenetic effects on the δ34S of carbonate rocks (Present et al., 422 
2015, 2019; Richardson, Keating, et al., 2019; Richardson, Newville, et al., 2019), or both 423 
(Edwards et al., 2019; Rose et al., 2019). 424 

CAS δ34S excursions often correlate with global perturbations evidenced by carbon isotope 425 
excursions and trace metal, pyrite sulfur isotope, and bioturbation intensity records (Canfield 426 
& Farquhar, 2009; Fike et al., 2015; Gill et al., 2007; Jones & Fike, 2013; Kah et al., 2016; 427 
Saltzman et al., 2015).  Perhaps some CAS δ34S excursions reflect widespread 428 
biogeochemical changes at the interface between pore fluid sulfur cycling and carbonate 429 
sediment diagenesis, including sulfate, dioxygen, and nutrient availability, organic 430 
productivity, or metabolic or oceanographic changes in carbonate mineral saturation (Rennie 431 
& Turchyn, 2014).  Because part of the δ34S variance in all archives derives from early 432 
diagenetic processes—such as MSR, pyrite formation, and sulfide reoxidation—433 
consideration of these processes may reveal important temporal changes in carbon cycling 434 
in marine pore fluids (Present et al., 2019; Richardson, Keating, et al., 2019; N. Wu et al., 435 
2010). 436 

4 Conclusions 437 

Phanerozoic δ34S data were compiled from evaporites, barite, biogenic CAS, and bulk rock 438 
CAS and updated to a consistent time scale. The subset of seawater sulfate’s δ34S history 439 
possibly sampled by each proxy varied in space and time, and different suites of depositional 440 
and post-depositional processes added variance to each archive.  The variance in each record 441 
increases with age, but the changing contribution of primary and secondary sources of 442 
variability over Phanerozoic time remains unclear. 443 



Confidential manuscript submitted to Geophysical Research Letters 
15 

 
Bulk CAS contains a statistically significant different distribution of δ34S compositions than 444 
the biogenic CAS, evaporite, or barite records.  Early diagenetic overprinting of CAS occurs 445 
in depositional environments where carbonate recrystallization and cementation coincides 446 
with sulfate-rich pore fluids with modified δ34S values.  Despite these complications, bulk 447 
CAS can be widely applied in ancient sedimentary basins and is the only archive readily able 448 
to resolve sulfur cycle changes during rapid biogeochemical events.  Extending the breadth 449 
and resolution of the δ34S record requires developing mechanistic understanding of how 450 
biogeochemical perturbations affect the marine diagenesis of carbonate rocks. 451 
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