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Abstract15

With radar sounders, coherent backscattering simulations from global planetary DEMs16

typically display a deficit in diffuse clutter, which is mainly due to the implicit assump-17

tion that roughness at scales below the resolution of the DEM is absent. Indeed, while18

polynomial approximations of the phase evolution across the facet allow for fast and math-19

ematically rigorous simulators, the coarse resolution of these planetary DEMs leads to20

a potentially significant portion of the backscattering response being neglected. In this21

paper, we derive the analytical phase response of a rough rectangular facet characterised22

by Gaussian roughness and a Gaussian isotropic correlation function under the linear23

phase approximation. Formulae for the coherent and incoherent power scattered by such24

an object are obtained for arbitrary bistatic scattering angles. Validation is done both25

in isolation and after inclusion in different Stratton-Chu simulators. In order to illustrate26

the different uses of such a formulation, we reproduce two lunar radargrams acquired by27

the LRS instrument with a Stratton-Chu simulator incorporating the proposed rough28

facet phase integral, and we show that the original radargrams are significantly better-29

reproduced than with state-of-the-art methods, at a similar computational cost. We also30

show how the rough facet integral formulation can be used in isolation to better char-31

acterise subglacial water bodies on Earth.32

1 Introduction33

Radar sounders are low-frequency, nadir-pointing remote sensing instruments that34

operate by recording and processing electromagnetic signals reflected from a planetary35

body of interest. The incoming waveform that generates these reflections is generally trans-36

mitted by the radar sounder itself, a mode of operation known as active sounding, al-37

though signals of opportunity may also be used, a mode of operation known as passive38

sounding (Ulaby et al., 1981). Since the amplitude and phase of these reflections cor-39

respond to given changes of the dielectric constant across the medium of propagation,40

it is possible to infer a great amount of information from analysing these signals. For in-41

stance, radar sounders can be sensitive to the presence and composition of possible sub-42

surface features (Ulaby et al., 1981).43

In the last two decades, three highly successful orbital radar sounders have been44

operated within the Solar System: the Mars Advanced Radar for Subsurface and Iono-45

sphere Sounding (MARSIS) instrument aboard the the European Space Agency (ESA)46

Mars Express mission (Jordan et al., 2009); the Shallow Radar (SHARAD) instrument47

aboard the US National Aeronautics and Space Administration (NASA) Mars Recon-48

naissance Orbiter (MRO) mission (Croci et al., 2011); and the Lunar Radar Sounder (LRS)49

instrument aboard the Japan Aerospace Exploration Agency (JAXA) Kaguya mission50

(Ono et al., 2010). Three major planetary science missions embarking radar sounders51

are currently under development: the Radar for Icy Moons Exploration (RIME) of the52

ESA Jupiter Icy Moons Explorer (JUICE) spacecraft (Bruzzone et al., 2013); the Radar53

for Europa Assessment and Sounding: Ocean to Near-surface (REASON) instrument on54

the NASA Europa Clipper spacecraft (Blankenship et al., 2018); and the Subsurface Radar55

Sounder (SRS) aboard ESA’s Envision mission to Venus (Bruzzone et al., 2020).56

On Earth, airborne radar sounding of terrestrial ice sheets is one of the primary57

geophysical tools for characterising subglacial hydrologic systems (Schroeder et al., 2020).58

This includes studies that range from mapping the distribution of subglacial lakes across59

entire ice sheets (Wright & Siegert, 2012) to investigating the onset of subglacial melt-60

ing within a glacier catchment (Chu et al., 2018) and analysing individual water sub-61

glacial bodies (Rutishauser et al., 2018).62

Coherent backscattering simulators are tools of central importance at all stages of63

a radar sounder mission. They can assist in the design and validation of the instrument,64

help validate processing algorithms, and can also support planning and post-acquisition65
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analysis of the data. Such simulators take as input the characteristics of the instrument,66

of its environment, and a discretised version of the terrain of interest, or digital eleva-67

tion model (DEM), and give as output the radar response of the terrain for the consid-68

ered instrument. There are different types of backscattering simulators applied to radar69

sounding, the most important ones being finite-difference time-domain (FDTD) algorithms70

(Heggy et al., 2017), method of moments (MoM) simulators, pseudospectral methods (Lei71

et al., 2020), and those based on the Stratton-Chu formula (Berquin et al., 2015; Fa &72

Jin, 2010; Gerekos et al., 2018; Kobayashi et al., 2002; Nouvel et al., 2004).73

A common issue in planetary remote sensing is that global DEMs of Solar Systems74

objects usually have poor resolutions, in the hundreds of metres, whereas most backscat-75

tering simulation methods demand a resolution of the order of a tenth of the wavelength76

of the instrument, i.e., typically of the order of the metre, in order to be mathematically77

accurate. Stratton-Chu-type methods typically require more assumptions about scat-78

tering, but have been particularly popular in radar science due to their efficiency. These79

methods combine a way to compute the amplitude and polarisation of a field on a facet80

with a way to compute its phase. By allowing linear or polynomial variations of the phase81

across the facets of the DEM, it is possible to allow facets as large as several times the82

wavelength of the instruments (Berquin et al., 2015; Nouvel et al., 2004) – a huge com-83

putational improvement over FDTD or MoM simulators, which require an important over-84

sampling of the DEM to respect their internal assumptions. The large-facet linear phase85

approximation has been solved analytically for square (Nouvel et al., 2004) and trian-86

gular facets (Berquin et al., 2015), and has been generalised to multilayer terrains (Gerekos87

et al., 2018).88

However, even a well-crafted simulator is typically only as good as the input DEM,89

and a major limitation of having poorly-resolved DEMs is that roughness at scales be-90

low the resolution of the DEM is effectively taken to be zero (see Figure 1). However,91

this small-scale roughness is present on the real terrain and has a significant effect on92

the radar response, typically decreasing the nadir response and heightening the diffuse93

off-nadir response, both being a disadvantage for subsurface radar sounding. These ef-94

fects cannot be seen in a simulation based on a coarsely-resolved DEM, leading to a sim-95

ulated response that is “too coherent”, that is, with an excess of specular power and an96

underestimation of non-specular power (Berquin et al., 2015; Gerekos et al., 2018). Find-97

ing a way to include this small-scale response in Stratton-Chu simulators based on the98

linear phase approximation is thus crucial to fully benefit from these efficient methods.99

We note that similar problems have been looked at, with different assumptions and con-100

texts, in the Global Navigation Satellite System Reflectometry (GNSS-R) and high-resolution101

synthetic aperture radar (SAR) communities (Dente et al., 2020; Xu et al., 2021), although102

none of these formulations is entirely applicable to our problem. Within radar sounders103

specifically, (Grima, Schroeder, et al., 2014) derives the backscattered power from a fi-104

nite rough ellipse under the small perturbation model, but using rudimentary assump-105

tions on scattering. We also note that Sbalchiero et al. (2021) propose a treatment of106

a reduced version of this problem (i.e., using the discrete Stratton-Chu formula with rough107

facets) using FDTD pre-computed responses, but to our knowledge, the problem has yet108

to be solved analytically and validated for full radar responses.109

In this paper, we propose to generalise the linear phase approximation to rough rect-110

angular facets. Starting from the fundamental equation that describes the evolution of111

phase across a surface, we analytically recompute the integral of Nouvel et al. (2004) on112

a perturbed facet (see Figure 2), which is defined statistically. Separating the mean and113

the variance of the resulting power, a “coherent” and “incoherent” term naturally emerge.114

The formula for the phase response of a rough facet is rigorously validated both in iso-115

lation and integrated in Stratton-Chu simulators. After characterising and validating our116

formula, we show two different applications. The first is forward modelling. We illustrate117

our integrated all-scale simulator by reproducing LRS radargrams over two different re-118
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gions on the Moon, a mare and a crater, with and without the rough facet phase formula.119

The second application is to characterise subglacial water bodies using an updated ver-120

sion of the model described in Schroeder et al. (2014a). This application uses the rough121

facet integrals on their own, and does not involve a Stratton-Chu simulator.122

Our paper is structured as follows. In Section 2, we recall the state of the art in123

Stratton-Chu simulators and the linear phase approximation. In Section 3 we present124

our derivation of the comprehensive phase response of a rough facet. In Section 4 we present125

the validation of our formula from two different perspectives. Section 5 presents the two126

different applications of the rough facet phase integral. Section 6 concludes the paper.127

2 State of the art in large-facet coherent simulators128

Let us consider a discrete scatterer at a position r′. The phase accumulated by a
plane wave travelling from an emission point ri to r′ and then reflected or transmitted
from r′ to a reception point rr will be given by

φ(ri, rr, r
′) = ei(ki|r

′−ri|+ks|rr−r′|), (1)

where ki ≡ kik̂i and ks ≡ ksk̂s are the incoming and scattering wavevectors, respec-129

tively. In the case of a transmission, ki and ks have different norms, due to the change130

of dielectric constant at the interface. In the case of a reflection, their norms are the same.131

Finally, in the case of a monostatic reflection, i.e., when the receiver and the emitter are132

located at the same place, ki and ks have identical norms and opposite signs.133

Let us now consider that the scatterer is a facet, i.e., a continuous, smooth surface
A of initially arbitrary shape. In this case, the phase of the received signal will be given
by the integral of the expression above over the surface of this facet (see Figure 2-left):

Φ(rr, ri) =

�
A

φ(ri, rr, r
′)dr′. (2)

If the dimensions of the facets are very small, typically of the order of λ/10, it is134

reasonable to consider that the phase (1) is constant across the facet, in which case the135

integral (2) is trivially solved: Φ(rr, ri) = Aei(ki|rα−ri|+ks|rr−rα|), where A is the area136

of facet A and rα an arbitrarily-chosen point on its surface, typically its geometrical cen-137

tre. This method is known as the constant phase approximation (CPA) (Berquin et al.,138

2015). The main drawback of this approximation is that, for planetary DEMs with res-139

olutions of hundreds of metres, it requires massive amounts of oversampling to reach the140

O(λ/10) criterion.141

For this reason, more advanced phase computation methods have been devised. We142

review them in the next subsection.143

2.1 Analytical phase integrals144

Let us assume that A is a planar facet lying within a plane described by the fol-
lowing equation:

{r′|ax′ + by′ + d = z′} , (3)

where x′, y′, and z′ are the coordinates of r′ and a, b, d are real coefficients. The linear
phase approximation assumes that the argument of the exponential in (1) can be linearised
in the components of r′ as follows (Berquin et al., 2015).

ki|r′ − ri|+ ks|rr − r′| = A0x
′ +B0y

′ −D0, (4)

where 
A0 = kd,x + akd,z,

B0 = kd,y + bkd,z,

D0 = (ri · ki − rr · ks)− dkd,z,
(5)
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Figure 1: Illustration of the differences that might exist between a real-life terrain, which
is characterised by roughness down to the smallest scales (top), and a typical digital eleva-
tion model of that terrain, which is sampled at regularly-spaced intervals (bottom). Axes
represent distance in arbitrary units.

Figure 2: Illustration of the main quantities involved in the computation of the phase
integral and resulting power. The integration variable r′ runs over the plane defining the
facet [see (3)]. If the considered facet is smooth (left), the integration is done over r′; if it
is rough (right), the integration runs over r′ plus a perturbation δ(r′) that is parallel to
the normal n̂.
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with

kd ≡ ki − ks. (6)

The integral (2) has been solved analytically in the case of square (Nouvel et al.,
2004) and triangular facets (Berquin et al., 2015). In the case of a square facet of length
L, the phase integral reduces to

Φ(rr, ri) = e−iD0LxLy sinc

(
LxA0

2

)
sinc

(
LyB0

2

)
. (7)

where

Lx = L cosαx, Ly = L cosαy, (8)

and αx,y are the x- and y-direction inclination angles of the facet, defined through sinαx =145

|n̂x|, sinαy = |n̂y|, where n̂ is the unit outgoing (zenith-facing) normal to the facet. For-146

mula (7) is known as the linear phase approximation (LPA).147

We note that the formulation is identical for the more general case of rectangular148

facets, one just needs to replace L in (8) by the lengths L1, L2 of the facet edges.149

With this expression as the phase contribution of a facet in (11), we are allowed150

to have L & λ, thus saving a huge amount of computational resources. Since most plan-151

etary DEMs are indeed coarsely-sampled, this formulation is a very efficient way to sim-152

ulate radar backscattering under these conditions. This formula only works inasmuch153

as the small variations of the direction of incoming and scattered wavevectors across the154

facet can be neglected. In practice it is reliable for facet lengths up to a few wavelengths.155

Higher-order polynomial approximations for the phase variations have been computed156

for cases when even larger facet sizes are required (Berquin et al., 2015; Nouvel et al.,157

2004). In this paper, we will limit ourselves to the linear phase approximation.158

The roughness at scales smaller than the resolution of the DEM are not captured159

by the linear phase approximation, since formula (7) is purely deterministic and depends160

solely on the DEM. On a real terrain, however, smaller-scale roughness is present and161

its effect is measurable. Reproducing this response whilst keeping large facets –that is,162

without resorting to oversampling the DEM to λ/10 and adding a realisation of the small-163

scale roughness– is the purpose of this work.164

2.2 Stratton-Chu formula165

Although the phase is usually the most complicated factor to compute, one must166

also know the amplitude and polarisation of the electromagnetic fields in order to sim-167

ulate scattering from or through a surface. The expressions above are meant to be used168

alongside the Stratton-Chu formula, which is based on the Kirchoff approximation, and169

is used to compute the complete back- or forward-scattered electric field.170

It is almost always the case that the relevant quantities evolve sufficiently slowly171

across the surface to allow for the discretisation of that surface into facets, and to as-172

sume the field amplitudes and polarisations are constant across any given facet. In ef-173

fect, we are no longer computing the scattering on a given surface, but on an approx-174

imation of that surface being the DEM. Incidentally, our knowledge of the topography175

of planetary bodies is also limited by the resolution of the instrument they were mea-176

sured with, and are thus also discrete, or digital, objects.177
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In their discretised form, the Stratton-Chu formulae for backscattered and forward-
scattered electric fields are given by [see e.g. Gerekos (2020)]:

Erefl(rr) =iki

N∑
α

[I− k̂sk̂s] · [ZiH‖(rα) + k̂s ×E‖(rα)]Φα(rr, ri), (9)

Etrans(rr) =− iks
N∑
α

[I− k̂sk̂s] · [ZrH‖(rα) + k̂s ×E‖(rα)]Φα(rr, ri), (10)

where α represents the index of the considered facet and N the number of considered178

facets. Zi and Zr are the impedances of the medium of transmission and reception, re-179

spectively. k̂s ≡ (rr − rα)|rr − rα|−1 is the scattering vector and also depends on α.180

E‖ and H‖ are the parallel components of the incoming electric and magnetic fields. I181

is the identity tensor. Lastly, Φα is the phase integral over the facet Aα defined in (2).182

To keep notation more succinct, it is common to regroup all the non-phase factors
into a single object, and write

E(rr) =

N∑
α

Fα(rr, ri)Φα(rr, ri). (11)

In the following, the α indices may be dropped for clarity. When the vector nature183

of the problem is not relevant, the electric field may be written as a scalar E and the cor-184

responding Stratton-Chu factors as F .185

2.3 Stratton-Chu formula with a time-domain signal186

The expressions above are in principle only valid for monochromatic fields. To in-187

clude time-dependence, one should recompute the scattered field for all frequencies in-188

volved and recombine them with appropriate weights through a Fourier transform. How-189

ever, this process can be bypassed in the case of radar sounders due to their restricted190

bandwidth.191

Indeed let us consider that each facet reflects a delayed version of the incoming sig-
nal. If s(t) is the emitted signal, then the time-dependant Stratton-Chu formula reads
(Gerekos et al., 2018, 2019):

E(rr, t) =

N∑
α

Fα(rr, ri)Φα(rr, ri)s(t− τα), (12)

where τα is the travel time of the signals from the emitter to the facet centre to the re-192

ceiver.193

To keep notation light, time-dependence will not be shown explicitly unless nec-194

essary.195

3 Phase response of a rough facet196

We now aim at analysing how (7) changes when the planar surface of the facet is197

perturbed. The first steps of the derivation of the facet-level rough phase integral, the198

main novel contribution of this paper, partially follow those of (Fung, 1994; Kong, 2000;199

Tsang & Kong, 2004) on the backscattering law of an infinite random rough terrain un-200

der the Kirchoff approximation, which we adapt here for continuity.201
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Figure 3: Graph of the functions |〈Φ̃〉|2 (left) and DΦ (right) for a facet of length L = 3λ
that lies on the plane defined by the equation −0.2x − 0.5y = z. Roughness in top row:
σ = λ/16; middle row: σ = λ/4 , and bottom row: σ = λ , all of which with l = 2λ. The
emitter is located at ri = (0, 0, 2000λ), and points towards nadir: k̂i = (0, 0,−1). The
bounds of the box are equal to L4, the theoretical maximum of the square norm of the
phase integral for any given direction.
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3.1 Definition of the perturbation202

As in Kong (2000), we add a perturbation to the surface of the facet in a direction
parallel to the normal of that facet

r′ → r′ + δ(r′)n̂, (13)

where δ(r′) ∼ N (0, σ2) is a zero-mean Gaussian perturbation of variance σ2 (see Fig-203

ure 2-right). Moreover, we assume an isotropic Gaussian correlation function for the rough204

facet, and we denote l its correlation length.205

We now perform a Taylor expansion on |r−(r′+δ(r′)n̂)| around the small quan-
tity δ(r′), also called the vector modulus approximation by some authors: |r−(r′+δ(r′)n̂)| =
|r− r′|− n̂ · (r− r′)|r− r′|−1δ(r′) +O(δ2). Thus under the perturbation the phase (1)
becomes

φ→ φ̃ = φe−iKδ(r
′), (14)

with

K ≡ ki cos θi + ks cos θr, (15)

and where cos θi = n̂·(ri−r′)|ri−r′|−1 and cos θr = n̂·(rr−r′)|rr−r′|−1. Since the an-206

gles θi and θr vary very little over the facet, we will replace r′ by rα in the cosine for-207

mulae, thus making K independent of r′.208

3.2 Total perturbed intensity209

We now show how to compute the total ensemble-averaged intensity P (rr) = 〈|E(rr)E†(rr)|〉
of the field (11) reflected by a collection of rough facets, following the derivation of Kong
(2000). Without loss of generality, we write

P (rr) = |〈E(rr)〉|2 +
(
〈|E(rr)|2〉 − |〈E(rr)〉|2

)
, (16)

≡ |Eavg(rr)|2 + E2
var(rr), (17)

where E2
var(rr) ≡ 〈|E(rr)|2〉−|〈E(rr)〉|2. In essence, we have decomposed the field into

an average part and a fluctuating part. The power of the average part adds coherently
(and is thus referred to as the coherent power) while the power from the fluctuating term
adds incoherently (and is thus referred to as the incoherent power) (Campbell & Shep-
ard, 2003). In other words we can write:

|Eavg(rr)|2 =

∣∣∣∣∣
N∑
α

Fα(ri, rr)〈Φ̃α〉(rr, ri)

∣∣∣∣∣
2

, (18)

E2
var(rr) =

N∑
α

Fα(ri, rr)2DΦ,α(rr, ri), (19)

with, following the derivation presented in Appendix A,

〈Φ̃〉 = e−iD0−σ
2K2

2 LxLy sinc

(
LxA0

2

)
sinc

(
LyB0

2

)
, (20)

DΦ = e−σ
2K2

∞∑
m=1

(σ2K2)m

m!

l4

m2
FA(m)FB(m), (21)

where

FA(m) = 1− e−
L2
xm

l2 cos(LxA0)

+
√
πe−

A2
0l

2

4m

[
Re {Am erfi (Am)} − Re {Am} erfi (Re {Am})

]
,

(22)
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Figure 4: Numerical validation of (20) and (21) computed as total average power
〈|Φ|2〉 = |〈Φ̃〉|2 + DΦ for different values of the surface RMS height, correlation length,
and for different bistatic scattering directions (left: nadir backscatter; centre: arbitrary
bistatic angles; right: off-nadir backscattering on non-principal axis). Solid lines: analyti-
cal values. Dots: numerical values computed over 100 trials. Black dashed line: numerical
floor of the discretisation. All length quantities have units of wavelength.

FB(m) = 1− e−
L2
ym

l2 cos(LyB0)

+
√
πe−

B2
0 l

2

4m

[
Re {Bm erfi (Bm)} − Re {Bm} erfi (Re {Bm})

]
,

(23)

and

Am =
A0l

2 + i2Lxm

2l
√
m

, Bm =
B0l

2 + i2Lym

2l
√
m

, (24)

where A0 and B0 were defined in (5).210

The coherent part of our formulation, equation (20), is nothing but the unperturbed211

phase response of a rectangle with an attenuation factor. The squared norm of this quan-212

tity appears when deriving the coherent backscattering law of a rough surface under the213

Kirchoff approximation (Kong, 2000). Similar and related formulae exist in other con-214

texts [Carrer et al. (2019); Xu et al. (2021)], which is not surprising given that the rather215

immediate nature of its derivation. Regarding the incoherent part of our formulation,216

the much less trivial equation (21), it is the finite-surface equivalent of the incoherent217

backscattering law of a rough surface under the Kirchoff approximation (Kong, 2000).218

To our knowledge, (21) has thus not been derived before, and the novel contribution of219

our paper rests on the combined use of (20) and (21) for radar sounder applications. The220

convergence of the latter for any choice of parameters is demonstrated in Appendix B.221

To illustrate our formulation, we display in Figure 3 the magnitude in logarithmic222

scale of the coherent and incoherent parts of the phase response of an inclined facet, for223

three different cases of roughness. As the roughness is increased (top to bottom), we can224

see the coherent component (left) steadily decline, particularly in non-specular directions,225

as expected, whereas the incoherent component (right) takes over and becomes more isotropic,226

as expected. It is interesting to note that, for small to moderate amounts of roughness,227

the incoherent radiation pattern retains the memory of the shape of the facet, so that228

it is only at very high roughness level that the facet shape stops having an influence.229

3.3 Reproduction of speckle from incoherent power230

Formula (17) can be used to compute the coherent and incoherent power from a231

given DEM using the Stratton-Chu formula, using formulae (18) with (20), and (19) with232

(21), respectively. However, the resulting incoherent power is an average power, and al-233

though mathematically correct, it will not display any of the speckle behaviour seen in234
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an actual radargram. This feature is nevertheless desirable for both visual fidelity and235

statistical accuracy of the simulated radargrams.236

For this reason, we also propose an alternative way to simulate backscattering with237

the rough facet integrals, one where each incoherent return is assigned a random phase,238

in a way that generates the same average incoherent power (19).239

Let a random phasor φr be defined as follows:

φr ≡
ε1 + iε2√

2
, where ε1, ε2 ∼ N (0, 1), (25)

N (0, 1) being the unit normal distribution. We define the coherent, incoherent, and to-
tal fields as follows:

Ecoh(rr) =

N∑
α

Fα(ri, rr)〈Φ̃α〉(rr, ri), (26)

Eincoh(rr) =

N∑
α

Fα(ri, rr)
√
DΦ,α(rr, ri)φr, (27)

Etot(rr) = Ecoh(rr) + Eincoh(rr). (28)

Effectively, we claim that when a random phase is drawn from distribution (25), the av-240

erage power computed from the field (28) matches the average power obtained at (17).241

We demonstrate this equivalence in Appendix C. This effectively gives (28) Rician am-242

plitude statistics (i.e., a sum of a constant phasor and a complex Gaussian). We note243

that more complex formulations for speckle reproduction have been proposed [e.g. Haynes244

(2019)], but the relatively simple one we are using here produces amply satisfying results,245

as we will show in Sections 4.3 and 5.1.246

In practice, formulation (17) will be more useful when coherent and incoherent power247

must be separated and when comparing with analytical solutions, whereas formulation248

(28) –which mixes coherent and incoherent fields beforehand– will be much more sat-249

isfying for simulations and forward-modelling.250

4 Validation251

We confirm the validity of our expressions (20) and (21) two ways. First, we per-252

form a direct comparison of the analytical formulae against the statistics of the phase253

response of numerically-generated facets with Gaussian roughness (Section 4.1). Second,254

we incorporate the equations into a coherent large-facet Stratton-Chu simulator such as255

Gerekos et al. (2018), in which we conduct two experiments. The first is a comparison256

of the results of the proposed formulation with Haynes et al. (2018), an in-depth study257

of nadir power scattered from the first Fresnel zone under different roughness regimes258

(Section 4.2); the second takes a comprehensive sounding scenario over a terrain that is259

fractal at large scales, and compares the radar response (including off-nadir) over an over-260

sampled DEM with a realisation of the roughness with that obtained over the original261

DEM with the rough facet integral (Section 4.3).262

4.1 Rough facet integral in isolation263

We start by validating formulae (20) and (21) independently of any simulator, by
comparing them to the statistics of the phase contribution of isolated rectangular facets
with realisations of Gaussian roughness. We assume the facet is in the XY plane. The
domain of the finite facet is finely discretised and the complex surface phase integral is
computed as a sum over the elements of the discretisation as

Φnum = (∆x)2
∑
j

ei[kd,xxj+kd,yyj+kd,zz(xj ,yj)], (29)
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Table 1: Characteristics of the SHARAD, LRS , and MARSIS sounders as used through-
out this paper, along with the resolution of the best available global DEM of their or-
biting body, i.e., the MOLA-HRSC blended DEM for Mars and the LOLA DEM for the
Moon.

SHARAD LRS MARSIS

Central frequency [MHz] 20 5 1.3
Wavelength in vacuum [m] 15 60 230
Bandwidth [MHz] 10 2 1
Altitude [km] 300 100 500
Sampling frequency [MHz] 26.67 6.25 2.8
Chirp duration [µs] 85 200 250
Transmitted power [W] 10 800 5
PRF [Hz] 700 20 127

Orbiting body Mars Moon Mars
Best global DEM resolution [m] 200 118 200

where (kd,x, kd,y, kd,z) are the components of the wave vector difference, (xj , yj) are the264

coordinates of the discretised elements in the XY plane, z(xj , yj) is the height of the ran-265

dom rough surface, and ∆x is the side length of the square elements. The sum is taken266

over all points j that make up the facet, and the discretisation step is assumed to be the267

same in x and y.268

Figure 4 compares the total average power 〈|Φ|2〉 obtained analytically [i.e., the269

sum of the coherent and incoherent components (20) and (21)] and numerically [i.e., through270

equation (29) computed over many trials] as a function of the RMS roughness σ and sur-271

face correlation lengths l, using different combinations of incident and scattered direc-272

tions. For more generality, the facet is taken to be a rectangle rather than a square. The273

facet size for the simulations is L1 = 4λ, L2 = 7λ. For each set of parameters, 100 re-274

alisations of a 2D Gaussian rough surface were generated and the phase integral com-275

puted. The generated surfaces are made 10 times larger than the largest correlation length,276

from which a facet of size L1×L2 is stamped; this ensures that there are enough cor-277

relation lengths in the generated surface for accurate surface statistics. The surfaces are278

discretised at ∆x = λ/40. From Haynes et al. (2018), the numerical floor for this com-279

putation for low correlation lengths is (∆x)2A where A = L1L2 is the area of the facet280

and which is plotted as the dashed line. A value of λ = 1 was used in this test with-281

out loss of generality, as quantities involved are normalised by the wavelength.282

The numerical and analytical results show excellent agreement in all cases. This283

was validated over a wide range of wave vector angles and facet sizes with the same re-284

sults. These examples also show that even if the input parameters violate the Kirchhoff285

approximation (i.e., correlation lengths, RMS roughness levels, or scattering angles that286

are too large) that the analytical equations accurately predict the literal evaluation of287

the statistical average powers of the scalar phase integral for Gaussian surfaces and isotropic288

Gaussian correlation function.289

4.2 Nadir response: comparison with literature290

The validity of (21) in isolation having been demonstrated, we now propose to val-291

idate the exactitude of a rudimentary radar simulator that includes the rough facet in-292

tegral in the phase response of its facets.293
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Figure 5: Comparison between the simulated backscattered power [sum of (33) and (34)]
from the first Fresnel zone and the result from theory: λ-adimensionalised parametric scan
in the (σ, l, L, h) space. Evaluated quantity is the absolute error.
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In Haynes et al. (2018), the authors proposed a formula giving the coherent and294

incoherent power scattered at normal incidence from an rough disc that has the size of295

the first Fresnel zone. This disk has Gaussian roughness and has no large-scale topog-296

raphy.297

4.2.1 Total power calculation298

In our framework, this corresponds to a simulation where the DEM is a flat disk299

the size of the first Fresnel zone, where we neglect all the vectorial and reflectivity fac-300

tors from the computation of the electric field. The Stratton-Chu formula we utilise is301

that for monostatic backscattering [i.e., formula (9) with rr = ri].302

Starting with a simplified emitting field

Ei(r, t) =
Vi

|r− ri|
eiki|r−ri|s(t), (30)

where Vi =
√
Pi controls the amplitude of the emitter, taken here as the square root

of the radiated power Pi so as to match the setup of Haynes et al. (2018). Neglecting
reflection coefficients and vector-related quantities in the Stratton-Chu equation, we take

Fα(ri, rr) =
ikiVi

(4π)2|rα − ri|2
(31)

as the F factor in (12).303

To leave processing out of the picture, we assume the emitted signal is a Gaussian
pulse:

s(t) = exp

[
−πBw

Ts
(t− t0)2

]
, (32)

where Bw is the instrument bandwidth, Ts the duration of the pulse, and t0 the time of304

emission of the pulse.305

We write that the simulated coherent and incoherent power can be expressed as:

Pcoh(rr, t) = (4π)2

[
N∑
α

Vis(t− τα)

(4π)2|rα − rr|2
〈Φ̃α〉(rr, rr)

]2

, (33)

Pincoh(rr, t) = (4π)2
N∑
α

[
Vis(t− τα)

(4π)2|rα − rr|2

]2

DΦ,α(rr, rr), (34)

where τα represents the two-way travel time of electromagnetic waves from the radar to306

the facet α.307

The total backscattered power is given by the sum of the coherent and incoherent308

powers as per (17).309

4.2.2 Simulation setup310

Using the equations above, we performed a systematic, λ-independent parametric311

scan over a range of one order of magnitude for the facet size L and two orders of mag-312

nitudes for the platform altitude h. We compare the obtained nadir power to the the-313

oretical formulation for the power backscattered from a rough first Fresnel zone at nadir314

(Haynes et al., 2018).315

In these simulations, we perform a hard cut-off at the first Fresnel zone boundary,316

and facets whose centres lie beyond this boundary are discarded. The most challenging317

aspect of this validation is thus the approximation of a disk with large square facets. For318
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this reason, we must ensure the radar is properly centred on a facet of the flat DEM. Any319

other configuration will result in a lopsided footprint. This artificial requirement is only320

needed here, and has no effect when considering extended footprints, as in the next val-321

idation and applications.322

4.2.3 Validation outcome323

Figure 5 shows the result of this analysis. Looking at successive rows, we can see324

that the range of fidelity of the simulated response is wider as σ increases. In other words,325

our experiments match theory better when roughness is high. The explanation for this326

apparent paradox is that the coherent response of a simulator is much more sensitive to327

subtle change of facet geometry than is the incoherent response.328

When the coherent term dominates (top row), the main limitation to accuracy is329

predictably the facet size. As the facets get larger, it becomes more and more difficult330

to correctly approximate the first Fresnel disk with squares, even with the linear phase331

approximation. These are essentially the limitations of Nouvel et al. (2004).332

When the incoherent term starts to emerge (middle row) or dominates (bottom row),333

the simulator yields very accurate responses for almost all the parameter space, regard-334

less of the altitude. The one exception being when the correlation length of the small-335

scale roughness is larger than the facet itself. This can be easily understood: when there336

are not enough correlation lengths within the area of interest, the roughness that is sim-337

ulated at facet level is no longer “small-scale”, and we actually no longer have a zero-338

mean perturbation; the large-scale topography is altered. This limitation, however, does339

not concern us from a practical point of view. Our goal is to incorporate the missing rough-340

ness scales from a poorly-resolved DEM where the facet height is considered correct, im-341

plying that, if there is small-scale roughness, its correlation length is must be smaller than342

the DEM resolution.343

Looking at successive columns, we can see there is little effect of the altitude on344

the overall accuracy of our results.345

To illustrate these results in a more practical way, we tested the accuracy of our346

formulae for three real-life sounders, MARSIS (Jordan et al., 2009) , LRS (Ono et al.,347

2010) and SHARAD (Croci et al., 2011), using facet sizes corresponding to that of the348

best global DEM of their corresponding planet (Fergason et al., 2018)(Smith et al., 2010),349

as in Table 1. Figure 6 shows how our simulations compare to the formula of Haynes et350

al. (2018). The agreement with these three particular cases is also very good, although351

a bit less so for the challenging case of SHARAD, where L = 13.33λ.352

In summary, the agreement between theory and our method is excellent, and de-353

viates by no more than 2 dB in the vast majority of cases, including the real-life sounders354

with relevant DEM resolutions.355

4.3 Full response in presence of topography: comparison with random356

realisations357

After having successfully validated the simulator for a flat terrain and a footprint358

restricted to the first Fresnel zone, we conclude the validation with a maximally-comprehensive359

test. Starting from a DEM with large facets and long-range topography, and, consider-360

ing the full radar response (nadir and off-nadir), we propose to compare the output of361

a Stratton-Chu simulator that includes the rough facet integral with that of a Stratton-362

Chu simulator ran on an oversampled DEM with a realisation of that small-scale rough-363

ness. Referring to Figure 1, we essentially compare the radargram obtained from the top364

DEM with the constant phase approximation, with the radargram obtained from the bot-365

tom DEM with the rough facet integral.366
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Figure 6: Similar comparison to Figure 5, but particularised to the three existing radar
sounders listed in Table 1, with facet sizes equal to the best global DEM of their corre-
sponding planet. Data points: simulated total backscattered power from the first Fresnel
zone. Solid line: theoretical formula for the backscattered power from the first Fresnel
zone in presence of Gaussian roughness with isotropic Gaussian correlation function.
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Due to the very high computational load of generating the simulations on the highly367

oversampled DEM, it is not realistic to perform a systematic analysis of the error, as we368

did in the case of nadir power (where the footprint is only as large as the first Fresnel369

zone). For this reason, we instead present three representative cases, MARSIS, LRS and370

SHARAD, and use the resolution corresponding to that of the best global DEM avail-371

able for their corresponding main body, as in Table 1.372

4.3.1 Total power calculation373

Unlike in the previous subsection, the complete Stratton-Chu formula (12) is used,374

and we are now taking into account the local Fresnel coefficients at the facets, as well375

as the full vectorial and time-dependant aspects of the field. For this test, we make use376

of the formulation with speckle, so as to compare power histograms for clutter as well.377

The time-domain signal s(t) is a linear chirp, as with real instruments:

s(t) = exp

[
iπ
Bw
Ts

(t− t0)2

]
, (35)

where, as previously, Bw is the instrument bandwidth, Ts the duration of the pulse, and378

t0 the time of emission of the pulse. When such a signal is used, a range-compression op-379

eration must be performed at the end to make features emerge. This consists of cross-380

correlating the received field with the reference signal.381

Coherent and incoherent fields are computed as in (28), with added time-domain
consideration discussed in Section 2.3. The fields are then projected onto the polarisa-
tion ê of the antenna, range-compressed, and converted into power. In summary, the to-
tal power is given by:

P (t, rr) =
Gλ2

4π

∣∣∣∣∣
{

N∑
α

[
Fα(rr, rr) · ê

][
〈Φ̃α〉(rr, rr)+

√
DΦ,α(rr, rr)φr

]
s(t− τα)

}
⊗ s(t)

∣∣∣∣∣
2

,

(36)

where G = 1.67 is the gain of a dipole antenna and ⊗ represents a cross-correlation in382

the time-domain.383

4.3.2 Simulation setup384

For each sounder, four simulations are conducted. Two simulations with only long-385

range topography: one with large facets (LF) and one with small facets (SF); and two386

simulations with added small-scale roughness: one with large facets using the rough facet387

integral, and one with small facets using a realisation of the roughness on the DEM. We388

call “base” terrains those that only contain long-range topography.389

The long-range topography is the same in all four cases, and modelled with frac-390

tional Brownian motion (fBm). The terrain has a dielectric constant of 5. The spacing391

between the acquisitions is taken to be 500 m in all cases. The small-facet “base” DEM392

is obtained by oversampling the original DEM to the desired resolution with linear in-393

terpolation. The small-facet rough DEM is obtain by adding the small-facet base DEM394

with a DEM that is a realisation of a Gaussian field with isotropic Gaussian correlation395

function with the desired σ and l. The small-facet DEMs have a resolution of λ/10, ex-396

cept for SHARAD, where computational limitations restricted us to λ/5 = 3 m.397

We note that our rough integral formulations assume that small-scale roughness398

is perpendicular to the facet, for each considered facet, whereas our way of generating399

the rough SF DEMs is essentially equivalent to have the perturbation oriented along the400

z-axis. This might have non-negligible consequences, as we will see later.401
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Table 2: Summary of the terrain parameters used in the simulations of Section 4.3.

Radar fBm topography (base) Small-scale roughness

MARSIS H = 0.58, ζ = 3.7m σ = λ/10, l = λ/3
LRS H = 0.84, ζ = 3.5m σ = λ/20, l = λ

SHARAD H = 0.71, ζ = 1.6m σ = λ/15, l = 6λ

The characteristics of the simulations are given in Table 2. For the LF base ter-402

rains, the parameter 0 < H < 1 is the Hurst coefficient, and ζ is the RMS height dif-403

ference at the scale of the resolution. We attempted to avoid any relationship between404

the roughness parameters and the L/λ ratio, generally the main driver of inaccuracy in405

simulations. This was possible for all parameters except the correlation length, which406

has an upper constraint given by the facet size in the rough integral, and a lower con-407

straint given by the quality of the realisation in the SF DEM.408

The small-scale roughness level used in these cases are relatively low, for two rea-409

sons. First, even a slight amount of roughness has a dramatic impact on off-nadir scat-410

tering, and we would like to illustrate this effect without drowning the nadir response,411

and second, small amounts of roughness are likely to be the preferred application domain412

of our method when used on real-life DEMs (see Section 5). We note that this does not413

necessarily makes these cases “easier”, as the coherent component of the simulator is more414

sensitive than the incoherent one, and important small-scale roughness levels are actu-415

ally easier to reproduce with the integrated simulator (see previous subsection).416

4.3.3 Validation outcome417

The resulting simulated radargrams are shown in Figure 7, which are arranged with418

the three instruments as columns, and the cases as rows. Visual comparison within each419

column of the first two radargrams (that is, the LF and the SF runs without small-scale420

roughness) shows the similarities and differences that can be expected between the lin-421

ear phase approximation on large square facets –essentially the method of Nouvel et al.422

(2004)– and the constant phase approximation on small facets. Comparing the last two423

radargrams of each column (that is, the LF and SF runs that include small-scale rough-424

ness) highlights the contribution of the rough phase integral. Visual agreement between425

these rough runs is very good, except perhaps for the SHARAD simulation, where L ≈426

13.33λ.427

The analysis of these radargrams is shown in Figure 8-(left) in terms of average range-428

line, and in Figure 8-(right) in terms of the clutter power histograms. In Figure 8-(left),429

the dotted curves are the average rangelines for the “base” terrain, for both large and430

small facets (blue and yellow curves, respectively). The solid curves represent the ter-431

rain with added small-scale roughness, either in the form of the rough phase integral or432

as a realisation on the SF DEM (red and purple curves, respectively). The “base” dot-433

ted curves are given for reference, whereas the small-scale roughness-related solid curves434

are the ones of interest. In Figure 8-(right), the histograms for the cases including small-435

scale roughness are plotted using the same colours.436

The outcome of the MARSIS test, where L ≈ 0.87λ and l = λ/3, is excellent.437

Nadir power levels from the LF and SF simulations are in perfect agreement, whether438

small-scale roughness is added (solid curves) or not (dotted curves). Interestingly, off-439

nadir power is slightly overestimated in the “base” case, but is almost perfectly repro-440

duced with large rough facets when small-scale roughness is considered in the λ/10 sim-441
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Figure 7: Comprehensive Stratton-Chu simulations [eq. (36)] using DEMs with long-
range topography, with and without small scale roughness, for MARSIS (left), LRS (cen-
tre), and SHARAD (right). Results shown are using: the large-facet base DEM (top row),
the oversampled base DEM (second row), the large facet base DEM using the rough phase
integral (third row), and the oversampled base DEM where a random realisation of the
considered small-scale roughness has been added to the DEM (bottom row). The param-
eters of the terrains are listed in Table 2. The average rangelines are shown for each case
in Figure 8-(left). For the simulations involving small-scale roughness, the red boxes show
the limits of the area for which the histograms shown in Figure 8-(right) were computed.
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Figure 8: Average rangelines (left) and clutter histograms (right) of the radargrams
shown in Figure 7: comparison between base terrain with large smooth facets (blue),
base terrain with large rough facets (red), base terrain with small facets (yellow), and
base terrain with small facets with an added realisation of the perturbation (purple). The
parameters of the terrains are listed in Table 2.
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ulation. This mirrors results obtained in the previous subsections: when incoherent power442

dominates (as in the non-nadir regions of this test), results tend to be more accurate.443

We also remark that the jitter of the small-scale roughness curves is not structure: if the444

number of averaged rangelines would increase, the lines would get flatter and flatter. The445

power histograms of the LF and SF simulations involving small-scale roughness are also446

almost identical.447

The LRS test, where L ≈ 2λ and l = λ, is also rather conclusive. A few discrep-448

ancies can nevertheless be noticed. Looking at the simulations that include small-scale449

roughness (solid curves), we observe an error of a few dB for the nadir power, and a slight450

difference in the slope of the off-nadir power. Ignoring small-scale roughness (dotted curves),451

a similar remark can be made for the nadir echoes. When using triangular facets (not452

shown here), a much better agreement between the “base” LF and SF simulations was453

obtained. We thus believe the discrepancies are due to the limitations of the linear phase454

approximation on square facets, which are carried by both the smooth and rough sim-455

ulations. In this case, it is worth noting the differences are still slight, and that the rough456

facet simulation is almost indistinguishable from the SF with a realisation of the rough-457

ness in terms of clutter power histogram.458

The SHARAD test, with L ≈ 13.33λ, is the most challenging. The average range-459

line and histogram comparison highlights the visual discrepancy seen in Figure 7. Ignor-460

ing small-scale roughness (dotted curves), there is a discrepancy of about 8 dB for nadir461

power, and the difference in off-nadir power increases with increasing incident angle. This462

issue is also carried to the simulations including small-scale roughness (solid curves). Es-463

sentially, the discrepancies observed in the LRS cases have all increased.464

The main driver of differences between SF and LF simulations in the case of small-465

scale roughness seem to be L and l, and to a degree that is larger than in the flat Fres-466

nel disk simulations encountered in Section 4.2. There does not seem to be a correlation467

with σ, which is not surprising given the small σ involved. Due to the absence of sat-468

isfying analytical formulation for the backscattering from the type of terrains simulated469

here, and the computational load of simulating on the small-facet DEMs, it is difficult470

to envision a way to disentangle the sources of errors in the (L, l,H, ζ) space, especially471

given the limitations on the range of possible l once L and λ are chosen. By reverting472

to scalar fields and Gaussian waveforms as in the previous section, the same discrepan-473

cies could be observed. We thus attribute them primarily to the limits of the linear phase474

approximation and the limitation of square facets in the case of large facets. The main475

issue with square facets, as noted in Berquin et al. (2015), is that they provide a discon-476

tinuous representation of the surface, leading to less accurate wavefront reconstruction.477

That is a problem that the use of triangular facets can partially solve (Berquin et al.,478

2015). The derivation of a rough facet integral for triangular facets, or indeed arbitrarily-479

shaped facets, is thus planned as future work. We also note that the use of small-facet480

simulations as reference should also be subject to caution, as we mention in point 4.3.2481

of this subsection.482

4.4 Discussion483

We have first demonstrated that our formulae (20) and (21) are correct descrip-484

tions of a rough facet in isolation. The results of Figure 4 showed our formulae are able485

to accurately reproduce the scattering from a rough facet no matter the bistatic scat-486

tering angles we chose.487

We have then characterised their range of validity when included in a basic elec-488

tromagnetic simulator and considering the backscattering from a rough flat Fresnel disk,489

and we found the results to be accurate within less than 2 dB for most of the probed pa-490

rameter space. The cases where the accuracy was lower was i) when the coherent com-491

ponent dominates (i.e., low small-scale roughness), and ii) when the coherence length492
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Figure 9: Ground tracks (red line) and DEMs (background) for the two radargrams pre-
sented in Section 5.1. Left: Oceanus Procellarum DEM, centred at (34.34◦N, -61.12◦E),
and LRS track 20071223000958. Right: Crater Plato DEM, centred at (52.94◦N, -
11.70◦E), and LRS track 20080821022958.

of the facet roughness was significantly larger than the dimensions of the facet. Limi-493

tation (i) is simply the consequence of the limitations of the linear phase approximation494

on square facets as described in Nouvel et al. (2004), whereas limitation (ii) refers to cases495

which do not have physical relevance in the real world.496

Finally, considering a complete rangeline, the complete Stratton-Chu formula, and497

DEMs with significant topography, we compared the results of our simulator with the498

integrated rough facet formulation with those obtained from an oversampled DEM upon499

which small-scale roughness with the same characteristics was superimposed. In these500

tests, we have found that the method can safely be used with MARSIS and LRS on the501

DEMs of their respective planet, and with correlation lengths that are of the order of502

the wavelength or smaller. However, the wide difference of facet length and wavelength503

in the case of SHARAD probably warrants some oversampling of the MOLA-HRSC DEM504

to ensure the off-nadir results are correct with the proposed formulation. We note that505

despite the limitations that were observed by thoroughly analysing the validation radar-506

grams, visual comparisons of the LF and SF radargrams remains satisfactory in all cases,507

making the proposed simulator suitable for forward-modelling and clutter discrimina-508

tion without such disclaimers.509

5 Applications510

To demonstrate the versatility and utility of our formulation, we develop two dif-511

ferent contexts in which formulae (20) and (21) can be used. The first application is to512

better simulate radar echoes with a coherent Stratton-Chu simulator and coarsely-resolved513

DEMs. We demonstrate that the inclusion of rough facets with well-chosen small-scale514

roughness characterisations lead to much better reproduction of radargrams acquired by515

actual instruments. As a second application, we propose to use the coherent and inco-516

herent radiation patterns we developed to better characterise subglacial water bodies based517

on their specular content, expanding on the work of Schroeder et al. (2014b).518
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Figure 10: Illustration of the effect of rough facets in a Stratton-Chu simulation
of a real radargram of Oceanus Procellarum, Moon. Top: simulation of LRS track
20071223000958 using the LOLA DEM and smooth facets. Middle: simulation of LRS
track 20071223000958 using the LOLA DEM and rough facets (this paper). Bottom:
original LRS radargram 20071223000958.

5.1 Forward modelling with the proposed all-scale simulator519

We show in this subsection simulated radargrams of natural terrains using the same520

comprehensive simulator described in Section 4.3 at equation (36), and we compare them521

to actual radargrams acquired over the same terrain. We chose to reproduce lunar radar-522

grams acquired by the LRS instrument. The reasons for this choice are several: (i) the523

SNR of the range-compressed data product is high, thus we do not have to resort to radar-524

grams that have undergone advanced SAR processing, (ii) the global DEM of the Moon525

has a good resolution compared to the LRS instrument (L ≈ 2λ), and we verified in526

Section 4.3 that it the errors of the LPA/square facets are low for this case, and (iii) the527

Moon has no ionosphere, removing the need for ionosphere distortions correction mea-528

sures.529

Two areas were picked to illustrate the capabilities of the Stratton-Chu simulator530

combined with the proposed rough facet formulation: a portion of eastern Oceanus Pro-531

cellarum captured in LRS track 20071223000958, which represents a smooth area, and532

a limb of Crater Plato captured in LRS track 20080821022958, which represents a clutter-533

dominated area. The ground track of these two radargrams is shown in Figure 9. These534

tracks correspond to the tracks of the simulated radargrams over the Lunar Orbiter Laser535
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Crater Plato: LRS track 20080821022958
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Crater Plato: smooth facets simulation on LOLA DEM
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Figure 11: Illustration of the effect of rough facets in a Stratton-Chu simulation of a real
radargram of Crater Plato, Moon. Top: simulation of LRS track 20080821022958 using
the LOLA DEM and smooth facets. Middle: simulation of LRS track 20080821022958
using the LOLA DEM and rough facets (this paper). Bottom: original LRS radargram
20080821022958.

Altimeter (LOLA) DEMs (Smith et al., 2010), locally re-projected in orthographic pro-536

jection in each case.537

The dielectric constant of the surface was assumed to be uniformly equal to 4 (Ono538

et al., 2009). In order to factor out any uncertainty on absolute emitted power, process-539

ing, and surface reflectivities, we opted for a normalisation of our simulated radargrams540

by an amount that is constant for both terrains. This constant was computed from the541

smoothest areas of the Oceanus Procellarum radargram (first 100 rangelines); since lu-542

nar maria are the Moon’s smoother surfaces, this is the straightforward choice to mea-543

sure non-roughness-related differences of power. We compared the average rangeline in544

the rough facet simulation with that of the LRS track. The normalisation constant we545

extracted is 18.1 dB. This amount is added to all LRS simulations, smooth or rough, in-546

cluded in this section. A hamming-windowed chirp was used, as in the LRS instrument,547

to model the time-domain signal as accurately as possible.548

5.1.1 Oceanus Procellarum549

The rough-facet simulation was produced with a facet-level roughness of σ = 1.5550

m and l = 70 m, which is consistent with the decametre-scale roughness of lunar maria551
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(Cai & Fa, 2020). The comparison between the smooth-facet simulation, the rough-facet552

simulation, and the original radargram can be seen in Figure 10.553

The gain in fidelity of the diffuse clutter rendition in the rough facet simulation is554

dramatic, and illustrates how even gentle amounts of roughness have a significant im-555

pact in off-nadir scattering. The appearance of specular clutter is also improved, as the556

rough-facet simulation no longer shows range-migration hyperbolae that are not present557

in the original picture.558

Subtle differences between the rough-facet simulation and the original radargram559

in the near-surface regime can be observed, in particular at latitudes larger than 35◦N.560

These can be due to slight local variations of surface properties (e.g., roughness, dielec-561

tric constant), or can be indicative of subsurface scattering (e.g., volumetric effects or562

layering). By factoring out the effects due to small-scale roughness with given charac-563

teristics, this example highlights how forward-modelling can be used for hypothesis-testing.564

5.1.2 Crater Plato565

We chose σ = 1.9 m and l = 80 m for the rough-facet simulation of Crater Plato,566

modelling a roughness that sits between that of lunar maria and that of lunar highlands567

(Cai & Fa, 2020), which we believe is realistic for a crater sitting between two maria. The568

comparison between the smooth-facet, rough-facet, and original radargrams can be seen569

in Figure 11. In the simulated radargrams, an artefact can be observed at a depth of about570

4 km. This corresponds to a Bragg resonance from the regular lattice that characterises571

the DEM (Nouvel et al., 2004).572

Similar comments can be made for this case regarding the aspect of diffuse and spec-573

ular clutter, adding credence to the fact the rough-facet simulator can also be applied574

to areas with rich topography. Also of notice are the areas where the original radargram575

displays less diffuse clutter, e.g., around latitudes of 54◦N and 55.3◦N, a feature which576

is also visible in the simulation.577

5.1.3 Perspectives578

One important aspect is that inclusion of roughness at facet level solves the long-579

standing problem of clutter simulators displaying too much specular clutter (Berquin et580

al., 2015; Gerekos et al., 2018). Ridden of an overabundance of parasitic clutter, the pro-581

posed method is thus expected to be helpful for geological interpretation of radargrams.582

Due to our formulation being closed-form, a Stratton-Chu simulator of surface backscat-583

tering fitted with the proposed rough phase integral uses similar computational resources584

as a simulator fitted with the regular linear phase approximation, thus being very com-585

petitive with respect to finite-element methods [see e.g. Gerekos et al. (2018)].586

As σ and l affect the off-nadir angle-dependence of backscattered power in differ-587

ent ways, it is reasonable to assume that the parameter space could be constrained uni-588

voquely for a given radargram. The proposed simulator could thus be used within an589

iterator to extract the small-scale roughness of a given terrain. We defer the construc-590

tion of a proper inversion algorithm to a future study. Such a method would complement591

other roughness-estimation methods such as reflectometry (Grima, Blankenship, et al.,592

2014; Grima, Schroeder, et al., 2014).593

Lastly, we note that facet-level roughness is likely better described with self-affine594

description (Landais et al., 2015). However, given the relatively constrained area that595

is covered by a typical DEM facet, the scale-dependence of roughness is likely to be less596

relevant at scales that affect radar backscattering. This is a probable reason why we are597

able to reproduce natural radargrams with rather high fidelity using a Gaussian distri-598

bution of heights with an isotropic Gaussian correlation function. For the same reason,599
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Figure 12: Geometry of the problem treated in Section 5.2, that is, the application of
our rough facet formulae to the characterisation of small subglacial water bodies. The
water body is modelled as a single rough facet.

more complicated roughness models such as fractional Brownian motion (fBm) could prove600

necessary if we are dealing with DEMs with resolutions of the order of the kilometre. In601

this case, we could envision adapting fBm scattering laws (Iodice et al., 2012) to the facet602

method to solve this problem.603

5.2 A subsurface application: estimating subglacial water geometry604

In Schroeder et al. (2014a), the authors treated the case of flat, specular, bright,605

coherent, anisotropic subglacial water bodies observed beneath Thwaites Glacier, West606

Antarctica using airborne radar sounding data. In this paper, the authors exploited the607

fact that the water bodies were coherent, flat, specular, and bright to assume that the608

variation in post-focusing bed echo power as a function of SAR focusing aperture was609

determined by the scattering function of the subglacial water bodies alone. The authors610

describe this scattering function of the basal ice-water interface in terms of the “spec-611

ularity content” Sc of the echo given by Sc = S(S + D)−1, where S is the “specular”612

component of echo and D is the “diffuse”. In Schroeder et al. (2014a), these components613

are estimated by focusing the radar sounder data with SAR focusing apertures spanning614

different ranges of angles θ at the ice-bed interface. By focusing with two different aper-615

tures, the authors could estimate the aperture-independent contribution of S and the616

aperture-dependent contribution of D to the focused echo power.617

The authors further exploited the anisotropy of the specularity content of the ob-618

served drainage-aligned high-specularity portion of the upper Thwaites Glacier catch-619

ment (Schroeder et al., 2013) to assume that the reflecting geometry of the subglacial620

water bodies could be approximated by the radar cross-section of a rectangular plate.621

The authors then integrated the scattering function that plate across θ to illustrate the622
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Figure 13: Characteristic focused power curves as a function of the uncorrected SAR
aperture angle [formula (37)] of a water body with the following default properties: rough-
ness σ = λ/16, l = 2λ, plane equation [formula (3)] with a = −0.2, b = −0.5, dimensions
L1 = L2 = 3λ, survey line angle Ψ = 0◦. These four properties are varied in isolation in
each plot.

dependence of Sc on water body of length L1, width L2, and survey orientation Ψ (Schroeder623

et al., 2014a). These quantities are shown in Figure 12. Both this calculation and the624

definition of Sc itself in Schroeder et al. (2014a) implicitly assume that non-coherent con-625

tributions to the scattering function of basal water bodies and SAR-focused bed echo626

power are negligible. However, our own results show that even quasi-specular interfaces627

can have significant incoherent components to the angular-dependence of their scatter-628

ing functions.629

The single-facet scattering functions presented in this paper provide expressions630

for both the coherent and incoherent contributions to the scattering function of a sin-631

gle, flat, rectangular facet with wavelength-scale or subwavelength-scale roughness. There-632

fore, our results can provide improved constraints on the geometry of subglacial water633

bodies that meet the same simplifying assumptions as those addressed in Schroeder et634

al. (2014a). The most significant of these assumptions is that the bed echo power returned635

from the water body dominates any power from off-nadir clutter (so that the latter can636

be neglected in our single-facet simulation).637

We can thus generalise the model of Schroeder et al. (2014a) as follows. First, we638

may do away with the need for two different apertures and subsequent the separation639

of “specular” and “diffuse” distinctions, and instead compute the total integrated power640

as a function of the aperture angle. This gives a presumably unique curve for the set of641

parameters that describe the facet and the observation, which can be used for param-642

eter inversion. Second, our formulation also allows the water body to have a slope in the643

x and y directions, shown as αx and αy, respectively. Third, we are able to include both644

the RMS height and the correlation length of such a rough body, under the usual assump-645

tion of a Gaussian distribution of heights and isotropic Gaussian correlation function,646

which we denote with the usual σ and l symbols.647

In particular, equations (20) and (21) must both be integrated across the angles
spanned by the SAR focusing window, and then scaled by the relevant processing gain
(with the coherent power increasing proportional to the processing gain and the inco-
herent power increasing like its square root) before summation (Raney, 2011). The to-
tal power as a function of the integration angle Θ can thus be written as

Pfoc(Θ) ∼
� Θ/2

−Θ/2

Nacq

∣∣∣〈Φ̃〉(rt, rt)
∣∣∣2 +

√
NacqDΦ(rt, rt)dθ, (37)

where Nacq is the number of acquisitions within the span defined by Θ and rt is the po-
sition on the surface shown in Figure 12 and is a function of θ:

rt = (h tan θ cos Ψ, h tan θ sin Ψ, h), (38)
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assuming without loss of generality that the origin O coincides with the water body cen-648

tre. The angle to the radar can be computed from Snell’s law, but this calculation will649

be ignored in this exercise. We therefore refer to Θ as the uncorrected SAR aperture an-650

gle.651

In Figure 13 we show a few examples of these characteristic focused power curves,652

and how they vary as we modify various properties of the water body. As with the pre-653

vious application (Section 5.1), we defer the definition of an inversion method and the654

characterisation of its precision to a later paper, but the presented curves illustrate how655

this method can be used to “fingerprint” subglacial water bodies. We assume the acqui-656

sitions are evenly spaced in θ, with a spacing of 1◦, and derive the number of acquisi-657

tions accordingly. In reality the acquisitions are equidistant, but this approximation is658

acceptable for illustrative purposes. The subsurface index of refraction, which affects the659

wavenumber k, was taken to be nice =
√

3.660

The method presented in Schroeder et al. (2014a) can therefore be considered a par-661

ticular case of choosing two apertures Θ1 and Θ2 along this characteristic curve.662

Even at the single-facet level, this treatment allows for more precise constraints on663

the geometry of flat subglacial water bodies which can be approximated as rectangles664

(Schroeder et al., 2014a). The generality of the formulation also allows the straightfor-665

ward extension of the specularity concept to include the full range of aperture lengths666

which can provide even stronger empirical constraints on the full scattering function of667

the water body including its roughness [e.g. from accreted ice as in MacGregor et al. (2009)]668

and its slope, [e.g. Castelletti et al. (2019); Ferro (2019); Heister and Scheiber (2018);669

Oswald and Gogineni (2008)]. Once the model is extended to realistic target geometries670

spanning more than a single facet, the approach can treat the full range of subglacial wa-671

ter body geometries and sizes (MacKie et al., 2020) including those with patches much672

larger than O(λ).673

6 Conclusions674

We have derived expressions for the phase contribution of a rough, arbitrarily-inclined,675

rectangular facet under the linear phase approximation, assuming a zero-mean Gaussian676

distribution of height with an isotropic Gaussian correlation function. The resulting phase677

integral naturally splits into a coherent and an incoherent term. We have extensively val-678

idated the obtained formulae, both in isolation and within Stratton-Chu simulators, con-679

strained their domain of application as much as technically possible, and concluded the680

formula can be used without risks for facet lengths and correlation lengths of the order681

of a few wavelengths, regardless of the facet RMS height.682

We demonstrated how the facet incoherent power could be used to accurately model683

speckle within a Stratton-Chu simulator, and applied these results to simulations of LRS684

radargrams over diverse types of terrains. The results showed how inclusion of the rough685

facet formalism significantly enhances the fidelity of simulations, even with subtle amounts686

of facet-level roughness. Additionally, we have shown that the problem of characteris-687

ing the radar signature of small subglacial water bodies is well-suited for the proposed688

model. By modelling these water bodies as a single rough rectangular facet, we showed689

how our formalism improves on state-of-the-art methods by removing the need for as-690

sumptions on the geometry of these bodies and the nature of their backscattered signals.691

For a given wavelength, the accuracy of our formulation is mainly limited by two692

factors, which are the facet size and the correlation length. Considering the best global693

DEMs of the Moon and of Mars, we showed that the proposed method can satisfacto-694

rily simulate LRS and MARSIS radargrams with rough facets, but that in the case of695

SHARAD, some oversampling of the MOLA-HRSC DEM of Mars is probably advised.696
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Future work is envisioned to be as follows. First, the computations shown here will697

be generalised to other facet shapes, with triangular facets being the polygon of most698

interest. Triangles provide a much better medium for the facetisation of DEMs, and a699

rough triangular facet phase integral would provide a true generalisation of Gerekos et700

al. (2019) and Gerekos et al. (2018). This would open the way to more accurate mul-701

tilayer Stratton-Chu descriptions, with numerous applications for terrestrial or plane-702

tary radar science. We could also consider generalising this model to other types of rough-703

ness.704
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8 Open Research712

The codes used in this paper were written in MATLAB. The rough-facet Stratton-713

Chu cluttergram simulator used in this work is based on Gerekos et al. (2018), and its714

source code is available at http://doi.org/10.5281/zenodo.6564751. The lunar LRO715

LOLA DEMs were created through the UGSG Imagery Processing Cloud, and the source716

files are available at http://pds-geosciences.wustl.edu/missions/lro/lola.htm.717

The scripts used for fBm and Gaussian surface generation are available on MATLAB File718

Exchange (Botev, 2016, 2022). Finally, the LRS data is available at http://darts.isas719

.jaxa.jp/planet/pdap/selene/.720

Appendix A Derivation of 〈Φ̃〉 and DΦ721

This derivation picks up from equation (17) in the body of the text. We start by
injecting the perturbed phase (14) into the facet phase integral (2):

Φ̃ =

�
A

φ(ri, rr, r
′)e−iKδ(r

′)dr′. (A1)

Using the fact that the stochastic and deterministic parts of (A1) are separable,
the expressions for the ensemble-averaged phase response 〈Φ̃〉 and its square norm 〈|Φ̃|2〉 =
〈Φ̃Φ̃†〉 can be easily derived. Using basic properties of the log-normal distribution, we
obtain

〈Φ̃〉 =

�
A

φ(r′)〈e−iKδ(r
′)〉dr′ = Φe−σ

2K2/2, (A2)

yielding formula (20), and

〈|Φ̃|2〉 =

�
A

dr′
�
A

dr′′φ(r′)φ(r′′)†〈e−iK[δ(r′)−δ(r′′)]〉, (A3)

=

�
A

dr′
�
A

dr′′eikd·(r′−r′′)e−σ
2K2[1−C(|r′−r′′|)], (A4)

where we dropped the ri, rr dependencies for clarity.722

In the linear phase approximation, we have

kd · (r′ − r′′) = A0(x′ − x′′) +B0(y′ − y′′). (A5)
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From the decomposition (17), we see that the Φ-dependent terms of Evar will take
on the form of an average of the intensity minus the intensity of the average. We denote

DΦ ≡ 〈|Φ̃|2〉 − |〈Φ̃〉|2, (A6)

the phase contribution of the fluctuating part of the intensity. It is equal to

DΦ =

�
A

dr′
�
A

dr′′eikd·(r′−r′′)
(
e−σ

2K2[1−C(|r′−r′′|)] − e−σ
2K2
)
, (A7)

=

� Lx/2

−Lx/2
dx′

� Lx/2

−Lx/2
dx′′

� Ly/2

−Ly/2
dy′

� Ly/2

−Ly/2
dy′′ei[A0(x′−x′′)+B0(y′−y′′)]

·
(
e
−σ2K2

[
1−C

(√
(x′−x′′)2+(y′−y′′)2

)]
− e−σ

2K2

)
,

(A8)

where Lx and Ly were defined in (8). This integral is usually solved through the usual
centre-difference change of variable with unit Jacobian u ≡ r′ − r′′, v ≡ (r′ + r′′)/2.
With the linearisation (A5), we obtain:

DΦ =

� Lx

−Lx
du1

� Ly

−Ly
du2(Lx − |u1|)(Ly − |u2|)ei(A0u1+B0u2)(e−σ

2K2[1−C(|u|)] − e−σ
2K2

).

(A9)
The exponentials relating to the perturbation can be expanded as a Taylor series as eσ

2K2C(|u|) =∑∞
m=0(σ2K2)mCm(|u|)/m!. We furthermore assume that the perturbation is characterised

by an isotropic Gaussian correlation function

C(|u|) = e−|u|
2/l2 , (A10)

where l is the correlation length. Thus, by factorising e−σ
2K2

, we obtain (Kong, 2000)

e−σ
2K2[1−C(|u|)] − e−σ

2K2

= e−σ
2K2

∞∑
m=1

(σ2K2)m

m!
e−m

|u|2

l2 . (A11)

Inserting (A11) into (A9), the integral involves only the linearised phase along with an
exponential of u2

1 + u2
2. We obtain that DΦ can be decomposed into four integrals:

DΦ = e−σ
2K2

∞∑
m=1

(σ2K2)m

m!
(I1 + I2 + I3 + I4) , (A12)

where

I1 =

� Lx

0

du1

� Ly

0

du2(Lx − u1)(Ly − u2)φε,

I2 =

� 0

−Lx
du1

� 0

−Ly
du2(Lx + u1)(Ly + u2)φε,

I3 =

� Lx

0

du1

� 0

−Ly
du2(Lx − u1)(Ly + u2)φε,

I4 =

� 0

−Lx
du1

� Ly

0

du2(Lx + u1)(Ly − u2)φε,

(A13)

and φε ≡ ei(A0u1+B0u2)−m(u2
1+u2

2)/l2 .723

From here, since the bounds of the double integrals are independent of each other,
the primitives that appear in (A13) can ultimately be reduced to these two identities:

�
eiax−bx

2

dx =− ie
− a24b

2

√
π

b
E(x), (A14)

�
xeiax−bx

2

dx =− eiax−bx
2

2b
+
ae−

a2

4b
√
π

2
√
b3
E(x), (A15)
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where a and b > 0 are real factors, and where we used the shorthand notation

E(x) ≡ erfi

(
a

2
√
b

+ i
√
bx

)
, (A16)

where erfi (z) ≡ −i erf (iz) is the imaginary error function, and erf (z) ≡ (2/
√
π)
� z

0
e−t

2

dt724

is the error function (Abramowitz & Stegun, 1964)(Weisstein, 2022). The first identity725

can be obtained from the definition of the error function, by completing the square in726

the exponential argument and carrying out the appropriate change of variables. The sec-727

ond integral can be obtained from the first through integration by parts, and by using728

fundamental properties of the error function (Weisstein, 2022).729

Using these two results along with purely algebraic manipulations, formula (A12)730

can be re-expressed into (21). In particular, the Re {·} operators appear naturally within731

this process using erfi(z†) = [erfi (z)]†.732

Appendix B Convergence analysis733

We gather under the quantity DΦ,m all the elements that are being summed in (21):

DΦ = e−σ
2K2

∞∑
m=1

DΦ,m. (B1)

We will demonstrate the (absolute) convergence of this series.734

A lot of different positive constants are involved in the DΦ,m terms. We chose a
real constant C > 0, supposedly larger than any combination of m-independent fac-
tors found in DΦ,m, so that we can write

|DΦ,m| ≤
C2m

m!m2
[1 + Ce−Cm + Ce−C/mSm]2, (B2)

where
Sm ≡ |Re {Cm erfi (Cm)} |+ |Re {Cm} erfi (Re {Cm}) |, (B3)

and

Cm ≡
C1√
m

+ iC2

√
m, (B4)

where C1 and C2 are real positive constants taken such that Sm is greater or equal than735

both Re {Am erfi (Am)}−Re {Am} erfi (Re {Am}) and Re {Bm erfi (Bm)}−Re {Bm} erfi (Re {Bm}).736

Notice that all the terms are positive in the right-hand side of (B2), unlike in DΦ,m, in737

order to ensure the inequality is always true.738

The right-hand side of (B2) can be expanded in a sum of six terms:

|DΦ,m| ≤
C2m

m2m!
+
C2+2me−2Cm

m2m!
+
C1+2me−Cm

m2m!

+
2C1+2me−C/mSm

m2m!
+

2C2+2me−C(1/m+m)Sm
m2m!

+
C2+2me−2C/mS2

m

m2m!
,

(B5)

≡ d1 + d2 + d3 + d4 + d5 + d6. (B6)

We will examine the absolute convergence of their series through the d’Alembert
criterion1. It can easily be understood that all terms that do not involve Sm will gen-
erate series that are absolutely convergent due to the factorial growth outpacing any ex-
ponential growth. The radius of convergence of the first three terms is zero. Therefore:

∞∑
m=0

|d1| <∞,
∞∑
m=0

|d2| <∞,
∞∑
m=0

|d3| <∞. (B7)

1 The d’Alembert criterion states that if r ≡ limn→∞ |an+1/an| < 1, then
∑∞

n=0 an absolutely con-

verges, with r being convergence radius.
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To prove the three remaining terms also absolutely converge, we first notice that, for m→
∞, the following expansions hold true:

Re {Cm erfi (Cm)} =− C2

√
m+ e−C

2
2m

cos(2C1C2)√
π

[
1 +O

(
1

m

)]
, (B8)

Re {Cm} erfi (Re {Cm}) =
2C1√
πm

+O
(

1

m

)2

, (B9)

Thus we see that Sm grows at worst as
√
m and S2

m as m. Therefore, replacing Sm into
(B5), and using similar argument than previously, we can see that the radius of conver-
gence of the last three terms is also zero, from which we conclude:

∞∑
m=0

|d4| <∞,
∞∑
m=0

|d5| <∞,
∞∑
m=0

|d6| <∞. (B10)

By virtue of (B2) we have proved that DΦ is not only convergent, but absolutely for any739

choice of parameters.740

In practice, we have found that the series generally converges with as little as 10741

terms for gentle amounts of roughness (σ . λ/20) and as much as 250 terms when σ742

is comparable to the wavelength. The correlation length l and the bistatic angles of scat-743

tering have a moderate effect on the number of terms needed for convergence.744

Appendix C Equivalence of average incoherent power and speckle745

We provide a quick proof the that inclusion of speckle in Section 3.3 gives that cor-
rect average power. Using the following shorthand, let the coherent, incoherent, and to-
tal fields from a single facet be

Ucoh = 〈Φ̃〉, (C1)

Uincoh =
√
DΦφr, (C2)

Utot = Ucoh + Uincoh, (C3)

where φr is given by (25). The total average power is

P = 〈|Utot|2〉. (C4)

Substituting the above we get

P = 〈|Ucoh + Uincoh|2〉, (C5)

= 〈|Ucoh|2 + 2 Re {UcohUincoh}+ |Uincoh|2〉, (C6)

= 〈|Ucoh|2〉+ 〈2 Re {UcohUincoh}〉+ 〈|Uincoh|2〉, (C7)

= |Ucoh|2 + 〈|Uincoh|2〉, (C8)

where we have used the fact that Ucoh is a constant and the real and imaginary parts
of φr are zero-mean Gaussian random variables which eliminates the cross term. Look-
ing at the incoherent component and substituting (C2) and (25)

〈|Uincoh|2〉 = 〈|
√
DΦφr|2〉, (C9)

=DΦ〈|ε1 + iε2|2〉/2, (C10)

=DΦ

(
〈|ε1|2〉+ 〈|ε2|2〉

)
/2, (C11)

=DΦ (1 + 1) /2, (C12)

=DΦ, (C13)

where we have used the fact that the mean of the square of the standard normal N (0, 1)
is equal to 1. Therefore, this speckle model gives the same average power as summing
the average coherent and average incoherent powers alone, that is

P = |〈Φ̃〉|2 +DΦ. (C14)
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